JPH0438802A - Manufacture of zinc oxide type arrester element - Google Patents

Manufacture of zinc oxide type arrester element

Info

Publication number
JPH0438802A
JPH0438802A JP2146981A JP14698190A JPH0438802A JP H0438802 A JPH0438802 A JP H0438802A JP 2146981 A JP2146981 A JP 2146981A JP 14698190 A JP14698190 A JP 14698190A JP H0438802 A JPH0438802 A JP H0438802A
Authority
JP
Japan
Prior art keywords
resistance layer
mol
zinc
mixture
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2146981A
Other languages
Japanese (ja)
Other versions
JP2854387B2 (en
Inventor
Masahiro Kobayashi
正洋 小林
Toshihiro Suzuki
敏弘 鈴木
Yoshio Takada
良雄 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2146981A priority Critical patent/JP2854387B2/en
Publication of JPH0438802A publication Critical patent/JPH0438802A/en
Application granted granted Critical
Publication of JP2854387B2 publication Critical patent/JP2854387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To improve the adhesion to an element assembly, environmental resistance, and voltage applied life characteristics under a high-humidity condition of the title arrester element by forming a measuring-face high resistance layer of a pulverized body prepared by pulverizing a mixture of bismuth, antimony, silicon, and zinc in a specific composition ratio into a specific size after the mixture is calcined. CONSTITUTION:A pulverized body for a measuring-face high resistance layer is prepared by pulverizing a mixture containing bismuth, antimony, silicon, and zinc in a ratio of 1-4 mole %, 3-10 % mole %, 15-36 mole %, and 50-80 mole %, respectively, equivalent to their oxides Bi2O3, Sb2O3, SiO2, and ZnO, with the sum of the oxides being 100 mole %, after the mixture is calcined. The size of the pulverized body is set at minus 30 mesh and plus 300 mesh. This zinc oxide type arrester element is manufactured by forming the measuring- face high resistance layer by the conventional method by using the pulverized body thus prepared.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、耐環境性の改善に寄与する側面高抵抗層が形
成された酸化亜鉛を主成分とする電圧非直線抵抗体で、
各種避雷器、サージアブソーバなどに使用される酸化亜
鉛形避雷器素子の製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a voltage non-linear resistor mainly composed of zinc oxide, on which a side high resistance layer is formed that contributes to improved environmental resistance.
This article relates to a method for manufacturing zinc oxide type lightning arrester elements used in various lightning arresters, surge absorbers, etc.

[従来の技術] 従来、酸化亜鉛を主成分とし、少なくとも酸化ビスマス
を含有し、さらに電圧非直線性の発現を助長する酸化ア
ンチモン、酸化コバルト、酸化マンガン、酸化ケイ素、
その他の微量添加物を含む抵抗体は、優れた電圧非直線
性を示し、各種避雷器、サージアブソーバに広く利用さ
れており、電力の安定供給、機器の保護など、その使用
は極めて広範囲にわたっている。
[Prior Art] Conventionally, the main component is zinc oxide, contains at least bismuth oxide, and further contains antimony oxide, cobalt oxide, manganese oxide, silicon oxide, etc., which promote the development of voltage nonlinearity.
Resistors containing other trace additives exhibit excellent voltage nonlinearity and are widely used in various lightning arresters and surge absorbers, and are used in an extremely wide range of applications, including stable power supply and equipment protection.

この素子は、通常ギャップレスで使用されることから、
通常の電圧印加に対する安定性(課電寿命特性)に優れ
、さらにサージ電流の吸収能力に優れることが要求され
ている。素子バルクの寿命に関してはその添加物や酸化
ビスマスの結晶相の制御により改善がみられている。
Since this element is usually used gapless,
It is required to have excellent stability against normal voltage application (electrification life characteristics) and also to have excellent surge current absorption ability. The lifetime of the device bulk has been improved by controlling the additives and the crystal phase of bismuth oxide.

近年、機器はlb型化、m能の複合化の方向にあり、他
の機器とこの素子が組合わされて使用されるケースが増
加し、素子が必ずしも一定の清浄な環境下でのみ使用さ
れるとは限らなくなってきている。たとえば高湿度下、
特殊ガス中(SFsなど高絶縁性ガス)、絶縁油中など
で使用されている。
In recent years, devices are becoming more LB type and more complex with m functions, and the number of cases in which this element is used in combination with other equipment is increasing, and the element is not necessarily used only under a certain clean environment. This is no longer the case. For example, under high humidity,
It is used in special gases (highly insulating gases such as SFs), insulating oil, etc.

