JPH0555010A - Manufacture of voltage-dependent nonlinear element - Google Patents
Manufacture of voltage-dependent nonlinear elementInfo
- Publication number
- JPH0555010A JPH0555010A JP3237399A JP23739991A JPH0555010A JP H0555010 A JPH0555010 A JP H0555010A JP 3237399 A JP3237399 A JP 3237399A JP 23739991 A JP23739991 A JP 23739991A JP H0555010 A JPH0555010 A JP H0555010A
- Authority
- JP
- Japan
- Prior art keywords
- voltage
- particles
- voltage non
- linear element
- varistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Thermistors And Varistors (AREA)
- Apparatuses And Processes For Manufacturing Resistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は印加電圧によって抵抗値
が変化する電圧非直線性素子に関するもので,電圧安定
化,異常電圧制御,さらにはマトリクス駆動の液晶,E
Lなどの表示デバイスのスイッチング素子などに利用さ
れるものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage non-linear element whose resistance value changes according to an applied voltage.
It is used as a switching element of a display device such as L.
【0002】[0002]
【従来技術】従来の電圧非直線性素子は,酸化亜鉛(Z
nO)に,酸化ビスマス(Bi2 O 3 ),酸化コバルト
(CoO),酸化マンガン(MnO2 ),酸化アンチモ
ン(Sb2 O3 )などの酸化物を添加して,1000〜
1350℃で焼結したバリスタなど,種々のものがあ
る。その中で,ZnOバリスタは電圧非直線指数α,サ
ージ耐量が大きいことから,最も一般的に使われている
(特公昭46−19472号公報参照)。2. Description of the Related Art A conventional voltage non-linear element is zinc oxide (Z
nO), bismuth oxide (Bi2O 3), Cobalt oxide
(CoO), manganese oxide (MnO2), Antimony oxide
(Sb2O3) And other oxides,
There are various types such as varistor sintered at 1350 ° C.
It Among them, the ZnO varistor is a voltage nonlinear index α,
Most commonly used due to its high ruggedness
(See Japanese Patent Publication No. 46-19472).
【0003】このような従来の電圧非直線性素子は,Z
nOバリスタを始めとして,素子の厚みを薄く(数十μ
m以下)することに限界があるため,バリスタ電圧(バ
リスタに電流1mAを流した時の電圧V1mAで表され
る)を低くすることに限界があり,低電圧用ICの保護
素子や低電圧における電圧安定化素子としては使えなか
った。また,上述したように,焼結時に,1000℃以
上の高温プロセスを必要とするため,ガラス基板上ある
いは回路基板上に電圧非直線性素子を直接形成できない
という問題があった。さらに,従来のものは並列静電容
量が大きく,たとえば液晶などのスイッチ素子としては
不適当であるなどの問題点を有していた。Such a conventional voltage non-linear element is Z
Starting with nO varistor, the device is thin (several tens μ)
However, there is a limit to lowering the varistor voltage (represented by the voltage V1mA when a current of 1 mA is applied to the varistor), and there is a limit to lowering the varistor voltage. It could not be used as a voltage stabilizing element. Further, as described above, there is a problem that the voltage non-linear element cannot be directly formed on the glass substrate or the circuit substrate because a high temperature process of 1000 ° C. or higher is required at the time of sintering. Furthermore, the conventional one has a problem that it has a large parallel capacitance and is unsuitable as a switching element for liquid crystal, for example.
【0004】この問題点を解決し,たとえば液晶のスイ
ッチング素子として使えるようにするために,半導体化
したZnO焼結体粒子を主体とし,この粒子の表面に薄
い絶縁性被膜を形成させたものの集合体からなる電圧非
直線性素子が開発された(たとえば特開昭62−190
801号公報参照)。この方法は特に低電圧で電圧非直
線性の優れたものが比較的容易に得られること,並列静
電容量が小さいものができるという特徴がある。In order to solve this problem and use it as a switching element of liquid crystal, for example, a group of particles mainly composed of semiconductor-made ZnO sintered particles and having a thin insulating film formed on the surface thereof A voltage non-linear element composed of a body has been developed (for example, Japanese Patent Laid-Open No. 62-190).
801). This method is characterized in that a low voltage and excellent voltage non-linearity can be obtained relatively easily, and a parallel capacitance can be reduced.
【0005】この方法を更に詳しく説明すると,先ずZ
nO粉末,或いはこれに微量の添加物を加えたものを7
00℃以上の高温で焼成する。このようにして得られた
焼結体を平均粒子径1〜20μmに粉砕し,焼結体粒子
を得る。この焼結体粒子に,高抵抗層化合物として,た
とえばBi,Co,Mn,Pr,Sbなどの酸化物を添
加して700℃以上の温度で焼成する。これによって焼
結体粒子の個々の表面がこれらの添加物成分を含む高抵
抗層で覆われた状態になる。そして,上記電圧非直線性
素子は,上記高抵抗層が表面に形成された焼結体粒子
を,無機質あるいは有機質の結合材で固めて電極を付け
たものである。This method will be described in more detail. First, Z
nO powder, or the one with a small amount of additives added to it
Bake at a high temperature of 00 ° C. or higher. The sinter thus obtained is crushed to an average particle size of 1 to 20 μm to obtain sinter particles. Oxides such as Bi, Co, Mn, Pr, and Sb as high resistance layer compounds are added to the sintered particles, and the particles are fired at a temperature of 700 ° C. or higher. As a result, the individual surfaces of the sintered particles are covered with the high resistance layer containing these additive components. The voltage non-linear element is one in which the sintered particles having the high resistance layer formed on the surface are fixed with an inorganic or organic binder and an electrode is attached.
