JPH0440456B2 - - Google Patents

Info

Publication number
JPH0440456B2
JPH0440456B2 JP63143907A JP14390788A JPH0440456B2 JP H0440456 B2 JPH0440456 B2 JP H0440456B2 JP 63143907 A JP63143907 A JP 63143907A JP 14390788 A JP14390788 A JP 14390788A JP H0440456 B2 JPH0440456 B2 JP H0440456B2
Authority
JP
Japan
Prior art keywords
fine particles
fibers
fabric
present
white fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63143907A
Other languages
Japanese (ja)
Other versions
JPH01314716A (en
Inventor
Tsunekatsu Furuta
Katsuhiro Inoe
Kenichi Kamemaru
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP63143907A priority Critical patent/JPH01314716A/en
Publication of JPH01314716A publication Critical patent/JPH01314716A/en
Publication of JPH0440456B2 publication Critical patent/JPH0440456B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G1/00Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics
    • D02G1/02Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist
    • D02G1/0286Producing crimped or curled fibres, filaments, yarns, or threads, giving them latent characteristics by twisting, fixing the twist and backtwisting, i.e. by imparting false twist characterised by the use of certain filaments, fibres or yarns

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Woven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、防寒衣料やスポーツ衣料に敵した保
温性を有する布帛に関するものである。 (従来の技術) 従来から、防寒衣料やスポーツ衣料では、表地
と裏地の間に中綿を入れた3層構造を形成し、中
綿の空気層の厚みによつて保温性を得てきた。こ
のような3層構造の布帛は、特に動きやすさを要
求されるスポーツ衣料では、重く嵩ばり、自由な
動きが阻害されるという欠点を有していた。 近年、アルミニウムやチタン等の金属を蒸着し
た布帛を裏地として用いることにより、体からの
熱を裏地の表面で反射させ、衣服の外に逃げる熱
を減少させる保温効果を利用することにより、用
いる中綿の量を少なくしたり、あるいは全く用い
ないようにしたりして、その解決を図つてきた。 しかし、上述のごとき保温効果のある蒸着裏地
では、アルミニウムやチタン等の金属を布帛表面
に蒸着加工しているので、蒸着加工に伴うコスト
アツプや、蒸着加工前の準備工程における布帛の
微妙な取り扱いによる蒸着斑の発生等、いろいろ
な問題があつた。 また、本発明者らは、特に特願昭62−195629号
にて、繊維自体に炭化物系セラミツク微粒子を含
有せしめることにより布帛に保温性を有せしめる
方法を提案したが、この方法では、優れた保温効
果が得られるとはいえ、その色調が黒色系である
ため、布帛としての色調が非常に限定されてしま
うという問題があつた。 (発明が解決しようとする課題) 本発明は、このような現状に鑑みて行われたも
ので、蒸着加工のような後加工方法を用いずに、
しかも布帛としての色調に限定されることもな
く、良好な保温性を有する白色系の布帛を得るこ
とを目的とするものである。 (課題を解決するための手段) 本発明は、上記目的を達成するもので、次の構
成よりなるものである。 すなわち、本発明は、酸化アンチモンをドーピ
ングした酸化第二錫の微粒子または酸化アンチモ
ンをドーピングした酸化第二錫を他の無機物質の
微粒子にコーテイングした白色系微粒子を含有す
る繊維から構成され、光エネルギーを吸収し、遠
赤外線を放射する能力を有することを特徴とする
保温性を有する白色系布帛を要旨とするものであ
る。 以下、本発明について詳細に説明を行う。 本発明では、光エネルギーを吸収し遠赤外線を
放射する能力を有する白色系微粒子として、酸化
アンチモンをドーピングした酸化第二錫(酸化ア
ンチモン/酸化第二錫の重量%=0.5%/99.5%
〜15.0%/85.0%)の微粒子、または酸化アンチ
モンをドーピングした酸化第二錫を他の無機物質
(酸化チタン、酸化亜鉛、酸化カルシウム、炭酸
カルシウム、炭酸亜鉛、硫酸カルシウム、硫酸バ
リウム、アルミナ等)にコーテイングした微粒子
(酸化アンチモン/酸化第二錫/他の無機物質の
重量%=0.5%/5.0%/94.5%〜2.0%/18.0%/
80.0%)等を挙げることができる。酸化アンチモ
ンをドーピングせずに該白色系微粒子と同一組成
になるように混合した微粒子を用いて繊維を構成
すると、通常の繊維とほとんど保温性が変わらな
い。 本発明で用いられる微粒子は、10μm以下の粒
度の粉末で、好ましくは1μm以下、さらに好まし
くは0.5μm以下の粒度の微粉末である。粒子が大
きすぎると、保温性に問題が生じるのみならず、
後述する繊維に含有させる場合、製糸工程の濾材
における目塞りや糸切れ等による可紡性の低下等
の問題が生じ、たとえ紡糸を行うことができて
も、延伸工程での糸切れ発生の問題がある。 本発明における繊維としては、ナイロン、ポリ
エステル、ポリエチレン、ポリプロピレン等また
はこれらを主成分とする繊維形成性の良好な熱可
塑性重合体からなる合成繊維や、アクリル繊維、
ビニロン繊維、ポリウレタン繊維、ポリ塩化ビニ
リデン繊維、ポリ塩化ビニル繊維等の合成繊維、
アセテート繊維等の半合成繊維、レーヨン、キユ
プラ等の再生繊維等を挙げることができる。 光エネルギーを吸収し、遠赤外線を放射する能
力を有する白色系微粒子の含有量は、繊維重量に
対して0.1重量%以上20重量%以下、好ましくは
0.5重量%以上10重量%以下、さらに好ましくは
1重量%以上7重量%以下が適当である。含有量
が0.1重量%以下では目的とする保温性が得られ
ず、20重量%以上では繊維の生産性が悪く、しか
も糸質的に十分な強伸度が得られない。 光エネギーを吸収し、遠赤外線を放射する能力
を有する白色系微粒子を繊維に含有せしめる方法
としては、合成繊維の原料ポリマーに直接混合し
て紡糸する方法、予め原料ポリマーの一部を用い
て高濃度に含有せしめたマスターバツチを製造
し、これを紡糸時に所定の濃度に希釈調整してか
ら紡糸する方法等がある。 ここで、繊維へ白色系微粒子を含有せしめた状
態の一例を、繊維の断面図によつて説明する。 第1図は繊維1に白色系微粒子を均一に含有せ
しめた状態を示し、第2〜3図はいずれも芯鞘構
造糸で、第2図は芯部2に、また、第3図は鞘部
4にそれぞれ白色系微粒子を均一に含有せしめた
状態、第4図は断面の3箇所6,16,26に含
有せしめた状態、第5図は分割糸で、16分割のう
ち8分割部8に含有せしめた状態、第6図は3層
構造糸で、中層部10に含有せしめた状態、第7
図はサイド・バイ・サイド糸の中央部12に含有
せしめた状態、第8図は海島構造糸の島部14に
含有せしめた状態を示す。 これらの各断面構造の繊維のうち、第1図に示
す繊維は、その断面の全面に白色系微粒子を含有
しているので、ある程度強力的に低い水準の繊維
となるのは止むを得ないが、この点、第2〜8図
に示す繊維は、それぞれ白色系微粒子を含有して
いない部分3,5,7,9,11,13,15を
有しているので、その程度に応じて白色系微粒子
を含有することによる強度低下が軽減される利点
を有している。 また、第2図、第6図、第8図に示す繊維は、
白色系微粒子を含有している部分2,10,14
がそれぞれ繊維の内部にあつて、表面に露出して
いないので、繊維の製造時や織編物の製造時に繊
維中の白色系微粒子が紡糸機や織機、編機のロー
ラーやガイド等を摩擦によつて損傷したりするこ
とがないという利点を有している。 第4図、第5図、第7図の繊維は、白色系微粒
子を含有している部分6,16,26,8,12
がそれぞれ繊維の表面に露出しているとはいえ、
露出の程度が第1図に示す繊維よりはるかに少な
いので、その程度に応じて上記摩擦損傷の問題も
低減される。 第2〜8図に示す繊維では、白色系微粒子を含
有している部分とそうでない部分が異種のポリマ
ーであつても一向に差し支えない。繊維への白色
系微粒子の含有は、第1〜8図の形状の他にも
種々の形状で可能である。 本発明の布帛は、光エネルギーを吸収し、遠赤
外線を放射する能力を有する白色系微粒子を含有
する繊維による織物・編物・不織布等をいい、該
白色系微粒子含有の異種繊維または該白色系微粒
子を含有しない繊維の混繊、混紡、混編、交織、
交編等によるものでもよい。 本発明の布帛は、そのままあるいは染色、樹脂
加工して用いられる。 本発明の布帛は優れた保温性を有しているの
で、保温性の要求されるスキージヤケツト、スキ
ー用ワンピース、スキーパンツ等のスキーウエア
(表地、裏地のいずれにも使用可能)をはじめ、
スウエツトウエア、スウエツトシヤツ、シヤツ、
タイツ、ウインドブレーカ、トレーニングウエ
ア、アンダーウエア、水着、ウエツトスーツ、ウ
エツトスーツの内張り等のスポーツ衣料、登山、
フイツシング、ハンテイング等のアウトドアスポ
ーツ用防寒衣料(表地、裏地のいずれにも使用可
能)、ウインタースポーツ用シユーズのライニン
グ・中敷、帽子や手袋の表地、裏地等のスポーツ
用グツズ、日常使用する防寒衣、作業着、冷え防
止肌着、腹巻、腹帯、ソツクス等の一般衣料品、
靴・ブーツ・手袋等の内張り用材、毛布、電気毛
布、シーツ、マツトレス、敷きぶとん等の寝装
具、カーテン、カーペツト、ホツトカーペツト用
生地、こたつ掛け、こたつ敷き、膝掛け、座ぶと
ん等のインテリア製品、テント、寝袋、農業用保
温材、保温用カバー材、手袋用合成皮革の基布等
の各種各様の用途に用いられる。 (作用) 光エネルギーを吸収し、遠赤外線を放射する能
力を有する白色系微粒子を含有する繊維から構成
されてなる本発明の布帛が良好な保温性を有する
理由は定かでないが、該白色系微粒子の電子構造
に起因する光エネルギーを吸収し遠赤外線を放射
する能力によるものと推測される。 (実施例) 以下、実施例によつて本発明をさらに具体的に
説明するが、実施例における布帛の性能の測定は
次の方法で行つた。 (1) 保温性 20℃、60%の恒温室内において、エネルギー源
として写真用100W白色光源を用い、布帛の表面
温度をサーモビユア(赤外線センサー、日本電子
(株)製品)にて測定した。 実施例 1 酸化アンチモンをドーピングした粒径0.08μm
の酸化第二錫(重量%:酸化アンチモン/酸化第
二錫=10%/90%)の微粒子20重量部とポリエチ
レンテレフタレート80重量部を均一に溶融混合し
て白色系微粒子混合組成物を得た。 この白色系微粒子混合組成物と固有粘度1.1の
ポリエチレンテレフタレートを重量比10:90の割
合で均一に溶融混合後紡糸し、冷却固化後、
1000m/minの速度で捲取り、延伸後、75d/24f
の本発明の白色系微粒子含有繊維を得た。 この繊維を経糸、緯糸の双方に用いて製織し、
経糸密度116本/インチ、緯糸密度78本/インチ
の白色の平織物を得た。 本発明との比較のため、下記比較例1〜2の比
較試料を作成し、本発明との比較を行つた。 (比較例 1) 本実施例において、繊維への白色系微粒子の混入
を省くほかは、本実施例と全く同一の方法により
ポリエチレンテレフタレート繊維75d/24f使いの
同一規格の比較用平織物を得た。 (比較例 2) 上記比較例1の平織物に、アルミニウム蒸着装
置を用いて3×10-6mmHg〜5×10-7mmHgの減圧
下で蒸気化させたアルミニウム金属を、厚さが
10μmになるように蒸着加工を行ない、比較用の
アルミニウム蒸着加工織物を得た。 本発明および比較例1〜2の織物の性能を測定
し、その結果を合わせて第1表に示した。
(Industrial Application Field) The present invention relates to a fabric having heat retention properties comparable to cold protection clothing and sports clothing. (Prior Art) Traditionally, cold-weather clothing and sports clothing have formed a three-layer structure with batting inserted between the outer material and the lining, and have achieved heat retention through the thickness of the air layer in the batting. Such a three-layered fabric has the disadvantage that it is heavy and bulky, which inhibits free movement, especially for sports clothing that requires ease of movement. In recent years, fabrics coated with metals such as aluminum and titanium have been used as linings to reflect heat from the body on the surface of the lining, reducing the amount of heat escaping outside the garment. Efforts have been made to solve this problem by reducing the amount of or not using it at all. However, with the above-mentioned vapor-deposited linings that have a heat-retaining effect, metals such as aluminum and titanium are vapor-deposited on the surface of the fabric, so there is a cost increase associated with the vapor-deposition process, and the delicate handling of the fabric in the preparation process before vapor-deposition process. There were various problems such as the occurrence of deposition spots. In addition, the present inventors proposed a method of imparting heat retention to a fabric by incorporating fine particles of carbide ceramic into the fiber itself, particularly in Japanese Patent Application No. 195629/1982. Although it has a heat-retaining effect, the color tone is black, so there is a problem that the color tone of the fabric is extremely limited. (Problems to be Solved by the Invention) The present invention was made in view of the current situation.
Furthermore, the present invention is not limited to the color tone of the fabric, and the objective is to obtain a white fabric that has good heat retention properties. (Means for Solving the Problems) The present invention achieves the above object and has the following configuration. That is, the present invention is composed of fibers containing white fine particles of stannic oxide doped with antimony oxide or white fine particles of other inorganic material coated with stannic oxide doped with antimony oxide, The gist of the invention is a white fabric with heat retention properties, which is characterized by its ability to absorb light and emit far-infrared rays. The present invention will be explained in detail below. In the present invention, stannic oxide doped with antimony oxide (weight% of antimony oxide/stannic oxide = 0.5%/99.5%) is used as white fine particles that have the ability to absorb light energy and emit far infrared rays.
~15.0%/85.0%) fine particles, or stannic oxide doped with antimony oxide and other inorganic substances (titanium oxide, zinc oxide, calcium oxide, calcium carbonate, zinc carbonate, calcium sulfate, barium sulfate, alumina, etc.) Fine particles coated with (weight% of antimony oxide/stannic oxide/other inorganic substances = 0.5%/5.0%/94.5%~2.0%/18.0%/
80.0%). When fibers are constructed using fine particles mixed to have the same composition as the white fine particles without doping with antimony oxide, the heat retention properties are almost the same as those of ordinary fibers. The fine particles used in the present invention are powders with a particle size of 10 μm or less, preferably 1 μm or less, more preferably 0.5 μm or less. If the particles are too large, not only will there be problems with heat retention;
When it is incorporated into the fibers described below, problems such as a decrease in spinnability due to clogging of the filter medium in the spinning process and yarn breakage occur, and even if spinning is possible, there is a problem of yarn breakage occurring in the drawing process. There is. The fibers used in the present invention include synthetic fibers made of nylon, polyester, polyethylene, polypropylene, etc., or thermoplastic polymers having good fiber-forming properties based on these, acrylic fibers,
Synthetic fibers such as vinylon fiber, polyurethane fiber, polyvinylidene chloride fiber, polyvinyl chloride fiber,
Semi-synthetic fibers such as acetate fibers, recycled fibers such as rayon and Kyupra, etc. can be mentioned. The content of white fine particles that have the ability to absorb light energy and emit far infrared rays is 0.1% to 20% by weight based on the weight of the fiber, preferably
A suitable content is 0.5% by weight or more and 10% by weight or less, more preferably 1% by weight or more and 7% by weight or less. If the content is less than 0.1% by weight, the desired heat retention property cannot be obtained, and if the content is more than 20% by weight, the productivity of the fiber is poor and, furthermore, sufficient strength and elongation cannot be obtained in terms of yarn quality. Methods for incorporating white fine particles that have the ability to absorb light energy and emit far-infrared rays into fibers include a method in which they are directly mixed with the raw material polymer of synthetic fibers and spun, and a method in which a part of the raw material polymer is used in advance to form a high There is a method of manufacturing a master batch containing the compound at a certain concentration, diluting it to a predetermined concentration at the time of spinning, and then spinning the same. Here, an example of a state in which white fine particles are contained in fibers will be explained using a cross-sectional view of the fibers. Figure 1 shows the state in which white fine particles are uniformly contained in the fiber 1, Figures 2 and 3 are all core-sheath structured yarns, Figure 2 is in the core 2, and Figure 3 is in the sheath. Figure 4 shows a state in which white fine particles are uniformly contained in each part 4, Figure 4 shows a state in which they are contained in three locations 6, 16, and 26 of the cross section, and Figure 5 shows a divided thread, and 8 divided parts 8 out of 16 divisions. Figure 6 shows a three-layer structure yarn, with the middle layer 10 containing the yarn, and Figure 7.
The figure shows a state in which it is contained in the central part 12 of a side-by-side yarn, and FIG. 8 shows a state in which it is contained in an island part 14 of a sea-island structure yarn. Among the fibers with these cross-sectional structures, the fiber shown in Figure 1 contains white fine particles throughout its cross-section, so it is unavoidable that the fiber has a somewhat low level of strength. In this respect, the fibers shown in Figures 2 to 8 each have portions 3, 5, 7, 9, 11, 13, and 15 that do not contain white fine particles, so the white color varies depending on the extent of the portions. It has the advantage that the strength decrease due to containing the system fine particles is reduced. In addition, the fibers shown in Figures 2, 6, and 8 are
Portions 2, 10, 14 containing white fine particles
are inside the fibers and are not exposed on the surface, so during the production of fibers and woven or knitted products, the white fine particles in the fibers are easily rubbed against the rollers and guides of spinning machines, looms, and knitting machines due to friction. It has the advantage that it will not be damaged by touching it. The fibers shown in FIGS. 4, 5, and 7 have portions 6, 16, 26, 8, and 12 containing white fine particles.
Although each is exposed on the surface of the fiber,
Since the degree of exposure is much less than that of the fibers shown in FIG. 1, the problem of abrasion damage is correspondingly reduced. In the fibers shown in FIGS. 2 to 8, there is no problem even if the portion containing white fine particles and the portion not containing white particles are different types of polymers. The white fine particles can be incorporated into the fibers in various shapes other than the shapes shown in FIGS. 1 to 8. The fabric of the present invention refers to woven fabrics, knitted fabrics, nonwoven fabrics, etc. made of fibers containing white fine particles that have the ability to absorb light energy and radiate far infrared rays, and includes dissimilar fibers containing the white fine particles or the white fine particles. Blends, blends, knits, interwovens, etc. of fibers that do not contain
It may also be made by alternating knitting or the like. The fabric of the present invention can be used as it is or after being dyed or treated with a resin. The fabric of the present invention has excellent heat retention properties, so it can be used for ski wear such as ski jackets, ski dresses, and ski pants that require heat retention (can be used as both outer and lining materials).
sweatwear, sweatshirts, shirts,
Tights, windbreakers, training wear, underwear, swimwear, wetsuits, sports clothing such as wetsuit lining, mountain climbing,
Cold protection clothing for outdoor sports such as fishing and hunting (can be used as both outer and lining), linings and insoles for winter sports shoes, sports goods such as outer and lining for hats and gloves, winter clothing for daily use, General clothing such as work clothes, cold protection underwear, belly bands, belly bands, socks, etc.
Lining materials for shoes, boots, gloves, etc., blankets, electric blankets, sheets, bedclothes such as pine mattresses, mattresses, fabrics for curtains, carpets, hot carpets, interior products such as kotatsu hooks, kotatsu mats, lap blankets, seat cushions, etc. It is used for a variety of purposes, including tents, sleeping bags, agricultural insulation materials, thermal cover materials, and synthetic leather base fabrics for gloves. (Function) Although it is not clear why the fabric of the present invention, which is composed of fibers containing white fine particles that have the ability to absorb light energy and emit far infrared rays, has good heat retention properties, the white fine particles This is presumed to be due to the ability to absorb light energy and emit far-infrared rays due to the electronic structure of the material. (Example) Hereinafter, the present invention will be explained in more detail with reference to Examples. The performance of the fabrics in the Examples was measured by the following method. (1) Heat retention In a constant temperature room at 20°C and 60%, a 100W photographic white light source is used as the energy source, and the surface temperature of the fabric is measured using a thermoviewer (infrared sensor, JEOL
Measured by Seisaku Co., Ltd.). Example 1 Particle size doped with antimony oxide 0.08 μm
20 parts by weight of fine particles of stannic oxide (wt%: antimony oxide/stannic oxide = 10%/90%) and 80 parts by weight of polyethylene terephthalate were uniformly melted and mixed to obtain a white fine particle mixed composition. . This white fine particle mixed composition and polyethylene terephthalate with an intrinsic viscosity of 1.1 were uniformly melted and mixed at a weight ratio of 10:90, then spun, and after cooling and solidifying,
After winding and stretching at a speed of 1000m/min, 75d/24f
A white fine particle-containing fiber of the present invention was obtained. This fiber is used for both warp and weft to weave,
A white plain woven fabric with a warp density of 116 threads/inch and a weft thread density of 78 threads/inch was obtained. For comparison with the present invention, comparative samples of Comparative Examples 1 and 2 below were prepared and compared with the present invention. (Comparative Example 1) In this example, a comparative plain woven fabric of the same specification using polyethylene terephthalate fibers 75d/24f was obtained by the same method as in this example except that the mixing of white fine particles into the fibers was omitted. . (Comparative Example 2) Aluminum metal vaporized under a reduced pressure of 3 x 10 -6 mmHg to 5 x 10 -7 mmHg using an aluminum evaporation device was applied to the plain fabric of Comparative Example 1 above to a thickness of
A vapor deposition process was performed to obtain a comparative aluminum vapor-deposited fabric having a thickness of 10 μm. The performance of the fabrics of the present invention and Comparative Examples 1 and 2 was measured, and the results are shown in Table 1.

【表】 第1表から明らかなごとく、白色系微粒子を含
有する繊維を用いた本発明の織物は、比較例1〜
2の織物と比較して、光源のエネルギーをよく吸
収して生地の表面温度が上昇し、良好な保温性を
示していた。 実施例 2 酸化アンチモンをドーピングした酸化第二錫を
酸化チタンにコーテイング(重量%:酸化アンチ
モン/酸化第二錫/酸化チタン=1.5%/13.5
%/85.0%)した粒径0.2μmの微粒子を10重量部
とナイロン6を90重量部の割合で均一に溶融混合
して白色系微粒子混合組成物を得た。 この白色系微粒子混合組成物と固有粘度1.15の
ナイロン6を、重量比30:70の割合で、前者が芯
部、後者が鞘部となる同心円型の芯鞘複合繊維を
溶融紡糸し、冷却固化後、4000m/minの速度で
捲取つて、70d/24fの本発明の白色系微粒子含有
繊維を得た。 この繊維を経糸、緯糸の双方に用いて製織し、
経糸密度116本/インチ、緯糸密度78本/インチ
の本発明の白色の平織物を得た。 本発明との比較のため、下記比較例3の比較試
料を作成し、本発明との比較を行つた。 (比較例 3) 本実施例において、繊維への白色系微粒子の混
入を省くほかは、本実施例と全く同一の方法によ
りナイロン6繊維70d/24f使いの同一規格の平織
物を得た。 本発明および比較例3の布帛の性能を測定し、
その結果を合わせて第2表に示した。
[Table] As is clear from Table 1, the fabrics of the present invention using fibers containing white fine particles are
Compared to the fabric No. 2, it absorbed the energy of the light source better, the surface temperature of the fabric increased, and it exhibited good heat retention. Example 2 Coating titanium oxide with stannic oxide doped with antimony oxide (weight%: antimony oxide/stannic oxide/titanium oxide = 1.5%/13.5
%/85.0%) with a particle size of 0.2 μm and 90 parts by weight of nylon 6 were uniformly melted and mixed to obtain a white fine particle mixed composition. This white fine particle mixture composition and nylon 6 with an intrinsic viscosity of 1.15 are melt-spun into concentric core-sheath composite fibers in a weight ratio of 30:70, with the former serving as the core and the latter serving as the sheath, and then cooled and solidified. Thereafter, it was wound at a speed of 4000 m/min to obtain a white fine particle-containing fiber of the present invention having a size of 70 d/24 f. This fiber is used for both warp and weft to weave,
A white plain woven fabric of the present invention having a warp density of 116 yarns/inch and a weft yarn density of 78 yarns/inch was obtained. For comparison with the present invention, a comparative sample of Comparative Example 3 below was prepared and compared with the present invention. (Comparative Example 3) In this example, a plain woven fabric of the same specification using nylon 6 fibers of 70d/24f was obtained in exactly the same manner as in this example except that the mixing of white fine particles into the fibers was omitted. Measuring the performance of the fabrics of the present invention and Comparative Example 3,
The results are shown in Table 2.

【表】 第2表から明らかなごとく、本発明の布帛は、
光源のエネルギーをよく吸収して生地の表面温度
が上昇し、良好な保温性を示していた。 実施例 3 酸化アンチモンをドーピングした酸化第二錫を
酸化チタンにコーテイング(重量%:酸化アンチ
モン/酸化第二錫/酸化チタン=1%/9%/90
%)した粒径0.2μmの微粒子15重量部とポリエチ
レンテレフタレート85重量部を均一に溶融混合
し、白色系微粒子混合組成物を得た。 この白色系微粒子混合組成物と固有粘度0.8の
ポリエチレンテレフタレートを重量比25:75の割
合で、300℃にて、前者が芯部、後者が鞘部とな
る同心円型の芯鞘複合繊維を溶融紡糸し、冷却固
化後、1000m/minの速度で捲取り、延伸後、芯
鞘型の本発明の白色系微粒子含有繊維150d/48f
を得た。 この白色系微粒子含有繊維150d/48fを、仮撚
加工機LS−6型(三菱重工業(株)製品)にて、仮
撚数2370T/M、第1ヒーター温度200℃、第2
ヒーター温度180℃、第1オーバーフイード率0
%、第2オーバーフイード率15%の条件で仮撚加
工を行い、得られた白色系微粒子含有仮撚加工糸
を、裏針抜きのリバーシブル編地の裏組織に用
い、表組織には別に用意した光沢性のある通常の
三角断面ポリエステル仮撚嵩高加工糸150d/36f
を用いて、KJ−36型丸編機(豊田自動織機(株)製
品、30″×22G)にて裏針抜きの白色のリバーシ
ブル編地(本発明布帛)を編成した。 本発明との比較のため、下記比較例4の比較試
料を作成し、本発明との比較を行つた。 (比較例 4) 本実施例において、フロント糸に用いた繊維へ
の白色系微粒子の混入を省くほかは、本実施例と
全く同一の方法により、ポリエチレンテレフタレ
ート繊維使いの同一規格のリバーシブル編地を得
た。 本発明および比較例4の布帛の性能を測定し、
その結果を合わせて第3表に示した。
[Table] As is clear from Table 2, the fabric of the present invention is
The material absorbed the energy of the light source well, raising the surface temperature of the fabric, demonstrating good heat retention. Example 3 Coating titanium oxide with stannic oxide doped with antimony oxide (weight %: antimony oxide/stannic oxide/titanium oxide = 1%/9%/90
%) with a particle size of 0.2 μm and 85 parts by weight of polyethylene terephthalate were uniformly melt-mixed to obtain a white fine particle mixed composition. This white fine particle mixture composition and polyethylene terephthalate with an intrinsic viscosity of 0.8 are melt-spun at a weight ratio of 25:75 at 300°C to form a concentric core-sheath composite fiber in which the former forms the core and the latter forms the sheath. After cooling and solidifying, the fibers were wound up at a speed of 1000 m/min and stretched to produce core-sheath type white fine particle-containing fibers 150d/48f of the present invention.
I got it. This white fine particle-containing fiber 150d/48f was subjected to false twisting with a false twisting machine LS-6 model (manufactured by Mitsubishi Heavy Industries, Ltd.) at a number of false twists of 2370T/M, a first heater temperature of 200°C, and a second
Heater temperature 180℃, 1st overfeed rate 0
%, and the false twisting process was performed under the conditions of a second overfeed rate of 15%, and the resulting false-twisted yarn containing fine white particles was used for the back weave of a reversible knitted fabric without back needles, and was prepared separately for the front weave. Regular triangular cross section polyester false twisted bulky thread 150d/36f
A white reversible knitted fabric (fabric of the present invention) without back needles was knitted using a KJ-36 circular knitting machine (manufactured by Toyota Industries Corporation, 30″ x 22G). Comparison with the present invention. Therefore, a comparative sample of Comparative Example 4 below was prepared and compared with the present invention. (Comparative Example 4) In this example, except for omitting the mixing of white fine particles into the fiber used for the front yarn. A reversible knitted fabric of the same standard using polyethylene terephthalate fiber was obtained by the exact same method as in this example.The performance of the fabric of the present invention and comparative example 4 was measured,
The results are shown in Table 3.

【表】 第3表から明らかなごとく、本発明の布帛は、
光源のエネルギーをよく吸収して生地の表面温度
が上昇し、良好な保温性を示していた。 (発明の効果) 本発明の布帛は、優れた保温性を有している。
さらに、本発明の布帛は、用いる糸の製造工程
で、光エネルギーを吸収し、遠赤外線を放射する
能力を有する白色系微粒子を繊維に含有させてあ
るので、後加工でのコストアツプ等の問題もな
く、性能斑もなく、しかもその色調が白色である
ので、その後の染色による色展開に限定されるこ
ともない。 本発明の布帛は、このような数々の効果を有し
ており、特にスポーツ用衣料として非常に有用な
布帛である。
[Table] As is clear from Table 3, the fabric of the present invention is
The material absorbed the energy of the light source well, raising the surface temperature of the fabric, demonstrating good heat retention. (Effects of the Invention) The fabric of the present invention has excellent heat retention properties.
Furthermore, in the fabric of the present invention, white fine particles that have the ability to absorb light energy and emit far-infrared rays are contained in the fibers during the manufacturing process of the yarn used, so there are no problems such as increased costs in post-processing. There are no performance spots, and since the color tone is white, it is not limited to color development by subsequent dyeing. The fabric of the present invention has such numerous effects and is a very useful fabric, especially as sports clothing.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜8図はいずれも、光エネルギーを吸収
し、遠赤外線を放射する能力を有する白色系微粒
子を含有する繊維の一例を断面図で示したもので
ある。図中の1,2,4,6,8,10,12,
14,16,26は、いずれも白色系微粒子を含
有している部分を示し、3,5,7,9,11,
13,15は、いずれも該微粒子を含有していな
い部分を示す。
1 to 8 are cross-sectional views of examples of fibers containing white fine particles that have the ability to absorb light energy and emit far-infrared rays. 1, 2, 4, 6, 8, 10, 12 in the diagram
14, 16, 26 all indicate parts containing white fine particles; 3, 5, 7, 9, 11,
13 and 15 both indicate portions that do not contain the fine particles.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化アンチモンをドーピングした酸化第二錫
の微粒子または酸化アンチモンをドーピングした
酸化第二錫を他の無機物質の微粒子にコーテイン
グした白色系微粒子を含有する繊維から構成さ
れ、光エネルギーを吸収し、遠赤外線を放射する
能力を有することを特徴とする保温性を有する白
色系布帛。
1. It is composed of fibers containing fine particles of stannic oxide doped with antimony oxide or white fine particles made by coating fine particles of other inorganic material with stannic oxide doped with antimony oxide, and absorbs light energy and emits light from a distance. A white fabric with heat retention properties characterized by having the ability to emit infrared rays.
JP63143907A 1988-06-10 1988-06-10 White fabric having heat insulating property Granted JPH01314716A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63143907A JPH01314716A (en) 1988-06-10 1988-06-10 White fabric having heat insulating property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63143907A JPH01314716A (en) 1988-06-10 1988-06-10 White fabric having heat insulating property

Publications (2)

Publication Number Publication Date
JPH01314716A JPH01314716A (en) 1989-12-19
JPH0440456B2 true JPH0440456B2 (en) 1992-07-03

Family

ID=15349854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63143907A Granted JPH01314716A (en) 1988-06-10 1988-06-10 White fabric having heat insulating property

Country Status (1)

Country Link
JP (1) JPH01314716A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04245943A (en) * 1991-01-29 1992-09-02 Kuraray Co Ltd Polyester fiber sliver, production of the same sliver and spun yarn using the same sliver
US20020095919A1 (en) * 2001-01-25 2002-07-25 Tung-Sen Chen Filter element of an air filter with far infrared energy
JP2006161248A (en) * 2004-12-10 2006-06-22 Kawashima Selkon Textiles Co Ltd Heat-blocking fiber and heat-blocking and light-collecting fabric
JP2006307383A (en) * 2005-04-28 2006-11-09 Teijin Fibers Ltd Heat-retaining polyester fiber having excellent clarity and fabric
JP2006336151A (en) * 2005-06-02 2006-12-14 Teijin Fibers Ltd Polyester fiber having ultraviolet absorption property and heat-retaining property and fabric
JP2007138331A (en) * 2005-11-17 2007-06-07 Unitica Fibers Ltd Fabric with cool sense
JP5188747B2 (en) * 2007-05-16 2013-04-24 ユニチカトレーディング株式会社 Cool-sensitive fabric
JP5235579B2 (en) * 2008-09-29 2013-07-10 ユニチカトレーディング株式会社 Swimwear lining and inner
JP5211013B2 (en) * 2009-10-21 2013-06-12 株式会社ヤマリア Squid bait
JP6180733B2 (en) * 2011-12-22 2017-08-16 ダイワボウホールディングス株式会社 Photothermal-convertible regenerated cellulose fiber, method for producing the same, and fiber structure
TWI530554B (en) * 2014-05-30 2016-04-21 Method for preparing light-absorbing and heat-storing masterbatch, its products and products thereof
KR101623268B1 (en) * 2014-09-26 2016-06-01 주식회사 효성 Polyester fiber having heat storage and conserving property and method for manufacturing the same
JP7038481B2 (en) * 2017-03-30 2022-03-18 Kbセーレン株式会社 Heat storage and heat retention fiber
US10519595B2 (en) 2017-12-29 2019-12-31 Industrial Technology Research Institute Composite textile
JP2019183290A (en) * 2018-03-31 2019-10-24 Kbセーレン株式会社 Sheet cotton
WO2021246059A1 (en) * 2020-06-05 2021-12-09 株式会社カネカ Exothermic cloth and textile product

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576762A (en) * 1980-06-14 1982-01-13 Kanebo Ltd Conductive composite fiber and its manufacture
JPS5711213A (en) * 1980-06-19 1982-01-20 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber and its production
JPS57183426A (en) * 1981-05-08 1982-11-11 Kanebo Gosen Kk Conductive blended fiber yarn
JPS58167483A (en) * 1982-03-25 1983-10-03 工業技術院長 Manufacture of glazed ceramic infrared radiator
JPS60110920A (en) * 1983-11-14 1985-06-17 Kanebo Ltd Electrically conductive composite fiber
JPS6112908A (en) * 1984-06-28 1986-01-21 Hoton Ceramic Kk Textile product containing ceramic powder
JPS6323965A (en) * 1986-07-16 1988-02-01 Kuraray Co Ltd Electrically conductive organic composition
JPS63105107A (en) * 1986-10-17 1988-05-10 Kensen Kk Production of textile product

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576762A (en) * 1980-06-14 1982-01-13 Kanebo Ltd Conductive composite fiber and its manufacture
JPS5711213A (en) * 1980-06-19 1982-01-20 Kanebo Synthetic Fibers Ltd Electrically conductive conjugate fiber and its production
JPS57183426A (en) * 1981-05-08 1982-11-11 Kanebo Gosen Kk Conductive blended fiber yarn
JPS58167483A (en) * 1982-03-25 1983-10-03 工業技術院長 Manufacture of glazed ceramic infrared radiator
JPS60110920A (en) * 1983-11-14 1985-06-17 Kanebo Ltd Electrically conductive composite fiber
JPS6112908A (en) * 1984-06-28 1986-01-21 Hoton Ceramic Kk Textile product containing ceramic powder
JPS6323965A (en) * 1986-07-16 1988-02-01 Kuraray Co Ltd Electrically conductive organic composition
JPS63105107A (en) * 1986-10-17 1988-05-10 Kensen Kk Production of textile product

Also Published As

Publication number Publication date
JPH01314716A (en) 1989-12-19

Similar Documents

Publication Publication Date Title
JP6577589B2 (en) Fabrics and textile products
JPH0440456B2 (en)
TW593819B (en) Insulated knitted fabric
WO2006090808A1 (en) Composite fabric material undergoing three-dimensional structure change upon water absorption and textile product
JP3772423B2 (en) Knitted fabric and exercise clothing
EP3902948B1 (en) Methods and compositions for cooling yarns and fabrics comprising a cellulosic fiber, and articles comprising same
JPH01314715A (en) Fiber and fabric having heat insulating property
JP7041590B2 (en) Highly breathable mesh knitted fabric
JPH039202B2 (en)
US11155937B2 (en) Methods and compositions for cooling yarns and fabrics, and articles comprising same
JP5881284B2 (en) Fabrics and textile products
JP6689293B2 (en) Knitted fabrics and textile products
JP5180053B2 (en) Insulated knitted fabric
JP4567512B2 (en) Summer clothing
JPH04257308A (en) White lightweight thermal insulating hollow fiber
JPH0860486A (en) Lightweight heat-insulating fiber web
JP2933327B2 (en) Core / sheath composite yarn
JP4228112B2 (en) Fabrics and textiles with excellent moisture absorption / release properties
JP3753486B2 (en) Light-absorbing heat-absorbing fiber that absorbs sunlight
CN215800227U (en) Knitted fabric with heat shielding function
JPH0819607B2 (en) Lightweight thin fabric excellent in heat retention, its manufacturing method, and innerwear products
JP2005048309A (en) Polyamide fiber, polyamide woven fabric and textile product composed of the same
JP2005344219A (en) Knitted fabric for underwear
JP6635972B2 (en) Lightweight insulation fabric
JP3508367B2 (en) Method of manufacturing polyester products

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term