しかし、これらの雰囲気下では、この素子のバルク特性
の安定性にもかかわらず、側面表面近傍の劣化(低抵抗
化)によるもれ電流の増加やサージ電流通電時における
外部閃絡などが生じ、使用上に問題が生じる。
However, in these atmospheres, despite the stability of the bulk characteristics of this element, an increase in leakage current due to deterioration (lower resistance) near the side surface and external flash shorting occur when surge current is applied. Problems arise during use.

そのだわ、この電圧非直線抵抗体の側面保護やサージ吸
収能力向上を目的として、側面に高抵抗多結晶体層(主
としてケイ酸亜鉛、アンチモン酸亜鉛、酸化ビスマスの
3つの結晶相からなる)を形成することが、従来行なわ
れてきており(たとえば特公昭53−21516号公報
、特開昭52−49491号公報)、この方法でインパ
ルス耐量の向上など一定の成果があげられている。しか
し、高湿度化など悪環境下での使用では、表面抵抗の低
下など充分な機能を示さないことが明らかになってきて
いる。
That's why, in order to protect the sides of this voltage non-linear resistor and improve its surge absorption ability, a high-resistance polycrystalline layer (mainly composed of three crystal phases: zinc silicate, zinc antimonate, and bismuth oxide) is placed on the side surface. This method has been conventionally practiced (for example, Japanese Patent Publication No. 53-21516 and Japanese Unexamined Patent Application Publication No. 52-49491), and this method has achieved certain results such as improved impulse resistance. However, it has become clear that when used in adverse environments such as high humidity, it does not exhibit sufficient functionality such as a reduction in surface resistance.

[発明が解決しようとする:ll!題〕側面高抵抗層の
耐環境性は、高抵抗層内でのケイ酸亜鉛とスピネル相の
分散状態に関連し、これらの結晶粒子が一様に分布して
、相互に組み合わさって内部を保護する構造が重要であ
る。しかし、これらの分散が偏った、たとえば、ケイ酸
亜鉛のみが連続した層を形成し、スピネル相の粒子がそ
の連続層近傍に疎らに点在するような構造では、高湿度
下の課電に対する電流の安定性が充分に確保できないな
どの欠点がある。
[Invention tries to solve:ll! [Problem] The environmental resistance of the side high resistance layer is related to the dispersion state of zinc silicate and spinel phase within the high resistance layer, and these crystal particles are uniformly distributed and combine with each other to form the internal The structure to protect is important. However, in a structure where the dispersion is biased, for example, where only zinc silicate forms a continuous layer and spinel phase particles are sparsely scattered near the continuous layer, it is difficult to resist charging under high humidity. There are drawbacks such as insufficient current stability.

本発明は、前述の問題点、とくに悪環境下での課電寿命
特性を改善するためになされたものであり、側面高抵抗
層を形成する多結晶体の分布構成を最適に形成する酸化
亜鉛形避雷器素子の製法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, particularly in improving the charging life characteristics under adverse environments. The object of the present invention is to provide a method for manufacturing a lightning arrester element.

〔課題を解決するための手段] 素子の耐環境性を向上させるためには、側面高抵抗層の
構成相であるケイ酸亜鉛、スピネル相の分布を一様に形
成することが大切である(特願平1−184772号明
細書参照)。
[Means for solving the problem] In order to improve the environmental resistance of the element, it is important to form a uniform distribution of the zinc silicate and spinel phases, which are the constituent phases of the side high resistance layer ( (Refer to the specification of Japanese Patent Application No. 1-184772).

本発明は、酸化亜鉛形避雷器素子の側面高抵抗層材料と
して、ビスマス、アンチモン、シリコンおよび亜鉛がそ
れぞれBi2O3、Sb2O3、SiO203.5IO
2オヨびZnOに換算して1〜4モル%、3〜10モル
%、15〜36モル%および50〜80モル%の比率で
総和が100モル%となるような組成比の混合物を仮焼
したのち、メツシュTh(JISの規定による、以下同
様)30のふるいを通過し、がっlk 330のふるい
を通過しない大きさに粉砕した粉体を使用して側面高抵
抗層を形成することを特徴とする酸化亜鉛形避雷器素子
の製造方法に関する。
The present invention uses bismuth, antimony, silicon, and zinc as materials for the side high resistance layer of a zinc oxide type lightning arrester element, respectively.
Calcining a mixture with a composition ratio of 1 to 4 mol%, 3 to 10 mol%, 15 to 36 mol%, and 50 to 80 mol%, making the total 100 mol% in terms of ZnO. After that, a side high-resistance layer is formed using powder that has been pulverized to a size that passes through a mesh Th (according to JIS regulations, hereinafter the same) sieve and does not pass through a g lk 330 sieve. The present invention relates to a method of manufacturing a featured zinc oxide type lightning arrester element.