【0006】こうして得られる電圧非直線性素子は,そ
の電圧電流特性が,非常に急峻な非直線性を示す。その
微構造をZnOバリスタとの比較で見れば,ZnOバリ
スタは,微結晶粒子が高抵抗層を通じて面接触している
のに対して,この電圧非直線性素子は,微結晶粒子が高
抵抗層を介して点接触している。したがって,該電圧非
直線性素子の持つ並列静電容量は,従来のZnOバリス
タと比較して桁違いに小さい。このことは,本素子を液
晶のマトリックス駆動におけるアクティブ素子として用
いる場合,静電容量によるロスがなくなり,高デューテ
ィー駆動に好適である。The voltage-nonlinear element thus obtained exhibits a very steep nonlinearity in its voltage-current characteristic. When the microstructure is compared with a ZnO varistor, in the ZnO varistor, fine crystal particles are in surface contact with each other through the high resistance layer, whereas in this voltage nonlinear element, the fine crystal particles are in the high resistance layer. Through point contact. Therefore, the parallel capacitance of the voltage nonlinear element is orders of magnitude smaller than that of the conventional ZnO varistor. This means that when this element is used as an active element in liquid crystal matrix driving, there is no loss due to electrostatic capacitance, which is suitable for high duty driving.
【0007】また,この従来方法では,あらかじめ作成
したバリスタ粒子(前記焼結体粒子)を結合材と混ぜて
ペースト化し,これを基板に印刷して,焼付け,硬化し
てバリスタを形成することも可能である。バリスタを液
晶のアクティブマトリックス駆動用素子として使う試み
は,種々検討されてきた。しかし,実用化を阻んでいる
問題は,バリスタ電圧の低いものが出来にくいというこ
とと,特性のバラツキがあげられる。Further, in this conventional method, it is also possible to form varistor by mixing varistor particles (sintered body particles) prepared in advance with a binder to form a paste, which is printed on a substrate, baked and cured. It is possible. Various attempts have been made to use a varistor as an element for driving an active matrix of a liquid crystal. However, the problems that hinder practical application are that it is difficult to make a device with a low varistor voltage, and there are variations in characteristics.
【0008】バリスタ電圧は電極間距離に比例するか
ら,低いバリスタ電圧を得ようとすれば,電極間隔を短
くすれば良い。電極間隔が同じであっても,電極間に直
列に並ぶバリスタ粒子の数を制御することによって,バ
リスタ電圧を変えることができる。即ち,バリスタ粒子
の粒径を変えると,バリスタ電圧はそれに伴って変動す
る。例えば,粒径が倍になると,バリスタ電圧は半分に
なる。電極間距離と粒径の制御によって,上記方法で得
られるバリスタ素子は,液晶のアクティブマトリックス
駆動素子として有用である。また,電極間距離10〜数
100μmの範囲でもバリスタ電圧10V以上で特性の
優れたものを,自由に得ることができる。Since the varistor voltage is proportional to the distance between the electrodes, the distance between the electrodes may be shortened in order to obtain a low varistor voltage. Even if the electrode spacing is the same, the varistor voltage can be changed by controlling the number of varistor particles arranged in series between the electrodes. That is, when the particle size of the varistor particles is changed, the varistor voltage changes accordingly. For example, if the particle size is doubled, the varistor voltage will be halved. The varistor element obtained by the above method by controlling the distance between the electrodes and the particle size is useful as an active matrix driving element for liquid crystal. Further, even if the distance between the electrodes is in the range of 10 to several hundreds of μm, it is possible to freely obtain the one having excellent characteristics at a varistor voltage of 10 V or more.
【0009】[0009]
【解決しようとする課題】しかしながら,上記後者の従
来方法(後者の公報)で得られる電圧非直線性素子は,
次の問題点がある。即ち,電圧非直線性素子を液晶のマ
トリックス駆動用素子として使う場合は,駆動する画素
1個に1個ずつのバリスタをITO基板上に形成しなけ
ればならない。たとえば,640×480の画素数であ
れば,それだけの数のバリスタアレイを基板上に形成す
る必要がある。そのため,これだけの数のバリスタを歩
留まり良く,バラツキを抑えて,作ることが要求され
る。However, the voltage non-linear element obtained by the latter conventional method (the latter publication) is
There are the following problems. That is, when the voltage non-linear element is used as a liquid crystal matrix driving element, one varistor should be formed on each ITO pixel on the ITO substrate. For example, if the number of pixels is 640 × 480, it is necessary to form that many varistor arrays on the substrate. Therefore, it is required to produce such a large number of varistors with a high yield and suppressing variations.
【0010】そのため,前記焼結体粒子を用いる上記従
来の製造方法は,個々のZnO焼結体粒子に関して半導
体化した焼結体粒子の表面に,Mn,Co等の高抵抗層
が均一に出来ていることが不可欠である。そのために焼
結体粒子をMn,Co等の酸化物でまぶした後,再度焼
成してこれを再度粉砕していた。しかし,この方法では
高抵抗層を形成した焼結体粒子は,粉砕のとき高抵抗層
に沿ってすべてが粉砕されるとは限らず,粉砕方法を注
意しても,最終的にすべての焼結体粒子の表面が高抵抗
層に覆われている保証はない。このことは,最終的なバ
リスタ特性の低下,およびバラツキになって現れる。Therefore, in the above-mentioned conventional manufacturing method using the sintered body particles, a high resistance layer of Mn, Co or the like can be uniformly formed on the surface of the sintered body particles made into semiconductor with respect to each ZnO sintered body particle. Is essential. For this purpose, the sintered particles were sprinkled with an oxide such as Mn and Co and then fired again to pulverize the particles again. However, with this method, not all of the sintered particles having a high-resistance layer formed are crushed along the high-resistance layer during crushing, and even if the crushing method is carefully selected, all of the sintered particles will eventually be burned. There is no guarantee that the surface of the bound particles is covered with the high resistance layer. This manifests itself as a deterioration in the final varistor characteristics and variations.
【0011】このように従来の製造方法は,Mn,Co
等の上記高抵抗層化合物を焼結体粒子にまぶし,再焼
成,再粉砕するという煩雑な製造工程を必要とし,また
得られた電圧非直線性素子はバリスタ電圧のバラツキが
大きい。本発明者らは,かかる問題点を解決すべく鋭意
検討を重ね,本発明をなすに至ったのである。本発明
は,製造容易で,かつバリスタ電圧のバラツキが少ない
電圧非直線性素子の製造方法を提供しようとするもので
ある。As described above, according to the conventional manufacturing method, Mn, Co
The above-mentioned high resistance layer compound is sprinkled on the sintered body particles, and a complicated manufacturing process of re-baking and re-grinding is required, and the obtained voltage non-linear element has a large variation in varistor voltage. The inventors of the present invention have made extensive studies to solve the above problems, and have completed the present invention. An object of the present invention is to provide a method of manufacturing a voltage non-linear element which is easy to manufacture and has little variation in varistor voltage.
【0012】[0012]
【課題の解決手段】本発明は,ZnO粉末を加熱焼成
し,その焼結体を粉砕して焼結体粒子となし,該焼結体
粒子に絶縁性の結合材を添加混合して,これを複数の電
極の間に配置し,その後熱処理することにより電圧非直
線性素子を製造する方法において,上記結合材は,C
o,Mn,Bi,Pr,SbおよびTiのいずれか一種
以上の添加元素を含有する低融点ガラスの粉末であるこ
とを特徴とする電圧非直線性素子の製造方法にある。本
発明においても最も注目すべきことは,上記結合材とし
ては,Co(コバルト),Mn(マンガン),Bi(ビ
スマス),Pr(プラセオジウム),Sb(アンチモ
ン),又はTi(チタン)の1種以上の添加元素を含有
する低融点ガラスの粉末を用いることにある。According to the present invention, ZnO powder is heated and fired, and the sintered body is crushed to form sintered body particles, and an insulating binder is added to and mixed with the sintered body particles. In the method for manufacturing a voltage non-linear element by arranging a plurality of electrodes between a plurality of electrodes and then performing heat treatment, the binder is C
A method of manufacturing a voltage non-linear element, characterized in that it is a powder of a low melting point glass containing at least one additive element selected from the group consisting of o, Mn, Bi, Pr, Sb and Ti. What is most noticeable in the present invention is that the binder is one of Co (cobalt), Mn (manganese), Bi (bismuth), Pr (praseodymium), Sb (antimony), or Ti (titanium). This is to use a powder of low melting point glass containing the above-mentioned additional elements.
【0013】上記添加元素は,低融点ガラス中において
は,酸化物の状態で加えられている。また,添加元素
は,各該当酸化物に換算して低融点ガラス中に0.1〜
30モル%含有されていることが好ましい。ここに,該
当酸化物とは,CoはCoO,MnはMnO2 ,Biは
Bi2 O3 ,PrはPr6 O11 ,SbはSb2 O3,
TiはTiO2 をいう。上記0.1モル%未満では,電
圧非直線性素子の特性向上が認められず,一方30モル
%を越えると低温でZnO粒子を結合しにくくなるとい
う問題を生ずるおそれがある。The above-mentioned additional elements are added in the form of oxides in the low melting point glass. In addition, the additive element is 0.1 to 0.1% in the low melting point glass when converted to each corresponding oxide.
It is preferably contained at 30 mol%. Here, the corresponding oxide is CoO for Co, Mn for MnO 2 , Bi for Bi 2 O 3 , Pr for Pr 6 O 11 , Sb for Sb 2 O 3 ,
Ti means TiO 2 . If it is less than 0.1 mol%, no improvement in the characteristics of the voltage non-linear element is observed, while if it exceeds 30 mol%, there is a possibility that the ZnO particles are difficult to bond at low temperature.
【0014】また,上記添加元素を添加する際のベース
となる低融点ガラスとしては,PbO−SiO2 −B2
O3 系の鉛ガラス,ZnO−B2 O3 −SiO2 系の亜
鉛ガラスなどがある。本発明においては,これら低融点
ガラス中に上記添加元素を含有させてなる結合材を用い
るのである。また,低融点ガラスとして,PbOが40
〜95モル%,SiO2 が0〜10モル%,B2 O3が
1〜50モル%と,上記添加元素が上記該当酸化物換算
で0.1〜30モル%とよりなる鉛ガラスを用いること
もできる。この場合は,特に低温でのZnO粒子の結合
性に関して優れている。Further, as a low melting point glass which becomes a base when the above-mentioned additional elements are added, PbO-SiO 2 -B 2
Examples include O 3 -based lead glass and ZnO—B 2 O 3 —SiO 2 -based zinc glass. In the present invention, a binder obtained by incorporating the above-mentioned additional element into these low melting glass is used. Moreover, as a low melting point glass, PbO is 40
Lead glass consisting of ˜95 mol%, SiO 2 of 0 to 10 mol%, B 2 O 3 of 1 to 50 mol%, and the additive element of 0.1 to 30 mol% in terms of the corresponding oxide is used. You can also In this case, the bondability of ZnO particles is excellent especially at low temperatures.
【0015】また,本発明において焼結体粒子は,次の
ようにして得られる。即ち,まず従来と同様に,ZnO
粉末(酸化亜鉛粉末)の集合体を1000〜1350℃
において加熱焼成し,粒子を大きくすると共にこれを半
導体化させる。上記ZnO粉末としては,例えば粒径1
μm以下の微細粉末を用いる。次いで,上記加熱焼成に
より得られた焼結体を粉砕する。これによりZnOの焼
結体粒子が得られる。また,上記焼結体粒子は,ZnO
のみならず,その粒子の表面にBi,Co,Mn,P
r,Sbのいずれかを含む高抵抗層用化合物の1種類以
上からなる高抵抗層を有するものを用いることもでき
る。かかる高抵抗層の形成は,一旦前記のごとく焼結体
粒子を作り,該焼結体粒子に上記高抵抗層用化合物を添
加して,再焼成し,その再焼結体をほぐすことにより行
う。そして,このように高抵抗層を形成した焼結体粒子
に,本発明にかかる結合材を加えて結合する。In the present invention, the sintered particles are obtained as follows. That is, first, as in the conventional case, ZnO
The powder (zinc oxide powder) aggregate is heated to 1000 to 1350 ° C.
In step 2, the particles are heated and fired to make the particles larger and to be made into a semiconductor. The above ZnO powder has, for example, a particle size of 1
A fine powder having a size of μm or less is used. Next, the sintered body obtained by the above heating and firing is pulverized. As a result, ZnO sintered particles are obtained. In addition, the above-mentioned sintered particles are ZnO.
Not only the Bi, Co, Mn, P on the surface of the particles
It is also possible to use one having a high resistance layer made of one or more kinds of compounds for a high resistance layer containing either r or Sb. The formation of such a high resistance layer is performed by once producing the sintered body particles as described above, adding the compound for a high resistance layer to the sintered body particles, re-firing, and loosening the re-sintered body. .. Then, the binder according to the present invention is added to the sintered particles having the high resistance layer thus formed to bond them.
【0016】上記高抵抗層用化合物としては,Bi2 O
3 ,CoO,MnO2 ,Pr6 O11,Sb2 O3 などが
ある。また,これらに,添加副成分として,Al(アル
ミニウム),Ti(チタン),Sr(ストロンチウ
ム),Mg(マグネシウム),Ni(ニッケル),Cr
(クロム),Si(ケイ素)等の元素の金属酸化物,ま
たはこれらの金属の有機化合物を用いることもできる。As the above-mentioned compound for the high resistance layer, Bi 2 O
3 , CoO, MnO 2 , Pr 6 O 11 , Sb 2 O 3 and the like. In addition to these, as additional components, Al (aluminum), Ti (titanium), Sr (strontium), Mg (magnesium), Ni (nickel), Cr
Metal oxides of elements such as (chromium) and Si (silicon), or organic compounds of these metals can also be used.
【0017】また,上記焼結体粒子には,本発明にかか
る上記絶縁性の結合材を添加混合してペイント材とな
し,該ペイント材を絶縁基板上に設けた複数の電極間に
塗布し,その後熱処理して,電圧非直線性素子を得る。
この熱処理は,通常300〜550℃で行う。また,上
記結合材は,上記低融点ガラス粉末にエチルセルロース
等の有機バインダーを混合して,上記焼結体粒子との混
合時にペースト状にし易くする。上記有機バインダー
は,上記熱処理時に焼失する。また,上記結合材は,Z
nO粉末に対して10〜100重量%添加することが好
ましい。10%未満では結合が不充分で,100%を越
えると電圧非直線性素子の機能が低下するおそれがあ
る。Further, the above-mentioned insulating binder according to the present invention is added to and mixed with the above-mentioned sintered body particles to form a paint material, and the paint material is applied between a plurality of electrodes provided on an insulating substrate. After that, heat treatment is performed to obtain a voltage non-linear element.
This heat treatment is usually performed at 300 to 550 ° C. Further, the binder facilitates forming a paste by mixing an organic binder such as ethyl cellulose with the low melting point glass powder when mixing with the sintered particles. The organic binder is burned off during the heat treatment. The above-mentioned binder is Z
It is preferable to add 10 to 100% by weight to the nO powder. If it is less than 10%, the coupling is insufficient, and if it exceeds 100%, the function of the voltage non-linear element may deteriorate.
【0018】[0018]
【作用及び効果】本発明においては,上記焼結体粒子
を,上記Co,Mn,Pr等の添加元素を含有する低融
点ガラスで結合している。そして,これらを電極間に配
置し,熱処理して電圧非直線性素子を製造する。そのた
め,この,熱処理時において,Co,Mn,Pr等の添
加元素が焼結体粒子の表面に作用してバリスタ特性を生
ずるようになる。FUNCTION AND EFFECT In the present invention, the above-mentioned sintered particles are bonded by the low melting point glass containing the above-mentioned additional elements such as Co, Mn and Pr. And these are arrange | positioned between electrodes and it heat-processes and a voltage nonlinear element is manufactured. Therefore, during this heat treatment, additional elements such as Co, Mn, and Pr act on the surface of the sintered body particles to generate varistor characteristics.
【0019】また,本発明により得られる電圧非直線性
素子は,低電流領域で電圧非直線指数αが大きく特性の
バラツキの小さいものである。そのため,消費電流の小
さい液晶,ELなどのデバイスのスイッチング素子とし
て最適な素子である。また,バリスタ電圧の低いものが
得られ,上記電圧非直線指数αが大きいことと相まっ
て,従来のZnOバリスタでは対応することが出来なか
った低電圧用ICの保護素子や低電圧における電圧安定
化素子として使用することができる。Further, the voltage non-linear element obtained by the present invention has a large voltage non-linear index α in the low current region and a small variation in characteristics. Therefore, it is an optimal element as a switching element for devices such as liquid crystal and EL that consume little current. In addition, a low varistor voltage is obtained, and in combination with the large voltage non-linearity index α, a protection element for a low voltage IC and a voltage stabilization element at a low voltage, which cannot be dealt with by a conventional ZnO varistor. Can be used as
【0020】また,本発明においては,従来のごとく,
ZnO粉末にMn,Co等をまぶして,再焼結,再粉砕
するという煩雑な工程が不要となり,製造容易である。
さらに,低融点ガラスを用いた結合材により固結して素
子形成を行うために,素子製造過程において高温プロセ
スを必要としない。そのため,回路基板やガラス基板上
に素子を直接形成することができる。上記のごとく,本
発明によれば,製造容易で,かつバリスタ電圧のバラツ
キが少ない電圧非直線性素子の製造方法を提供すること
ができる。Further, in the present invention, as in the conventional case,
The complicated process of sprinkling ZnO powder with Mn, Co, etc., and then re-sintering and re-grinding becomes unnecessary, and the manufacturing is easy.
Further, since the device is formed by solidifying with a binder using low melting point glass, a high temperature process is not required in the device manufacturing process. Therefore, the element can be directly formed on the circuit board or the glass substrate. As described above, according to the present invention, it is possible to provide a method of manufacturing a voltage non-linear element which is easy to manufacture and has little variation in varistor voltage.
【0021】[0021]
実施例1 本発明の実施例にかかる電圧非直線性素子の製造方法に
つき説明する。まず,初めに,本発明により得ようとす
る電圧非直線性素子につき,図1〜図3につき説明す
る。まず,図1に示す電圧非直線性素子1は,絶縁体と
してのガラス基板3,3の間に,ITO(インジウム−
錫酸化物)電極2,2を介して素子本体10を形成した
ものである。該素子本体10は,ZnOの焼結体粒子1
1と,Mn,Pr等の添加元素を含有する低融点ガラス
12との混合物からなる。また,図2は,上記図1に示
した電圧非直線性素子1における,素子本体周囲の全体
を示す側面図である。また,図3は,他の構造の電圧非
直線性素子4を示している。該電圧非直線性素子4は,
1枚のガラス基板3の上に電極21,21を設け,該電
極21,21の間に上記と同様の素子本体10を形成し
たものである。Example 1 A method of manufacturing a voltage non-linear element according to an example of the present invention will be described. First, the voltage non-linear element to be obtained according to the present invention will be described with reference to FIGS. First, the voltage non-linear element 1 shown in FIG. 1 has ITO (Indium-Indium) between glass substrates 3 and 3 as insulators.
The element body 10 is formed through the (tin oxide) electrodes 2 and 2. The element body 10 is composed of sintered particles 1 of ZnO.
1 and a low melting point glass 12 containing additional elements such as Mn and Pr. FIG. 2 is a side view showing the entire periphery of the element body in the voltage nonlinear element 1 shown in FIG. In addition, FIG. 3 shows a voltage nonlinear element 4 having another structure. The voltage non-linear element 4 is
The electrodes 21 and 21 are provided on one glass substrate 3, and the element body 10 similar to the above is formed between the electrodes 21 and 21.
【0022】次に,上記図1に示した電圧非直線性素子
1を製造するに当たっては,まずZnO粉末を加熱焼成
し,得られた焼結体を粉砕してZnOの焼結体粒子11
とする。その後,該焼結体粒子11に粉末状の低融点ガ
ラス12と有機バインダーとからなる結合材を添加混合
し,ペイント状とする。次いで,該ペイントを,図1に
示すごとく,ガラス基板3上に形成したITO電極2の
上に,スクリーン印刷等により塗布する。そして,該ペ
イント層の上に,同様に別途ガラス基板3上に形成して
あるITO電極2を載置する。Next, in manufacturing the voltage nonlinear device 1 shown in FIG. 1, first, ZnO powder is heated and fired, and the obtained sintered body is crushed to obtain ZnO sintered body particles 11
And Then, a binder made of powdered low melting point glass 12 and an organic binder is added to and mixed with the sintered particles 11 to form a paint. Next, as shown in FIG. 1, the paint is applied by screen printing or the like on the ITO electrode 2 formed on the glass substrate 3. Then, the ITO electrode 2 which is also separately formed on the glass substrate 3 is placed on the paint layer.
【0023】その後,これらを例えば300〜500
℃,10〜30分間,大気中で熱処理し,結合材中の有
機バインダーを焼失させる。また,これにより,結合材
中の低融点ガラス12を溶融させ,焼結体粒子11を固
結すると共に,これらをITO電極2に結合させる。な
お,上記焼結体粒子11に,別途,高抵抗層形成用のM
nO2 粉末を添加し,再焼成し,その焼結体を粒状にほ
ぐした場合には,焼結体粒子11の表面にMnO2 の高
抵抗層被膜が数10〜数100オングストロームの厚み
で被覆されている。そして,この場合には,高抵抗層被
膜を有する焼結体粒子を,上記と同様に結合材と混合
し,ペイントとなす。Thereafter, these are, for example, 300 to 500
The organic binder in the binder is burned off by heat treatment in the atmosphere at ℃ for 10 to 30 minutes. Further, by this, the low melting point glass 12 in the binder is melted, the sintered body particles 11 are solidified, and these are bonded to the ITO electrode 2. In addition, the above-mentioned sintered body particles 11 are separately provided with M for forming a high resistance layer.
When nO 2 powder was added and re-fired and the sintered body was loosened into particles, the surface of the sintered body particle 11 was coated with a high resistance layer coating of MnO 2 with a thickness of several tens to several hundreds of angstroms. Has been done. Then, in this case, the sintered body particles having the high resistance layer coating are mixed with the binder in the same manner as described above to form a paint.
【0024】実施例2 表1に示す種々の組成を有する低融点ガラスを準備し,
これにより焼結体粒子を結合させた電圧非直線性素子を
作製した。そして,各電圧非直線性素子について,その
非直線性指数α,絶縁性,耐久性を測定した。その結果
を表2に示す。即ち,粒径0.05〜1μmのZnO粉
末を,約1000℃で加熱焼成して,焼結体を得た。次
いで,該焼結体を,粉砕機を用いて粉砕し,平均粒径1
〜20μmの焼結体粒子となした。次に,この焼結体粒
子55wt%に,上記表1に示した鉛ガラス系の低融点
ガラスを含む結合材を45wt%添加混合し,ペイント
状にした。なお,この結合材は,上記低融点ガラス粉末
30wt%と,有機バインダーとしてのエチルセルロー
ス8wt%とからなるものである。次に,上記ペイント
を実施例1に示したごとく,ガラス基板に接合した電極
上にスクリーン印刷塗布し,同様にガラス基板上に設け
た電極を重ね,440℃で60分間,大気中で熱処理
し,電圧非直線性素子を得た。Example 2 Low melting glass having various compositions shown in Table 1 was prepared,
As a result, a voltage non-linear element having bonded sintered body particles was produced. Then, for each voltage non-linear element, the non-linearity index α, insulation, and durability were measured. The results are shown in Table 2. That is, ZnO powder having a particle size of 0.05 to 1 μm was heated and baked at about 1000 ° C. to obtain a sintered body. Then, the sintered body is pulverized by a pulverizer to obtain an average particle size of 1
It was made to be a sintered body particle of ˜20 μm. Next, 55 wt% of the sintered particles were added and mixed with 45 wt% of the binder containing the lead glass-based low melting point glass shown in Table 1 above to form a paint. The binder is composed of 30 wt% of the low melting point glass powder and 8 wt% of ethyl cellulose as an organic binder. Then, as shown in Example 1, the above-mentioned paint was applied by screen printing onto the electrode bonded to the glass substrate, the electrode similarly provided on the glass substrate was overlaid, and heat-treated in the atmosphere at 440 ° C. for 60 minutes. , A voltage non-linear element was obtained.
【0025】この電圧非直線性素子につき,表2に示す
ごとく,バリスタ電圧のバラツキ,後述する非直線性指
数α,絶縁性及び耐久性を測定した。同表において,バ
リスタ電圧のバラツキについては,同バラツキが10%
未満の場合は○を,10〜20%の場合を△で示した。
また,絶縁性とは電圧を10V印加した時に流れる電流
量の大きさを表し,同表中○はその電流量が10-11 A
よりも小さい場合を,△は10-11 A付近の場合を,×
は10-11 Aより大きい場合を示している。また,耐久
性は,電圧−電流特性の測定法により測定した。ここに
耐久性とは,初回と10回目の測定結果から求め,同表
中○は特性が劣化しない場合を,△は特性が劣化する場
合を示す。For this voltage non-linear element, as shown in Table 2, variations in varistor voltage, non-linearity index α, which will be described later, insulation and durability were measured. In the table, the variation of the varistor voltage is 10%.
When it is less than 0, it is indicated by ◯, and when it is 10 to 20%, it is indicated by Δ.
Insulation is the magnitude of the amount of current that flows when a voltage of 10 V is applied. In the table, ○ indicates that the amount of current is 10 -11 A.
Is less than, △ is near 10 -11 A, ×
Indicates the case where it is larger than 10 −11 A. The durability was measured by the voltage-current characteristic measurement method. Here, the durability is obtained from the measurement results of the first time and the tenth time. In the table, ◯ indicates that the characteristics did not deteriorate, and Δ indicates that the characteristics deteriorate.
【0026】表2より知られるごとく,本発明にかかる
試料No.1〜7は,バリスタ電圧のバラツキが低い。
また,これらは,いずれも本発明の低融点ガラス結合材
を用いない比較試料No.C1に比して高い非直線性指
数αを有している。その中,特に試料No.2,4,7
は優れた非直線性指数αを示している。なお,比較試料
No.C2は結合材として樹脂を用いたもので,その非
直線性指数αは低い。また,絶縁性及び耐久性に関して
は,本発明の素子は,比較試料C1,C2に比して同一
又はそれより優れている。As is known from Table 2, Sample No. 1 according to the present invention. 1 to 7 have low varistor voltage variations.
Further, these are all comparative sample Nos. Which do not use the low melting point glass binder of the present invention. It has a high nonlinearity index α as compared to C1. Among them, the sample No. 2, 4, 7
Indicates an excellent nonlinearity index α. Comparative sample No. C2 uses a resin as a binder, and its non-linearity index α is low. Further, in terms of insulation and durability, the element of the present invention is the same as or superior to the comparative samples C1 and C2.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】実施例3 実施例2に示した焼結体粒子に高抵抗層用化合物として
のMnO2 及びCoOを添加混合して再焼成し,電圧非
直線性素子を作製した。即ち,実施例2と同様にして得
た焼結粒子100モル%に,高抵抗層用化合物としての
MnO2 及びCoOをそれぞれ0.5モル%づつ添加
し,これらを1200℃で60分間再焼成した。その
後,得られた焼結体をほぐし,表面に,MnO2 及びC
oOからなる高抵抗層を有する再焼結体粒子を得た。更
に,該再焼結体粒子に対して,実施例1と同様に,表1
に示した低融点ガラスを含む結合材を加え,電圧非直線
素子を作製した。その結果を実施例2と同様にして表3
に示した。Example 3 MnO 2 and CoO as compounds for the high resistance layer were added to and mixed with the sintered body particles shown in Example 2 and re-baked to prepare a voltage non-linear element. That is, to 100 mol% of the sintered particles obtained in the same manner as in Example 2, 0.5 mol% each of MnO 2 and CoO as a compound for the high resistance layer were added, and these were re-fired at 1200 ° C. for 60 minutes. did. Then, the obtained sintered body is loosened, and MnO 2 and C
Resintered body particles having a high resistance layer of oO were obtained. Further, as in the case of Example 1, the re-sintered body particles are shown in Table 1.
A voltage non-linear element was prepared by adding the binder containing the low melting point glass shown in (3). The results are shown in Table 3 as in Example 2.
It was shown to.
【0030】表3より知られるごとく,本発明にかかる
試料No.11〜17の素子は,バリスタ電圧のバラツ
キが低く,また比較試料C11,C12に比して高い非
直線性指数αを示している。また,絶縁性,耐久性に関
しても,比較例と同様か又はそれより優れた結果が得ら
れる。As is known from Table 3, the sample No. The elements 11 to 17 have low varistor voltage variations and exhibit a higher nonlinearity index α than the comparative samples C11 and C12. In addition, with respect to insulation and durability, results similar to or better than those of the comparative example can be obtained.
【0031】[0031]
【表3】 [Table 3]
【0032】実施例4 次に,電圧非直線性素子の電圧−電流特性について,図
4を用いて説明する。同図において,特性A及びBは,
本発明の電圧非直線性素子(試料No.2及びNo.1
2)の,特性Dは従来のZnOバリスタ(比較例No.
C3)の,特性Cは従来の電圧非直線性素子(比較例N
o.C1)の特性を示している。この電圧非直線性素子
は,素子面積1mm2 ,電極間距離30μmである。Example 4 Next, the voltage-current characteristics of the voltage non-linear element will be described with reference to FIG. In the figure, the characteristics A and B are
The voltage non-linear element of the present invention (Sample No. 2 and No. 1)
The characteristic D of 2) is the conventional ZnO varistor (Comparative Example No.
The characteristic C of C3) is the conventional voltage non-linear element (Comparative Example N).
o. The characteristic of C1) is shown. This voltage non-linear element has an element area of 1 mm 2 and a distance between electrodes of 30 μm.
【0033】上記比較例No.C3(従来のZnOバリ
スタ)は,次の条件で作成したものである。即ち,Zn
O粉末98.5モル%とBi2 O3 ,CoO,MnO2
の各粉末0.5モル%とを混合,成形し,1250℃で
焼成した。The above comparative example No. C3 (conventional ZnO varistor) was created under the following conditions. That is, Zn
O powder 98.5 mol% and Bi 2 O 3 , CoO, MnO 2
0.5 mol% of each powder was mixed, molded, and fired at 1250 ° C.
【0034】さて,電圧非直線性素子の電圧−電流特性
は,良く知られているように,近似的に,〔I−KV
α〕なる計算式で示されている。ここで,Iは素子に流
れる電流,Vは素子の電極間の電圧,Kは固有抵抗の抵
抗値に相当する定数,αは上述した電圧非直線性特性の
指数を示している。また,この電圧非直線指数αが大き
い程,電圧非直線性が優れていることになる。また,通
常,ZnOバリスタではバリスタ特性を表すのに,例え
ば素子に1mAの電流を流した時の電極間に現れる電圧
をバリスタ電圧V(lmA)と呼び,このバリスタ電圧
V(lmA)と上記電圧非直線指数αとを使用してい
る。As is well known, the voltage-current characteristic of the voltage non-linear element is approximately [I-KV
α]. Here, I is the current flowing through the element, V is the voltage between the electrodes of the element, K is a constant corresponding to the resistance value of the specific resistance, and α is the index of the above-mentioned voltage non-linearity characteristic. The larger the voltage non-linearity index α, the better the voltage non-linearity. In addition, in order to express the varistor characteristics in a ZnO varistor, for example, the voltage appearing between the electrodes when a current of 1 mA is applied to the element is called the varistor voltage V (lmA). The non-linear index α and are used.
【0035】そして,図4の特性に示されるように,ま
ず特性Dで示される従来のZnOバリスタ(比較例N
o.C3)は,低電圧域において,電圧非直線指数αが
小さく,10-4A以下の電流では,良好な電圧非直線性
素子としての機能を発揮しえない。一方,上記従来の電
圧非直線性素子(比較例No.C1)は,特性Cで示さ
れるように,低電流域においても電圧非直線指数αが大
きく,10-10 A程度の電流域でも十分に電圧非直線性
素子としての機能を発揮することができることを示して
いる。次に,本発明における電圧非直線性素子の電圧−
電流特性は,特性A(試料No.2)及びB(試料N
o.12)で示すごとく,低融点ガラスに本発明に関す
る添加元素を含有していない上記比較例No.C1に比
して,更に低電流領域における特性が向上していること
が分かる。それ故,バリスタ電圧V(1mA)も更に低
くすることができることが分かる。As shown in the characteristics of FIG. 4, the conventional ZnO varistor shown in the characteristics D (Comparative Example N
o. C3) has a small voltage non-linearity index α in the low voltage region, and cannot function as a good voltage non-linearity device at a current of 10 −4 A or less. On the other hand, the above-mentioned conventional voltage non-linear element (Comparative Example No. C1) has a large voltage non-linear index α even in the low current region as shown by the characteristic C, and is sufficient even in the current region of about 10 -10 A. It is shown that it can exhibit the function as a voltage non-linear element. Next, the voltage of the voltage non-linear element in the present invention-
The current characteristics are the characteristics A (Sample No. 2) and B (Sample N).
o. As shown in 12), the low melting glass does not contain the additive element relating to the present invention, and the comparative example No. It can be seen that the characteristics in the low current region are further improved as compared with C1. Therefore, it can be seen that the varistor voltage V (1 mA) can be further lowered.
【0036】なお,図4の特性は,上述したように電極
間距離を30μmとした素子についてのものであるが,
これはZnO粉末の平均粒径が5〜10μmという比較
的大きな粒径のためにこれ以上狭くすることが出来ない
からである。電極間距離を狭くすれば,バリスタ電圧を
低くすることができる。即ち,もしも,ZnO粉末とし
て平均粒径が0.3〜3μmのものを使えば,電極間距
離が10μm程度もしくは以下の素子を作成することが
でき,図4と同じような良好な特性が得られる。The characteristics shown in FIG. 4 are for an element having an interelectrode distance of 30 μm as described above.
This is because the average particle diameter of ZnO powder is relatively large, that is, 5 to 10 μm, so that it cannot be further narrowed. The varistor voltage can be lowered by reducing the distance between the electrodes. That is, if ZnO powder having an average particle size of 0.3 to 3 μm is used, an element having an interelectrode distance of about 10 μm or less can be produced, and good characteristics similar to those shown in FIG. 4 can be obtained. Be done.
【図1】実施例1の電圧非直線性素子の拡大断面図。FIG. 1 is an enlarged sectional view of a voltage non-linear element according to a first exemplary embodiment.
【図2】実施例1の電圧非直線性素子の側面図。FIG. 2 is a side view of the voltage non-linear element according to the first embodiment.
【図3】実施例1の他の電圧非直線性素子を示す側面
図。FIG. 3 is a side view showing another voltage non-linear element according to the first embodiment.
【図4】実施例4における,本発明の電圧非直線性素子
及び比較例C1,C3の,電圧−電流特性線図。FIG. 4 is a voltage-current characteristic diagram of the voltage non-linear element of the present invention and Comparative examples C1 and C3 in Example 4.
1...電圧非直線性素子, 11...焼結体粒子, 2...ITO電極, 1. . . Voltage non-linear element, 11. . . Sintered body particles, 2. . . ITO electrode,
───────────────────────────────────────────────────── フロントページの続き (72)発明者 増山 勇 大阪府高槻市日吉台2番地3番3号 有限 会社増山新技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isamu Masuyama 2-3-3 Hiyoshidai, Takatsuki City, Osaka Prefecture Masuyama Research Institute of Technology
Claims (4)
粉砕して焼結体粒子となし,該焼結体粒子に絶縁性の結
合材を添加混合して,これを複数の電極の間に配置し,
その後熱処理することにより電圧非直線性素子を製造す
る方法において, 上記結合材は,Co,Mn,Bi,Pr,SbおよびT
iのいずれか一種以上の添加元素を含有する低融点ガラ
スの粉末であることを特徴とする電圧非直線性素子の製
造方法。1. A ZnO powder is heated and fired, and a sintered body thereof is crushed to form a sintered body particle, and an insulating binder is added and mixed to the sintered body particle, which is then mixed into a plurality of electrodes. Placed in between
In the method of manufacturing a voltage non-linear element by heat-treating thereafter, the binder is Co, Mn, Bi, Pr, Sb and T.
A method of manufacturing a voltage non-linear element, which is a powder of a low melting point glass containing any one or more additional elements of i.
該当酸化物に換算して,低融点ガラス中に0.1〜30
モル%含有されていることを特徴とする電圧非直線性素
子の製造方法。2. The low-melting glass according to claim 1, wherein the additive element is 0.1 to 30 in terms of each corresponding oxide.
A method of manufacturing a voltage non-linear element, characterized in that the element is contained in mol%.
は,PbOが40〜95モル%,SiO2 が0〜10モ
ル%,B2 O3 が1〜50モル%と,上記添加元素が各
該当酸化物換算で0.1〜30モル%とよりなる鉛低融
点ガラスであることを特徴とする電圧非直線性素子の製
造方法。3. The low melting point glass according to claim 1, wherein PbO is 40 to 95 mol%, SiO 2 is 0 to 10 mol%, B 2 O 3 is 1 to 50 mol%, and each of the additive elements is A method for producing a voltage non-linear element, which is a lead low-melting point glass containing 0.1 to 30 mol% of the corresponding oxide.
その表面に,Bi,Co,Mn,Pr,Sbのいずれか
を含む高抵抗層用化合物の1種類以上からなる高抵抗層
を有することを特徴とする電圧非直線性素子の製造方
法。4. The sintered body particle according to claim 1,
A method of manufacturing a voltage non-linear element, characterized in that it has on its surface a high resistance layer made of one or more kinds of compounds for high resistance layers containing any of Bi, Co, Mn, Pr and Sb.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3237399A JPH0555010A (en) | 1991-08-23 | 1991-08-23 | Manufacture of voltage-dependent nonlinear element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3237399A JPH0555010A (en) | 1991-08-23 | 1991-08-23 | Manufacture of voltage-dependent nonlinear element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0555010A true JPH0555010A (en) | 1993-03-05 |
Family
ID=17014819
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3237399A Pending JPH0555010A (en) | 1991-08-23 | 1991-08-23 | Manufacture of voltage-dependent nonlinear element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0555010A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02230238A (en) * | 1989-03-03 | 1990-09-12 | Fuji Photo Film Co Ltd | Color photosensitive material |
EP1956612A1 (en) * | 2007-02-09 | 2008-08-13 | SFI Electronics Technology Inc. | Ceramic material used for protection against electrical overstress and low-capacitance multilayer chip varistor using the same |
JP2010147229A (en) * | 2008-12-18 | 2010-07-01 | Tdk Corp | Static electricity countermeasure element and composite electronic component of the same |
WO2014057864A1 (en) | 2012-10-10 | 2014-04-17 | 日本碍子株式会社 | Voltage nonlinear resistance element |
WO2014083977A1 (en) | 2012-11-29 | 2014-06-05 | 日本碍子株式会社 | Voltage non-linear resistance element |
-
1991
- 1991-08-23 JP JP3237399A patent/JPH0555010A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02230238A (en) * | 1989-03-03 | 1990-09-12 | Fuji Photo Film Co Ltd | Color photosensitive material |
EP1956612A1 (en) * | 2007-02-09 | 2008-08-13 | SFI Electronics Technology Inc. | Ceramic material used for protection against electrical overstress and low-capacitance multilayer chip varistor using the same |
JP2010147229A (en) * | 2008-12-18 | 2010-07-01 | Tdk Corp | Static electricity countermeasure element and composite electronic component of the same |
WO2014057864A1 (en) | 2012-10-10 | 2014-04-17 | 日本碍子株式会社 | Voltage nonlinear resistance element |
WO2014083977A1 (en) | 2012-11-29 | 2014-06-05 | 日本碍子株式会社 | Voltage non-linear resistance element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0555010A (en) | Manufacture of voltage-dependent nonlinear element | |
JP2625178B2 (en) | Varistor manufacturing method | |
JPH04318902A (en) | Manufacture of voltage nonlinear element | |
JP2962056B2 (en) | Voltage non-linear resistor | |
JPS62193208A (en) | Voltage nonlinear device | |
JPS62208601A (en) | Manufacture of voltage nonlinear resistance device | |
JPS62242310A (en) | Voltage nonlinear device | |
JPS62193220A (en) | Voltage nonlinear device | |
JPS5928961B2 (en) | thick film varistor | |
JPS62193226A (en) | Voltage nonlinear device | |
JP3259318B2 (en) | Varistor element manufacturing method | |
JPS62190809A (en) | Voltage nonlinear device | |
JPH04295827A (en) | Production of varistor element | |
JPS62193207A (en) | Voltage nonlinear device | |
JPS62190803A (en) | Manufacture of voltage nonlinear device | |
JPH02184552A (en) | Porcelain composition for resistor of non-linear to voltage | |
WO1990013133A1 (en) | Voltage nonlinear resistor and method of producing the same | |
JPS62190806A (en) | Voltage nonlinear device | |
JPS62193219A (en) | Manufacture of voltage nonlinear device | |
JPS62193213A (en) | Manufacture of voltage nonlinear device | |
JPS62193203A (en) | Voltage nonlinear device | |
JPS62193206A (en) | Voltage nonlinear device | |
JPS62242302A (en) | Voltage nonlinear device | |
JPS62190811A (en) | Voltage nonlinear device | |
JPS62193205A (en) | Voltage nonlinear device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |