JPH0441508B2 - - Google Patents
Info
- Publication number
- JPH0441508B2 JPH0441508B2 JP61138937A JP13893786A JPH0441508B2 JP H0441508 B2 JPH0441508 B2 JP H0441508B2 JP 61138937 A JP61138937 A JP 61138937A JP 13893786 A JP13893786 A JP 13893786A JP H0441508 B2 JPH0441508 B2 JP H0441508B2
- Authority
- JP
- Japan
- Prior art keywords
- conductivity type
- type region
- insulating film
- opposite conductivity
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims description 23
- 239000004065 semiconductor Substances 0.000 claims description 12
- 239000003990 capacitor Substances 0.000 claims description 11
- 230000005669 field effect Effects 0.000 claims description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 229910052814 silicon oxide Inorganic materials 0.000 description 10
- 239000003595 mist Substances 0.000 description 8
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Semiconductor Memories (AREA)
Description
【発明の詳細な説明】
この発明は絶縁ゲート型電界効果トランジスタ
(MIST)を用いた集積回路装置に関し、半導体
記憶装置(ICメモリ)として論理処理装置の情
報記憶に用いられるものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an integrated circuit device using an insulated gate field effect transistor (MIST), which is used as a semiconductor memory device (IC memory) to store information in a logic processing device.
情報処理に用いられるLCメモリは、集積回路
技術の発展により大規模高密度化し、且つ特性上
の向上も著じるしい。近来主として用いられる
ICメモリはMISTを用いた集積回路装置であり、
メモリセルとしてMISTと容量素子とを有し、
MISTによるスイツチング作用で容量素子への電
荷量を情報として蓄積・検出するものである。大
規模化に伴ない容量素子の容量の効率化が必要と
なり、既知の技術では容量素子として半導体表面
に絶縁ゲート膜を介して電極を設け、該電極に電
源電圧を印加して電極と半導体表面に誘起される
表面反転層との容量効果を容量素子として用いて
いる。しかし乍ら、容量素子の効率化はメモリセ
ルの占有面積を大きく支配するため、単に反転層
の利用による容量効果では現在の大規模の傾向に
不充分である。 With the development of integrated circuit technology, LC memory used for information processing has become larger and more dense, and its characteristics have also improved significantly. Mainly used in recent years
IC memory is an integrated circuit device using MIST.
It has a MIST and a capacitive element as a memory cell,
The switching action of MIST stores and detects the amount of charge on the capacitive element as information. As the scale increases, it becomes necessary to improve the efficiency of the capacitance of capacitive elements, and in known technology, an electrode is provided on the semiconductor surface as a capacitive element via an insulated gate film, and a power supply voltage is applied to the electrode to connect the electrode and the semiconductor surface. The capacitive effect with the surface inversion layer induced by this is used as a capacitive element. However, since improving the efficiency of the capacitive element largely controls the area occupied by the memory cell, the capacitive effect simply by using an inversion layer is insufficient for the current large-scale trend.
この発明の目的は、効率の高い容量素子と
MISTから成るメモリセルを有しかつ信頼性の高
い集積回路装置を提供することである。 The purpose of this invention is to create a capacitive element with high efficiency.
An object of the present invention is to provide a highly reliable integrated circuit device having a memory cell composed of MIST.
この発明の特徴は、一導電型の半導体基体の一
主面に選択的に設けられた該半導体基体に一部埋
設せる厚い絶縁膜と、該厚い絶縁膜に隣接せる該
半導体基体の活性領域とを具備し、該活性領域に
設けた絶縁ゲート型電界効果トランジスタ部と容
量素子部とをメモリセルとして備えた集積回路に
おいて、前記トランジスタ部はアドレス線と結合
せるゲート電極、該ゲート電極の一方の側の基体
部分に設けられ、デイジツト線に結合せる深い接
合の第1の逆導電型領域および該ゲート電極の他
方の側の基体部分に設けられ前記容量素子部と結
合せる深い接合の第2の逆導電型領域とを有し、
前記容量素子部は、前記トランジスタの前記第
1、第2の逆導電型領域よりも浅い接合をもつて
該第2の逆導電型領域より延在し前記厚い絶縁膜
に接する第3の逆導電型領域と、該第3の逆導電
型領域の底面に接し、前記トランジスタの第2の
逆導電型領域よりも浅く形成されかつ該第2の逆
導電型領域から延在し前記厚い絶縁膜に接する前
記半導体基体より高濃度の一導電型領域とから
PN接合容量を構成し、該一主面上に設けられ該
トランジスタ部より延在し該厚い絶縁膜に接する
薄い絶縁膜と、該薄い絶縁膜上に設けられ該トラ
ンジスタ部側より延在し該厚い絶縁膜上にいたる
電極と、該第3の逆導電型領域とからMOS型容
量を構成した集積回路装置にある。そしてこの第
3の逆導電型領域の底面が半導体基板に比して10
〜104倍程度の高濃度の一導電型領域とPN接合を
有することが好ましい。又、MOS容量も増大さ
せたPN接合容量もいずれもトランジスタ部と厚
い絶縁膜との間の全体を使用しているから理想的
に大きな容量を有する容量素子が得られる。又、
その形成において第3の逆導電型領域よりも高濃
度の一導電型領域がトランジスタ部側に突出する
と、ここの部分がオフセツトとなり動作に支障を
きたすが本発明では深い第2の逆導電型領域の存
在よりそのような懸念はなくなる。又、容量素子
部はトランジスタ部より広い面積を占有する。し
たがつてこの広い面積に設けられる第3の逆導電
型領域がトランジスタ部の第1、第2の逆導電型
領域と同じ様に深く形成したのでは隣りのメモリ
セルとのリツケージが問題となる。しかし本発明
では広い面積となる第3の逆導電型領域は浅いの
で、上記問題は発生しない。一方、トランジスタ
部の逆導電型領域は深いが一般には小さい面積に
しか占有しないから隣りのメモリセルとのリツケ
ージの問題が起こる確率は無視できる。 The present invention is characterized by: a thick insulating film selectively provided on one main surface of a semiconductor substrate of one conductivity type and partially embedded in the semiconductor substrate; and an active region of the semiconductor substrate adjacent to the thick insulating film. In an integrated circuit comprising an insulated gate field effect transistor section provided in the active region and a capacitive element section as a memory cell, the transistor section includes a gate electrode coupled to an address line, and one of the gate electrodes. A first opposite conductivity type region of a deep junction provided on the base portion on the other side of the gate electrode and coupled to the digit line, and a second region of a deep junction provided on the base portion on the other side of the gate electrode and coupled to the capacitive element portion. and a region of opposite conductivity type,
The capacitive element portion has a third opposite conductivity type region extending from the second opposite conductivity type region with a junction shallower than the first and second opposite conductivity type regions of the transistor and in contact with the thick insulating film. a third opposite conductivity type region, is formed shallower than the second opposite conductivity type region of the transistor, extends from the second opposite conductivity type region, and is in contact with the thick insulating film. from a region of one conductivity type having a higher concentration than the semiconductor substrate in contact with;
A thin insulating film that constitutes a PN junction capacitor is provided on the one principal surface, extends from the transistor section, and is in contact with the thick insulating film, and a thin insulating film is provided on the thin insulating film, extends from the transistor section side, and contacts the thick insulating film. The present invention provides an integrated circuit device in which a MOS type capacitor is formed from an electrode extending over a thick insulating film and the third region of opposite conductivity type. The bottom surface of this third opposite conductivity type region is 10
It is preferable to have a PN junction and a region of one conductivity type with a high concentration of ~10 4 times. Furthermore, since both the MOS capacitance and the increased PN junction capacitance are used entirely between the transistor section and the thick insulating film, a capacitive element having an ideally large capacitance can be obtained. or,
In its formation, if one conductivity type region with a higher concentration than the third opposite conductivity type region protrudes toward the transistor part side, this part becomes offset and causes a problem in operation. Such concerns disappear due to the existence of Further, the capacitive element section occupies a larger area than the transistor section. Therefore, if the third opposite conductivity type region provided in this wide area is formed as deeply as the first and second opposite conductivity type regions of the transistor section, there will be a problem of linkage with the adjacent memory cell. . However, in the present invention, since the third opposite conductivity type region having a large area is shallow, the above problem does not occur. On the other hand, although the region of the opposite conductivity type in the transistor portion is deep, it generally occupies only a small area, so the probability that a problem of linkage with an adjacent memory cell will occur can be ignored.
次にこの発明の特徴をより良く理解するため
に、この発明の実施例につき図を用いて説明す
る。 Next, in order to better understand the characteristics of the present invention, embodiments of the present invention will be described using figures.
第1図A〜第1図Dはこの発明の一実施例を実
現する主たる製造工程における断面図である。こ
の実施例は比抵抗10Ω−cmのP型シリコン単結晶
基体101の一主表面の活性領域部に選択的にシ
リコン窒化膜(図示しない)を形成し、該窒化膜
をマスクとして表面濃度1016cm-3程度のボロンを
導入して非活性領域部にP型領域102を形成
し、同時に熱酸化法によりこの部分に1.3μ程度の
厚いシリコン酸化膜103を成長する。このよう
なシリコン窒化膜をマスクとする基体の非活性領
域部への厚いシリコン酸化膜103の成長は選択
酸化法もしくはフラツトMOS技術と呼ばれ、例
えば特公昭50−1379号公報に詳細があるため、こ
こでの説明は省略される。 FIGS. 1A to 1D are cross-sectional views showing main manufacturing steps for realizing an embodiment of the present invention. In this embodiment, a silicon nitride film (not shown) is selectively formed in the active region of one main surface of a P-type silicon single crystal substrate 101 with a specific resistance of 10 Ω-cm, and the surface concentration is 10 16 using the nitride film as a mask. A P-type region 102 is formed in the non-active region by introducing boron of about cm -3 , and at the same time a silicon oxide film 103 with a thickness of about 1.3 μm is grown in this region by thermal oxidation. The growth of a thick silicon oxide film 103 on the non-active region of the substrate using a silicon nitride film as a mask is called selective oxidation method or flat MOS technology, and the details can be found in, for example, Japanese Patent Publication No. 1379/1983. , the explanation here is omitted.
選択酸化法を施した試料は次に活性領域部から
シリコン窒化膜を除去し、再度熱酸化処理して活
性領域部に約1500〓のシリコン酸化膜104を形
成する。この薄いシリコン酸化膜104は絶縁ゲ
ート膜と呼ばれる絶縁膜である。活性領域部は一
部が第1図Aに示すように厚さ1.5μ程度のフオト
レジスト105で被覆され、このレジスト105
および厚いシリコン酸化膜103をマスクとして
二重にイオン注入が施される。イオン注入は初め
に70KeVで5×1013cm-2のドース量のボロンが注
入され、次に30KeVで1014cm-2の燐が注入され
る。 Next, the silicon nitride film is removed from the active region of the sample subjected to the selective oxidation method, and thermal oxidation treatment is performed again to form a silicon oxide film 104 of about 1500 μm in thickness in the active region. This thin silicon oxide film 104 is an insulating film called an insulating gate film. A part of the active region is covered with a photoresist 105 having a thickness of about 1.5μ as shown in FIG.
Then, double ion implantation is performed using the thick silicon oxide film 103 as a mask. In the ion implantation, boron is first implanted at a dose of 5×10 13 cm −2 at 70 KeV, followed by phosphorus at a dose of 10 14 cm −2 at 30 KeV.
イオン注入後の基体表面には高濃度のP型領域
106と、該P型領域の内部含まれるN型領域1
07が形成されている。これらの領域106,1
07はフオトレジストの同一開孔からのイオン注
入で薄いシリコン酸化膜104を通過して活性領
域中に選択形成される。薄いシリコン酸化膜10
4の上面には次に容量素子の電極108とMIST
のゲート電極109とが選択的に形成される〔第
1図B〕。 After ion implantation, the substrate surface has a highly concentrated P-type region 106 and an N-type region 1 contained inside the P-type region.
07 is formed. These areas 106,1
Ions 07 are selectively formed in the active region through the thin silicon oxide film 104 by ion implantation through the same opening in the photoresist. thin silicon oxide film 10
Next, the electrode 108 of the capacitive element and the MIST are placed on the top surface of 4.
A gate electrode 109 is selectively formed (FIG. 1B).
これらの電極108,109は0.4μを介して対
向する。又、P型領域106およびN型領域10
7の端は電極108,109の間にある。 These electrodes 108 and 109 face each other with a distance of 0.4μ. Moreover, the P type region 106 and the N type region 10
The end of 7 is between electrodes 108 and 109.
電極108,109はこれの電極間の活性領域
部への燐導入のマスクとして用いられる。燐導入
は熱拡散法が好適であり、電極108,109お
よび厚いシリコン酸化膜103をマスクとして基
体表面に表面濃度1020cm-3で接合深さ1.5μのN型
領域110およびデイジツト線となるN型領域1
11を形成する〔第1図C〕。ここで電極108,
109の間のN型領域110はMISTの一方の出
力領域であると共にN型領域107に結合する結
合部である。又、N型領域111はMISTの他の
出力領域である。N型領域、110,111の形
成の後に基体表面には気相成長が施され、一様に
厚さ0.5μ程度のリンガラスを主成分とする層間絶
縁膜112が形成される。 Electrodes 108 and 109 are used as a mask for introducing phosphorus into the active region between the electrodes. The thermal diffusion method is suitable for introducing phosphorus, and using the electrodes 108, 109 and the thick silicon oxide film 103 as a mask, an N-type region 110 with a surface concentration of 10 20 cm -3 and a junction depth of 1.5 μm and a digit line are formed on the substrate surface. N-type region 1
11 [Fig. 1C]. Here the electrode 108,
An N-type region 110 between 109 and 109 is one output region of MIST and is a coupling portion that couples to N-type region 107 . Further, the N-type region 111 is another output region of MIST. After the formation of the N-type regions 110 and 111, vapor phase growth is performed on the surface of the substrate to uniformly form an interlayer insulating film 112 having a thickness of about 0.5 μm and mainly composed of phosphorus glass.
而後、既知の写真蝕刻法を駆使して試料は第1
図Dに示すように、N型領域111の上面の開孔
を通して層間絶縁膜112の上面を伸びるアルミ
ニウムの電極配線113が導出され、且つ基体1
01の裏面に基体バイアス(SB)を与える基体
電極114が導電結合する。この実施例ではマイ
ナスの電圧が印加される。 Afterwards, using known photolithographic techniques, the sample was
As shown in FIG.
A base electrode 114 that applies a base bias (SB) is conductively coupled to the back surface of 01. In this embodiment, a negative voltage is applied.
このように完成された試料は電極108とN型
領域107との間の容量と並列にN型領域107
と基体電極114との間にPN接合による容量を
有する。このPN接合の容量はN型領域107と
高濃度のP型領域106とのPN接合容量である
ため容量効果が大きい。この実施例においてはシ
リコン酸化膜104を用いた容量が約0.2×10-15
F/μ2であるのに対し、PN接合容量はほぼ同容
量の約0.2×10-15F/μ2である。これらの容量は
基体表面に対して縦方向に形成されるため、素子
の占有面積が小さく且つ効率的な容量素子を得
る。 The sample completed in this way has an N-type region 107 in parallel with the capacitance between the electrode 108 and the N-type region 107.
There is a capacitance between the PN junction and the base electrode 114 due to the PN junction. The capacitance of this PN junction is the PN junction capacitance between the N-type region 107 and the heavily doped P-type region 106, so the capacitive effect is large. In this embodiment, the capacitance using the silicon oxide film 104 is approximately 0.2×10 -15
F/μ 2 , whereas the PN junction capacitance is approximately the same capacitance, approximately 0.2×10 −15 F/μ 2 . Since these capacitors are formed in the vertical direction with respect to the substrate surface, an efficient capacitive element with a small area occupied by the element can be obtained.
第2図は上述の実施例の等価回路図である。即
ち、この実施例は、ゲート電極がアドレス線Wに
接続し、出力領域の他方がデイジツト線Dに接続
するトランジスタQと、一方の出力領域に負荷す
る絶縁膜を用いた容量CoとPN接合容量CXから成
る容量素子とを含む。容量Coは表面の電極を電
源の低電位端子GNDに接続し、PN接合容量CX
は基体端子SBを基体バイアス源に結合すること
により共に直流電位に固定されて、情報蓄積のた
めの容量として効率の高い電荷蓄積を行う。 FIG. 2 is an equivalent circuit diagram of the above-described embodiment. That is, this embodiment has a transistor Q whose gate electrode is connected to the address line W and whose output region is connected to the digit line D, and a capacitor Co using an insulating film and a PN junction capacitor loaded to one output region. and a capacitive element consisting of C. The capacitor Co connects the surface electrode to the low potential terminal GND of the power supply, and the PN junction capacitor C
By coupling the substrate terminal SB to a substrate bias source, both are fixed at a DC potential, and highly efficient charge storage is performed as a capacitor for information storage.
この図に1ビツトのメモリセルを示したが、こ
の実施例は同一基体の表面に多数ビツトのメモリ
セルを有する集積回路である。又、上記実施例で
は、基板バイアスを印加することによつて、たと
えばデイジツト線等の容量を減少させて、消費電
力の低減し集積回路装置のスピードを高めてい
る。基板バイアスを印加すればメモリーセルの容
量部のPN接合容量も減少するが本発明では一導
電型の高濃度領域を設けてあるからその減少は最
少限に押えることができる。そして本発明は基板
バイアスを印加してもメモリーセルの容量部へは
実質的に影響されず、上記デイジツト線等への効
果がはるかに大であり、全体としてスピードの大
なる集積回路装置が得られることを認識してなさ
れたものである。さらに本発明が対象としている
メモリーセルでは基板バイアスでトランジスタ一
部の閾値電圧以下の状態におけるドレインリーク
電流も減少する。 Although a 1-bit memory cell is shown in this figure, this embodiment is an integrated circuit having multiple-bit memory cells on the surface of the same substrate. Further, in the above embodiment, by applying a substrate bias, the capacitance of, for example, a digit line is reduced, thereby reducing power consumption and increasing the speed of the integrated circuit device. When a substrate bias is applied, the PN junction capacitance of the capacitive portion of the memory cell also decreases, but in the present invention, since a high concentration region of one conductivity type is provided, this decrease can be kept to a minimum. Furthermore, in the present invention, even if a substrate bias is applied, the capacitance portion of the memory cell is not substantially affected, and the effect on the digit lines, etc. is much greater, and an integrated circuit device with a higher speed as a whole can be obtained. This was done in recognition of the fact that Furthermore, in the memory cell targeted by the present invention, drain leakage current in a state where the voltage of a part of the transistor is lower than the threshold voltage due to substrate bias is also reduced.
以上この発明の一実施例を示したが、この発明
は実施例に示されない他の材料もしくは導電型領
域を用いても実現される。 Although one embodiment of the present invention has been described above, the present invention can also be realized using other materials or conductivity type regions not shown in the embodiment.
第1図A〜第1図Dはこの発明の一実施例の主
要な製造工程におけるそれぞれ断面図、第2図は
第1図の実施例の等価回路図である。図中、10
1はP型シリコン単結晶基体、104は薄いシリ
コン酸化膜、108は容量素子の電極、106は
高濃度のP型領域、107は容量素子を形成する
N型領域、110は容量素子とトランジスタとを
結合するN型領域である。
1A to 1D are sectional views showing the main manufacturing steps of an embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram of the embodiment of FIG. 1. In the figure, 10
1 is a P-type silicon single crystal substrate, 104 is a thin silicon oxide film, 108 is an electrode of a capacitive element, 106 is a high concentration P-type region, 107 is an N-type region forming a capacitor, and 110 is a capacitive element and a transistor. This is an N-type region that connects the .
Claims (1)
けられた該半導体基体に一部埋設せる厚い絶縁膜
と、該厚い絶縁膜に隣接せる該半導体基体の活性
領域とを具備し、該活性領域に設けた絶縁ゲート
型電界効果トランジスタ部と容量素子部とをメモ
リセルとして備えた集積回路において、前記トラ
ンジスタ部はアドレス線と結合せるゲート電極、
該ゲート電極の一方の側の基体部分に設けられ、
デイジツト線に結合せる深い接合の第1の逆導電
型領域および該ゲート電極の他方の側の基体部分
に設けられ前記容量素子部と結合せる深い接合の
第2の逆導電型領域とを有し、前記容量素子部
は、前記トランジスタの前記第1、第2の逆導電
型領域よりも浅い接合をもつて該第2の逆導電型
領域より延在し前記厚い絶縁膜に接する第3の逆
導電型領域と、該第3の逆導電型領域の底面に接
し、前記トランジスタの第2の逆導電型領域より
も浅く形成されかつ該第2の逆導電型領域から延
在し、前記厚い絶縁膜に接する前記半導体基体よ
り高濃度の一導電型領域とからPN接合容量を構
成し、該一主面上に設けられ該トランジスタ部よ
り延在し該厚い絶縁膜に接する薄い絶縁膜と、該
薄い絶縁膜上に設けられ該トランジスタ部側より
延在し該厚い絶縁膜上にいたる電極と、該第3の
逆導電型領域とからMOS型容量を構成したこと
を特徴とする集積回路装置。1. A semiconductor substrate comprising: a thick insulating film selectively provided on one main surface of a semiconductor substrate of one conductivity type and partially embedded in the semiconductor substrate; and an active region of the semiconductor substrate adjacent to the thick insulating film; In an integrated circuit including an insulated gate field effect transistor section provided in an active region and a capacitive element section as a memory cell, the transistor section has a gate electrode coupled to an address line;
provided on the base portion on one side of the gate electrode,
a first opposite conductivity type region of a deep junction coupled to the digit line; and a second opposite conductivity type region of a deep junction provided on the base portion on the other side of the gate electrode and coupled to the capacitive element portion. , the capacitive element portion has a junction shallower than the first and second opposite conductivity type regions of the transistor, and extends from the second opposite conductivity type region and is in contact with the thick insulating film. a conductivity type region, and the thick insulating layer is in contact with the bottom surface of the third opposite conductivity type region, is formed shallower than the second opposite conductivity type region of the transistor, and extends from the second opposite conductivity type region. A PN junction capacitor is constituted by a region of one conductivity type higher in concentration than the semiconductor substrate in contact with the film, a thin insulating film provided on the one main surface, extending from the transistor portion and in contact with the thick insulating film, and An integrated circuit device characterized in that a MOS type capacitor is constituted by an electrode provided on a thin insulating film and extending from the transistor section side to reach the thick insulating film, and the third opposite conductivity type region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61138937A JPS62115768A (en) | 1986-06-13 | 1986-06-13 | Integrated circuit device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61138937A JPS62115768A (en) | 1986-06-13 | 1986-06-13 | Integrated circuit device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56170619A Division JPS57141955A (en) | 1981-10-23 | 1981-10-23 | Integrated circuit device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62115768A JPS62115768A (en) | 1987-05-27 |
JPH0441508B2 true JPH0441508B2 (en) | 1992-07-08 |
Family
ID=15233630
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61138937A Granted JPS62115768A (en) | 1986-06-13 | 1986-06-13 | Integrated circuit device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62115768A (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3387286A (en) * | 1967-07-14 | 1968-06-04 | Ibm | Field-effect transistor memory |
JPS4826039A (en) * | 1971-08-02 | 1973-04-05 | ||
JPS4827643A (en) * | 1971-08-12 | 1973-04-12 | ||
JPS4942286A (en) * | 1972-04-24 | 1974-04-20 |
-
1986
- 1986-06-13 JP JP61138937A patent/JPS62115768A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3387286A (en) * | 1967-07-14 | 1968-06-04 | Ibm | Field-effect transistor memory |
JPS4826039A (en) * | 1971-08-02 | 1973-04-05 | ||
JPS4827643A (en) * | 1971-08-12 | 1973-04-12 | ||
JPS4942286A (en) * | 1972-04-24 | 1974-04-20 |
Also Published As
Publication number | Publication date |
---|---|
JPS62115768A (en) | 1987-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2854815B2 (en) | Semiconductor manufacturing method | |
JP2591927B2 (en) | DRAM cell manufacturing method | |
JPH02263473A (en) | Semiconductor device and semiconductor storage device | |
JP3272979B2 (en) | Semiconductor device | |
JPS6050066B2 (en) | MOS semiconductor integrated circuit device | |
JPH03789B2 (en) | ||
JPH11261020A (en) | Semiconductor device and its manufacture | |
JP2624709B2 (en) | Method for manufacturing semiconductor device | |
US6380045B1 (en) | Method of forming asymmetric wells for DRAM cells | |
JPH11168202A (en) | Memory cell and its forming method | |
JPH0441508B2 (en) | ||
JPS604595B2 (en) | integrated circuit | |
JPS62213273A (en) | Dynamic random access memory | |
KR100275114B1 (en) | Semiconductor device having low bit line capacitance and method for forming the same | |
JPS6131637B2 (en) | ||
JP2900717B2 (en) | Semiconductor device | |
JPH1174475A (en) | Semiconductor integrated circuit device and its manufacture | |
JPS627152A (en) | Semiconductor memory | |
KR100587045B1 (en) | Method of manufacturing semiconductor device | |
JP3085687B2 (en) | Semiconductor memory device and method of manufacturing the same | |
KR0165422B1 (en) | Thin film transistor & fabrication method | |
TW463371B (en) | Manufacturing method for DRAM cells | |
JPH0328071B2 (en) | ||
JPS62120067A (en) | Dynamic random access memory cell | |
KR910007781B1 (en) | Method of fabricating semiconductor memory |