[作 用] 前述した材料を使用することにより、従来形成されてき
た高抵抗層と異なり、ケイ酸亜鉛、スピネル相の結晶が
偏ることなく均一に分布し、素体との密着性か向上して
耐環境性が向上し、高湿度下における課電寿命特性が著
しく改善される。
[Function] By using the above-mentioned materials, unlike conventionally formed high-resistance layers, the crystals of zinc silicate and spinel phase are uniformly distributed without being biased, and the adhesion with the element body is improved. This improves environmental resistance and significantly improves the charging life characteristics under high humidity.

U実施例コ 本発明では、側面高抵抗層材料として、ビスマス、アン
チモン、シリコン、亜鉛がそれぞれ酸化物(Bi2O3
、5bxO3,5I02、ZnO) l:換算してBi
20x 1〜4モル%、好ましくは1〜3モル%、5b
xO33〜10モル%、好ましくは4〜8モル%、51
02 15〜36モル9fi、好ましくは15〜30モ
ル%、Zn050〜80モル%、好ましくは60〜80
モル%になる割合で含まれ、その総和が100モル%で
ある混合物を仮焼し、粉砕した粉体が用いられる。
U Embodiment In the present invention, bismuth, antimony, silicon, and zinc are each oxide (Bi2O3
, 5bxO3, 5I02, ZnO) l: Converted to Bi
20x 1-4 mol%, preferably 1-3 mol%, 5b
xO3 3-10 mol%, preferably 4-8 mol%, 51
02 15-36 mol 9fi, preferably 15-30 mol%, Zn0 50-80 mol%, preferably 60-80
A powder is used which is obtained by calcining and pulverizing a mixture in which the components are contained in a proportion of mol % and the total amount is 100 mol %.

Bi2O3は焼結を促進するための成分であり、その割
合が1モル%未満では粒子間の焼結が充分進まず空隙が
多くなり、4モル%をこえると急激な反応が生じて側面
高抵抗層が不均一となる。
Bi2O3 is a component to promote sintering, and if its proportion is less than 1 mol%, sintering between particles will not proceed sufficiently, resulting in a large number of voids, and if it exceeds 4 mol%, a rapid reaction will occur, resulting in high side resistance. The layers become uneven.

5b203は高抵抗な粒子(Zn7Sb20+2)を形
成するための成分であり、その割合が3モル%未満では
高抵抗層全体の収縮率が小さくなり、ひび割れが生じ、
10モル%をこえると表面に大きなZny 5b2Or
2粒子が生成し、高抵抗層が凹凸となる。
5b203 is a component for forming high-resistance particles (Zn7Sb20+2), and if its proportion is less than 3 mol%, the shrinkage rate of the entire high-resistance layer becomes small and cracks occur.
If it exceeds 10 mol%, large Zny 5b2Or on the surface
2 particles are generated, and the high resistance layer becomes uneven.

5I02は高抵抗なZ n 2 S i 04相を形成
するための成分であり、その割合が15モル%未満では
凹凸の激しい高抵抗層となり、36モル%をこえると素
体との密着性がわるくなる。
5I02 is a component for forming a high-resistance Z n 2 S i 04 phase, and if its proportion is less than 15 mol%, it will result in a highly uneven high-resistance layer, and if it exceeds 36 mol%, the adhesion with the element body will deteriorate. become bad.

ZnOは高抵抗層の収縮率を調節するための成分であり
、その割合が50モル%未満では収縮率が小さく素体と
の密着性がわるくなり、80モル%をこえると未反応の
ZnOが残り、側面高抵抗層を低抵抗化する。
ZnO is a component for adjusting the shrinkage rate of the high-resistance layer, and if its proportion is less than 50 mol%, the shrinkage rate will be small and the adhesion with the element will be poor, and if it exceeds 80 mol%, unreacted ZnO will The remaining high resistance layer on the side surface is made to have a low resistance.

前記混合物は、たとえば乾式ボールミルによって粉砕・
混合するなど、通常の方法によりえられる。
The mixture is pulverized by, for example, a dry ball mill.
It can be obtained by conventional methods such as mixing.

前記混合物の仮焼は、本焼成時に急激な反応、局所的に
不均一な反応がおこるのを防ぎ、また、素体との収縮率
のマツチングを向上させ、それらによって構成結晶相を
互いに混在させ、素体との密着性を向上させるための処
理である。この仮焼は、たとえば混合物を蓋付アルミナ
ルツボに入れて900〜1150℃で1〜5時間加熱す
るなどの方法により行なわれる。
The calcination of the mixture prevents rapid reactions and locally uneven reactions from occurring during the main calcination, and also improves the matching of the shrinkage rate with the element body, thereby causing the constituent crystal phases to mix with each other. This is a process to improve the adhesion with the element body. This calcination is carried out, for example, by placing the mixture in an aluminum crucible with a lid and heating it at 900 to 1150° C. for 1 to 5 hours.

前記仮焼した混合物の粉砕は、たとえばミルを使用する
などして粉砕してえられる粉体の粒子の大きさが、メツ
シュ随30のふるいを通過し、かつN11L330のふ
るいを通過しない大きさ、好ましくはメッシュNo.1
00のふるいを通過し、かつN11L330のふるいを
通過しない大きさになるように行なわれる。えられる粉
体の粒子の大きさがメツシュ■30を通過しない大きさ
のばあいは、側面高抵抗層用ペーストを素体側面に塗布
したとき、粗い粒子のため均一でなく、本焼成後、側面
高抵抗層の厚さが不均一になるばかりでなく、ひび割れ
も発生し、耐湿性がわるくなる。逆にメツシュ殖330
を通過させるまで粉砕することは、材料製造の効率がわ
るいばかりでなく、細かい粒子の生成により、粒子間の
反応が再び激しくなって、構成結晶相の分離および素体
間にボイドが発生して密着性がおちるという問題が生じ
る。
The calcined mixture is pulverized using, for example, a mill, so that the size of the particles of the powder obtained by pulverization is such that it passes through a 30 mesh sieve and does not pass through a N11L330 sieve. Preferably mesh No. 1
This is done so that the size is such that it passes through a No. 00 sieve but does not pass through an N11L330 sieve. If the particle size of the resulting powder is too large to pass through the mesh 30, when the paste for side high resistance layer is applied to the side surface of the element body, the particles will be coarse and uneven, and after the main firing, Not only does the thickness of the side high-resistance layer become uneven, but also cracks occur, resulting in poor moisture resistance. On the contrary, mesh breeding 330
Grinding until the material passes through is not only inefficient in material production, but also causes the generation of fine particles, which intensifies the reaction between the particles again, causing separation of the constituent crystal phases and generation of voids between the elementary bodies. A problem arises in that the adhesion deteriorates.

粉砕条件にとくに限定はなく、前記範囲の大きさの粉体
を製造しうる条件であればよい。
There are no particular limitations on the pulverization conditions, and any conditions may be used as long as they can produce powder having a size within the above range.

こうしてえられた側面高抵抗層材料を用いて通常の方法
により側面高抵抗層を形成することにより、目的の酸化
亜鉛形避雷器素子が製造される。
The desired zinc oxide type lightning arrester element is manufactured by forming a side surface high resistance layer using the material for the side surface high resistance layer thus obtained by a conventional method.

すなわち、たとえば前記側面高抵抗層材料にエトセル、
ブチルカルピトール、酢酸n−ブチルなどのバインダー
を、側面高抵抗層材料100gに対して150〜200
gの割合で添加してペースト状にし、酸化亜鉛と少量の
酸化ビスマス、酸化アンチモン、酸化コバルト、酸化マ
ンガン、酸化ケイ素などを含んでなる素体に、たとえば
30〜701g/cJの割合で塗布し、1150−12
50℃で2〜lO時間焼成することなどにより、厚さ5
0〜140−の側面高抵抗層を有する酸化亜鉛形避雷器
素子かえられる。
That is, for example, etocel,
Add a binder such as butyl calpitol or n-butyl acetate at 150 to 200 g per 100 g of side high resistance layer material.
It is added at a ratio of 30 to 701 g/cJ to form a paste, and applied to an element body containing zinc oxide and small amounts of bismuth oxide, antimony oxide, cobalt oxide, manganese oxide, silicon oxide, etc., at a ratio of, for example, 30 to 701 g/cJ. , 1150-12
By baking at 50℃ for 2 to 10 hours, the thickness of 5
A zinc oxide type arrester element having a lateral high resistance layer of 0 to 140- is replaced.

また、機器の小型化に伴って、インパルス耐量のさらな
る向上を望むばあいには、側面高抵抗層を厚くしたり、
素子にさらにガラス層を形成してもよい。
In addition, if you want to further improve the impulse withstand capacity as devices become smaller, you can increase the thickness of the side high-resistance layer,
A glass layer may also be formed on the element.

このようt本発明の製法により、多結晶体の結晶粒子の
分布が一様であり、素体と側面高抵抗層との密着性が向
上し、耐環境性に優れ、高湿度下における課電寿命特性
が著しく改善された酸化亜鉛形避雷器素子かえられる。
As described above, by the manufacturing method of the present invention, the distribution of crystal grains of the polycrystalline body is uniform, the adhesion between the element body and the side high resistance layer is improved, and the environment resistance is excellent, and the charging of electricity under high humidity is improved. Zinc oxide type lightning arrester element with significantly improved life characteristics has been replaced.

以下に本発明を実施例に基づいてさらに具体的に説明す
る。
The present invention will be described in more detail below based on Examples.

実施例1および比較例1 まず、第1表に示す組成の電圧非直線抵抗体(素体)を
所定のセラミックスプロセスで作製した。
Example 1 and Comparative Example 1 First, voltage nonlinear resistors (element bodies) having the compositions shown in Table 1 were fabricated using a predetermined ceramic process.

第1表 ついで、第2表に示す配合割合の10種類の混合物(混
合物番号1〜10)を6組用意し、各混合物をそれぞれ
撹拌したのち、蓋付アルミナルツボに入れ、1110℃
で1時間バッチ炉にて仮焼した。ついで、各組の試料を
、それぞれメツシュklOのふるいを通過し、かつメツ
シュ魔30のふるいを通過しない大きさ(A組)、メツ
シュNo、30のふるいを通過し、かつメツシュ)k 
100のふるいを通過しない大きさ(B組)、メッシュ
No.100のふるいを通過し、かつメツシュ)k 2
00のふるいを通過しない大きさ(0組)、メツシュ魔
200のふるいを通過し、かつメッシュNo.280の
ふるいを通過しない大きさ(D組)、メツシュ魔280
のふるいを通過し、かつメツシュ魔330のふるいを通
過しない大きさ(E組)またはメツシュ胤330のふる
いを通過する大きさ(F組)まで粉砕して、第3表に示
す6種類の大きさの計60種類の試料をえた。
Following Table 1, six sets of 10 types of mixtures (mixture numbers 1 to 10) with the mixing ratios shown in Table 2 were prepared, and after stirring each mixture, they were placed in an aluminum crucible with a lid and heated to 1110℃.
The mixture was calcined in a batch furnace for 1 hour. Next, each set of samples is determined to have a size that passes through a mesh klO sieve and does not pass through a mesh 30 sieve (group A), mesh number, and a size that passes a 30 sieve and does not pass through a mesh
Size that does not pass through a 100 sieve (group B), mesh No. 100 sieves and mesh) k 2
A size that does not pass through a sieve of 00 (set of 0), a size that passes through a sieve of 200 meshes, and mesh No. Size that does not pass through the 280 sieve (group D), mesh demon 280
The 6 types of sizes shown in Table 3 are crushed to a size that passes through the sieve but does not pass through the mesh 330 sieve (group E) or to a size that passes through the mesh 330 sieve (group F). A total of 60 types of samples were obtained.

[以下余白コ 第3表に示す各試料(試料4B〜4E、 5B〜5E、
 68〜BE、 7B〜7E、 8B〜8E、 9B〜
9Eを用いたものが実施例1であり、それ以外の試料を
用いたものが比較例1である)100gと、エトセル4
0g1ブチルカルピトール110gおよび酢酸n−ブチ
ル30gとを混合してペースト状にした。
[Each sample shown in Table 3 below (Samples 4B to 4E, 5B to 5E,
68~BE, 7B~7E, 8B~8E, 9B~
Example 1 uses 9E, and Comparative Example 1 uses other samples.) 100g and Ethocel 4
110 g of 0g1 butyl calpitol and 30 g of n-butyl acetate were mixed to form a paste.

前記素体を950℃で4時間−次燐成したのち、素体側
面に前記各ペーストを50■g / cjの割合で塗布
し、これをさらに1200℃で5時間バッチ炉にて焼成
して素体側面に厚さ約100遍側面高抵抗層を形成した
After phosphorizing the above element at 950°C for 4 hours, each paste was applied to the side surface of the element at a rate of 50 g/cj, and this was further fired at 1200°C for 5 hours in a batch furnace. A side high resistance layer with a thickness of approximately 100 degrees was formed on the side surface of the element body.

そののち、Mメタリコンにより電極を付与し、素子の電
気特性を以下のようにして調べた。
Thereafter, electrodes were provided using M metallicon, and the electrical characteristics of the device were investigated as follows.

すなわち、耐湿性を調べるために、湿度80%RH。That is, to check humidity resistance, the humidity was 80% RH.

温度80℃の雰囲気下で、11^の電流を素子両端に流
したときの電圧(vl、A)の0.6倍の電圧を印加し
続けたとき(課電率06)の素子のもれ電流の経時変化
を測定した。結果を第3図に示す。第3図中、縦軸はA
C抵抗分もれ電流の変化を示し、t (課電時間)−〇
で正規化したものである。
Leakage of the element when a voltage of 0.6 times the voltage (vl, A) when a current of 11^ is passed across the element in an atmosphere at a temperature of 80°C is continuously applied (charge rate 06) Changes in current over time were measured. The results are shown in Figure 3. In Figure 3, the vertical axis is A
It shows the change in the leakage current of the C resistance and is normalized by t (voltage application time) - 〇.

前記60種類の試料のうち、IA、 IB、 Ic、 
10. LE。
Among the 60 types of samples, IA, IB, Ic,
10. LE.

IFl 2^、 2B、  2C,2D、2E、2F、
3A、3B、30. 3D。
IFl 2^, 2B, 2C, 2D, 2E, 2F,
3A, 3B, 30. 3D.

3E、  3F、4A、4F、  5A、5F、  6
A、6F、  7A、7F、  8A。
3E, 3F, 4A, 4F, 5A, 5F, 6
A, 6F, 7A, 7F, 8A.

8F、  9A、9F、  10^ 、 IOB  、
  10C、100、IOE  % IOFの試料を用
いた素子はパターン■を示し、4B。
8F, 9A, 9F, 10^, IOB,
The device using the sample of 10C, 100, IOE% IOF shows pattern ■, 4B.

4C,4D、 4E、  5B、 5C,5D、 5E
、 6B、 6C,8D、 BHの試料を用いた素子は
パターンnを示し、7B、 7C。
4C, 4D, 4E, 5B, 5C, 5D, 5E
, 6B, 6C, 8D, and BH samples exhibit pattern n, and 7B, 7C.

7D、 7E、 8B、 8C,80,8E、 9B、
 9C,9D、 9Hの試料を用いた素子はパターンI
を示した。
7D, 7E, 8B, 8C, 80, 8E, 9B,
Devices using samples 9C, 9D, and 9H are pattern I.
showed that.

このようにAC抵抗分もれ電流の変化のしかたは3種類
のパターンに分類された。前記パターン■を示す素子は
安定であり、もれ電流の増加傾向のあるパターン■の素
子は不安定である。パターンIの傾向を示す素子は、も
れ電流が小さくなり、実用上とくに有利である。
In this way, the way the AC resistance leakage current changes is classified into three types of patterns. The elements exhibiting the pattern (2) are stable, and the elements exhibiting the pattern (2) in which the leakage current tends to increase are unstable. Elements exhibiting the tendency of pattern I have a small leakage current and are particularly advantageous in practical terms.

つぎに側面高抵抗層材料の配合、粒径分布により、もれ
電流の変化に差が生じる理由を考察するために、側面部
の断面観察を試みた。
Next, we attempted to observe the cross section of the side surface in order to examine the reason why the change in leakage current differs depending on the composition and particle size distribution of the side surface high-resistance layer material.

第1図はパターンIの変化を示す代表的な素子の側面高
抵抗層の組織を模式的に示す断面図である。それぞれの
粒子の判別はEP14A%Xl?Dなどの分析手法によ
った。第1図に示すように、白色部分のケイ酸亜鉛(Z
nzS to4) [21粒子と斜線部分のスピネル相
を構成するアンチモン酸亜鉛(Zny 5b20r )
(1)が均一に混在し、かつ酸化亜鉛(3)を生体とす
る素体お)の部分とのti者性もよいことが確がめられ
た。囚の部分が厚さ約10D Iの側面高抵抗層である
FIG. 1 is a cross-sectional view schematically showing the structure of a side high resistance layer of a typical element showing changes in pattern I. Discrimination of each particle is EP14A%Xl? Based on analysis methods such as D. As shown in Figure 1, the white part of zinc silicate (Z
nzS to4) [Zinc antimonate (Zny 5b20r) constituting the 21 particles and the spinel phase in the shaded area
It was confirmed that (1) was uniformly mixed therein, and that it had good affinity with the part of the element body whose living body was zinc oxide (3). The main part is a side high resistance layer with a thickness of about 10 DI.

一方、第2図はパターン■の変化を示す代表的な素子の
側面高抵抗層の組織を模式的に示す断面図である。第2
図に示すように、ケイ酸亜鉛(aとアンチモン酸亜鉛(
1)が側面高抵抗層((C)の部分、厚さ約100ρ)
内において2つの結晶領域に分離している。しかも、連
続的なケイ酸亜鉛層に対し、スピネル層は断続的に最外
層を形成していることがわかる。(Blの部分は酸化亜
鉛を生体とする素体である。
On the other hand, FIG. 2 is a cross-sectional view schematically showing the structure of a side high resistance layer of a typical element showing a change in pattern (2). Second
As shown in the figure, zinc silicate (a) and zinc antimonate (
1) is the side high resistance layer (part (C), thickness approximately 100ρ)
It is separated into two crystalline regions inside. Furthermore, it can be seen that the spinel layer forms the outermost layer intermittently with respect to the continuous zinc silicate layer. (The Bl part is an elemental body whose living body is zinc oxide.

なお第1図および第2図中、黒色部(4)は結晶の欠落
した空孔を示す。この空孔(黒色部)はパターン■を示
す素子によくみられた。すなわち、パターン■を示す素
子は側面高抵抗層と素体との密着性もわるいといえる。
Note that in FIGS. 1 and 2, black portions (4) indicate vacancies where crystals are missing. These holes (black parts) were often seen in the elements showing the pattern (■). In other words, it can be said that the device exhibiting the pattern (2) also has poor adhesion between the side high resistance layer and the element body.

なお、第1図、第2図において、酸化ビスマスは量的に
わずかであることと図の繁雑さを避けるために省略した
In addition, in FIGS. 1 and 2, bismuth oxide is omitted because it is small in quantity and to avoid complication of the drawings.

これらの結果から、側面高抵抗層を構成する結晶相が互
いに混在し、かつ緊密な構成となっているものの方が高
湿度下の悪環境においても素子特性が安定であることが
わかる。
From these results, it can be seen that the device characteristics are more stable even in a bad environment under high humidity when the crystal phases constituting the side surface high resistance layer are mixed with each other and have a close structure.

つぎに配合面からの考察を加える。Next, we will add considerations from the formulation aspect.

5b203.5I02はZnOとつぎの反応をする。5b203.5I02 undergoes the following reaction with ZnO.

7ZnO+5b20x  +02    Zn7Sbz
  O+z2ZnO+   5102        
 Znz  510aすなわち、5b203がAモル、
5I02が8モルの混合物と完全に反応するZnOのモ
ル数CはC−AX7+BX2 である。第4表に示すように、前記混合物のうちでは、
混合物4〜lOがこの条件に近い配合である。
7ZnO+5b20x +02 Zn7Sbz
O+z2ZnO+ 5102
Znz 510a, that is, 5b203 is A mole,
The number C of moles of ZnO that completely reacts with a mixture of 8 moles of 5I02 is C-AX7+BX2. As shown in Table 4, among the mixtures:
Mixtures 4 to 1O are formulations close to this condition.

したがってこれらの試料を仮焼して予め反応させておけ
ば、本焼成時に急激な反応、局所的に不均一な反応がお
こるのを防ぐことができ、また素体との収縮率のマツチ
ングがよくなる。その結果、構成結晶相は互いに混在し
、素体との密着性を向上させるのである。なお、混合物
1oを用いた試料が不安定な特性を示す理由は、この混
合物ではZnOが多すぎて未反応のZnOが残ってしま
い、この部分が低抵抗であることから、側面高抵抗層の
絶縁特性が悪化するためである。
Therefore, by calcining these samples and reacting them in advance, it is possible to prevent sudden reactions and locally uneven reactions during the main firing, and it is also possible to better match the shrinkage rate with the element body. . As a result, the constituent crystal phases coexist with each other, improving adhesion to the element body. The reason why the sample using mixture 1o shows unstable characteristics is that this mixture contains too much ZnO and unreacted ZnO remains, and this part has low resistance, so the high resistance layer on the side surface This is because the insulation properties deteriorate.

[以下余白] 牙1 習 3酸化亜鉛 [発明の効果] 以上のように、本発明によれば側面高抵抗層材料として
ビスマス、アンチモン、シリコンおよび亜鉛を特定割合
で混合し、仮焼し、粉砕して使用するので、側面高抵抗
層内の結晶の存在状態を均一に分布させ、また素体との
密着性を向上させることができ、耐環境性に優れた酸化
亜鉛形避雷器素子を製造することができる。
[Blank below] Fang 1 Xi 3 Zinc oxide [Effects of the invention] As described above, according to the present invention, bismuth, antimony, silicon, and zinc are mixed in a specific ratio as a side high-resistance layer material, calcined, and pulverized. Since the crystals are used in the lateral high-resistance layer, the presence of crystals can be uniformly distributed, and the adhesion with the element body can be improved, thereby producing a zinc oxide type lightning arrester element with excellent environmental resistance. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第3図におけるパターンIを示す本発明による
素子の側面高抵抗層の微細構造を模式的に示す断面図、
第2図は第3図におけるパターン■を示す素子の側面高
抵抗層の微細構造を模式的に示す断面図、第3図は側面
高抵抗層の差異によってえられる電気特性のパターンを
示すグラフである。 (図面の符号) (1):アンチモン酸亜鉛 (2)、ケイ酸亜鉛 (3)、酸化亜鉛 /
FIG. 1 is a cross-sectional view schematically showing the fine structure of a side high resistance layer of an element according to the present invention showing pattern I in FIG. 3;
Figure 2 is a cross-sectional view schematically showing the fine structure of the high-resistance layer on the side of the device showing the pattern ■ in Figure 3, and Figure 3 is a graph showing the pattern of electrical characteristics obtained by differences in the high-resistance layer on the side. be. (Drawing code) (1): Zinc antimonate (2), zinc silicate (3), zinc oxide/

Claims (1)

【特許請求の範囲】[Claims] (1)酸化亜鉛形避雷器素子の側面高抵抗層材料として
、ビスマス、アンチモン、シリコンおよび亜鉛がそれぞ
れBi_2O_3、Sb_2O_3、SiO_2および
ZnOに換算して1〜4モル%、3〜10モル%、15
〜38モル%および50〜80モル%の比率で総和が1
00モル%となるような組成比の混合物を仮焼したのち
、JISメッシュNo.30のふるいを通過し、かつN
o.330のふるいを通過しない大きさに粉砕した粉体
を使用して側面高抵抗層を形成することを特徴とする酸
化亜鉛形避雷器素子の製法。
(1) Bismuth, antimony, silicon, and zinc are used as materials for the side high-resistance layer of a zinc oxide type lightning arrester element, respectively, in terms of Bi_2O_3, Sb_2O_3, SiO_2, and ZnO, 1 to 4 mol%, 3 to 10 mol%, 15
~38 mol% and 50-80 mol% with a total of 1
After calcining a mixture with a composition ratio of 0.00 mol%, JIS mesh No. Passes through 30 sieves and N
o. A method for manufacturing a zinc oxide type lightning arrester element, characterized in that a side high resistance layer is formed using powder crushed to a size that does not pass through a No. 330 sieve.
JP2146981A 1990-06-04 1990-06-04 Manufacturing method of zinc oxide arrester element Expired - Fee Related JP2854387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2146981A JP2854387B2 (en) 1990-06-04 1990-06-04 Manufacturing method of zinc oxide arrester element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2146981A JP2854387B2 (en) 1990-06-04 1990-06-04 Manufacturing method of zinc oxide arrester element

Publications (2)

Publication Number Publication Date
JPH0438802A true JPH0438802A (en) 1992-02-10
JP2854387B2 JP2854387B2 (en) 1999-02-03

Family

ID=15419931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2146981A Expired - Fee Related JP2854387B2 (en) 1990-06-04 1990-06-04 Manufacturing method of zinc oxide arrester element

Country Status (1)

Country Link
JP (1) JP2854387B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249491A (en) * 1975-10-16 1977-04-20 Meidensha Electric Mfg Co Ltd Non-linear resistor
JPS5669804A (en) * 1979-11-12 1981-06-11 Matsushita Electric Ind Co Ltd Method of manufacturing nonnlinear voltage resistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249491A (en) * 1975-10-16 1977-04-20 Meidensha Electric Mfg Co Ltd Non-linear resistor
JPS5669804A (en) * 1979-11-12 1981-06-11 Matsushita Electric Ind Co Ltd Method of manufacturing nonnlinear voltage resistor

Also Published As

Publication number Publication date
JP2854387B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
JPS6015127B2 (en) Voltage nonlinear resistor and its manufacturing method
JPH0438802A (en) Manufacture of zinc oxide type arrester element
JP2000232005A (en) Nonlinear resistor
JPS59127801A (en) Varistor and method of producing same
JP2692210B2 (en) Zinc oxide varistor
JPH0555010A (en) Manufacture of voltage-dependent nonlinear element
JPH0330301A (en) Voltage nonlinear resistor
JPH0383846A (en) Production of varistor
JPS62208601A (en) Manufacture of voltage nonlinear resistance device
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPH04318902A (en) Manufacture of voltage nonlinear element
JPH03109260A (en) Grian boundary oxidized voltage-nonlinear resistance composition
JPS62208606A (en) Manufacture of voltage nonlinear resistance device
JPH0577164B2 (en)
JPS62269301A (en) Manufacture of nonlinear resistance element
JPS62237704A (en) Manufacture of voltage nonlinear resistance element
JPH0754763B2 (en) Method of manufacturing voltage non-linear resistor element
JPH03295857A (en) Porcelain composition for varistor
JPH0290501A (en) Manufacture of voltage dependent non-linear resistor
JPH0214763B2 (en)
JPH0128483B2 (en)
JPS63133502A (en) Nonlinear resistor and manufacture of the same
JPH08203708A (en) Nonlinear resistor
JPH07249505A (en) Manufacture of nonlinear resistor
JPS63117402A (en) Manufacture of nonlinear resistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees