JPS63133502A - Nonlinear resistor and manufacture of the same - Google Patents

Nonlinear resistor and manufacture of the same

Info

Publication number
JPS63133502A
JPS63133502A JP61279724A JP27972486A JPS63133502A JP S63133502 A JPS63133502 A JP S63133502A JP 61279724 A JP61279724 A JP 61279724A JP 27972486 A JP27972486 A JP 27972486A JP S63133502 A JPS63133502 A JP S63133502A
Authority
JP
Japan
Prior art keywords
cobalt
raw material
boron nitride
resistor
wet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61279724A
Other languages
Japanese (ja)
Inventor
洋典 鈴木
丹野 善一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61279724A priority Critical patent/JPS63133502A/en
Publication of JPS63133502A publication Critical patent/JPS63133502A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は避雷器等に用いられる酸化亜鉛を主成分とした
非直線抵抗体及びその製造方法に関するもので、特に酸
化亜鉛に副成分として加えるコバルト原料の形態を改良
した非直線抵抗体及びその製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-linear resistor mainly composed of zinc oxide used in lightning arresters, etc., and a method for manufacturing the same. The present invention relates to a nonlinear resistor in which the form of a cobalt raw material added as a subcomponent is improved, and a method for manufacturing the same.

(従来の技術) 電力系統において発生する異常電圧を抑制し、電力系統
を保護するために避雷器が用いられる。
(Prior Art) Lightning arresters are used to protect the power system by suppressing abnormal voltages generated in the power system.

避雷器には正常な電圧では絶縁特性を示し、異常電圧が
印加された時には低い抵抗値となる非直線抵抗体が用い
られる。非直線抵抗体は一般にはバリスタと呼ばれ、そ
の代表的なものとして酸化亜鉛を主成分としたものがあ
る。
Lightning arresters use nonlinear resistors that exhibit insulating properties at normal voltages and have a low resistance value when abnormal voltages are applied. A nonlinear resistor is generally called a varistor, and a typical example thereof is one whose main component is zinc oxide.

一般に、避雷器等に用いられる金属酸化物からなる非直
線抵抗体は、酸化亜鉛(ZnO)を主成分として、Bi
、Sb、Co、Mn、Or、Ni。
In general, non-linear resistors made of metal oxides used in lightning arresters etc. mainly contain zinc oxide (ZnO) and Bi.
, Sb, Co, Mn, Or, Ni.

3i、Al1等の成分を含み、これらは原料の混合、造
粒成形を行い焼結し両端に電極を取付けて製造される。
It contains components such as 3i and Al1, and is manufactured by mixing raw materials, granulation molding, sintering, and attaching electrodes to both ends.

ざらに詳しく述べれば、酸化亜鉛と酸化物もしくは焼結
によって酸化物にかわるa1成分原料を水、有機バイン
ダとともに十分に混合したのちスプレードライヤー等で
造粒し、得られた造粒粉末は粗大粒子や二次凝集粒子を
取除き、金型にいれ、成形、焼結し、抵抗体内部に発生
するボイドやピンホールを排除し、サージ耐量や課電寿
命の低下を防止する製造方法が知られている。(特開昭
59−(発明が解決しようとする問題点) 近年の電力系統は送電コスト低減のための大容量化、高
電圧化が進みそれにともない避雷器も500 KV用が
実用化され、更には近い従来1000 KV(UHV)
用避雷器も計画されている。これらの避雷器に使用され
る非直線抵抗体は極めて大きなサージエネルギを処理す
る必要がおり非直線抵抗体ののアンバラスをまねき易い
等の特性上の問題から数枚に制限され必然的に非直線抵
抗体の大容量化がはかられる。しかし厚みは避雷器の制
限電圧等によって制限されるため径を大きくする事にな
る。
To explain in more detail, zinc oxide and the oxide or the a1 component raw material that will replace the oxide through sintering are thoroughly mixed with water and an organic binder, and then granulated with a spray dryer etc., and the resulting granulated powder is made of coarse particles. A manufacturing method is known that removes secondary agglomerated particles, places them in a mold, forms them, and sinters them to eliminate voids and pinholes that occur inside the resistor, thereby preventing a decrease in surge resistance and energized life. ing. (Unexamined Japanese Patent Publication No. 1983-(Problems to be Solved by the Invention)) In recent years, electric power systems have become larger in capacity and higher in voltage in order to reduce transmission costs, and as a result, lightning arresters for 500 KV have been put into practical use. Near conventional 1000 KV (UHV)
Lightning arresters are also planned. The non-linear resistors used in these lightning arresters must handle extremely large surge energy, and due to characteristic problems such as the tendency to cause imbalance in the non-linear resistors, the number of non-linear resistors is limited to a few, and the number of non-linear resistors is inevitably reduced. The capacity of the body can be increased. However, since the thickness is limited by the limiting voltage of the lightning arrester, etc., the diameter must be increased.

この様にして500 KV、 100OKV用非直線抵
抗体1個の形状は径が100〜120m厚みは焼結時の
変形および経済性から20〜45 mにもなる。こうし
た非直線抵抗体は焼結が難しくしばしば放熱耐地特性の
バラツキ、悪化となってあられれ安定した製造方法が望
まれていた。
In this way, the shape of one nonlinear resistor for 500 KV and 100 OKV has a diameter of 100 to 120 m and a thickness of 20 to 45 m due to deformation during sintering and economic efficiency. Such non-linear resistors are difficult to sinter and often lead to variations in heat dissipation and resistance properties, resulting in deterioration, and a stable manufacturing method has been desired.

本発明は上記の点に鑑みなされたもので、上記の欠点と
深く関わりがある焼結時の安定性をはかり放電耐量特性
を向上させた非直線抵抗体及びその製造方法を提供する
ことを目的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a non-linear resistor and a method for manufacturing the same, which improves stability during sintering and improves discharge withstand characteristics, which are closely related to the above-mentioned drawbacks. shall be.

(発明の構成) (問題点を解決するための手段) 上記目的を達成するために、本発明製造方法においてコ
バルト原料は、四・三酸化コバルト(CO304)であ
り、かつ、あらかじめ窒化ホウ素(BN)を用いて湿式
混合した原料を用いることを特徴とする。
(Structure of the Invention) (Means for Solving the Problems) In order to achieve the above object, in the production method of the present invention, the cobalt raw material is cobalt tetraoxide (CO304), and boron nitride (BN) is used in advance. ) is characterized in that it uses wet-mixed raw materials.

(作 用) コバルト原料は四・三酸化コバルト(CO304)であ
り、あらかじめBNとともに湿式混合した原料を用いた
本発明によればコバルト原料は二次凝集粒子が少なく分
散性が良好であるため、混合時に四・三酸化コバルトは
酸化亜鉛(ZnO)に均一に分力散し、ざらにCO3O
4は焼結過程ではCoOとOに分解することから焼結素
体内に酸素を十分かつ均一に供給することができる。し
たがって、素体内は酸化性雰囲気となり非直線抵抗体に
とって望ましい条件を作りだし正常な反応が進行する。
(Function) The cobalt raw material is cobalt tetra/trioxide (CO304), and according to the present invention, which uses a raw material that has been wet-mixed with BN in advance, the cobalt raw material has few secondary agglomerated particles and has good dispersibility. During mixing, cobalt tetraoxide and trioxide are dispersed uniformly into zinc oxide (ZnO), and CO3O is roughly dispersed.
Since 4 decomposes into CoO and O during the sintering process, oxygen can be supplied sufficiently and uniformly into the sintered body. Therefore, the inside of the element becomes an oxidizing atmosphere, creating conditions desirable for the nonlinear resistor, and normal reactions proceed.

この結果、素体内のバラツキが少なく放電耐」特性の向
上した素子の製造方法を提供することができる。
As a result, it is possible to provide a method for manufacturing an element with less variation within the element and improved discharge resistance characteristics.

(実施例) 以下、本発明の一実施例に係る非直線抵抗体及びその製
造方法について説明する。
(Example) Hereinafter, a non-linear resistor and a method for manufacturing the same according to an example of the present invention will be described.

酸化ビスマス(BtzO3)、四・三酸化コバルト(C
0304)、二酸化マンガン(81102>、酸化クロ
ム(Cr02)、二酸化ケイ素(Si02)を各々0.
511101%、酸化アンチモン(SbzOs)、酸化
ニッケル(Nip)を各々’l  mo1%、酸化アル
ミニウム(AgzOs)を0.0025 wt%とし、
残りを酸化亜鉛とし正確に秤量する。
Bismuth oxide (BtzO3), cobalt tetraoxide (C
0304), manganese dioxide (81102>), chromium oxide (Cr02), and silicon dioxide (Si02), respectively.
511101%, antimony oxide (SbzOs), nickel oxide (NIP) each at 1 mo1%, aluminum oxide (AgzOs) at 0.0025 wt%,
Accurately weigh the remainder as zinc oxide.

次に、四・三酸化コバルトにたとえばCO3O4量の1
00 ppmの窒化ホウ素(肺)を加え湿式で混合する
。その後、他の原料及び水、分散剤、バインダ、潤滑剤
等の有機バインダとともに分散、混合装置に入れ分散、
混合する。
Next, for example, 1 of the amount of CO3O4 is added to cobalt tetra/trioxide.
Add 00 ppm boron nitride (lung) and wet mix. After that, it is dispersed together with other raw materials and organic binders such as water, dispersant, binder, and lubricant, and then put into a mixing device and dispersed.
Mix.

次に混合物をスプレードライヤーで噴霧造粒する。これ
らの造粒粉を金形に入れ成形し添加した有機バインダ類
を除くため空気中で500℃で焼成し、ざらに1050
℃で側面に高抵抗層を形成させるため予備焼成する。
The mixture is then spray granulated using a spray dryer. These granulated powders were placed in a mold, molded, and fired in air at 500°C to remove the added organic binders.
Preliminary firing is performed at ℃ to form a high resistance layer on the side surface.

その後、高抵抗物を塗布し、空気中で1200’Cで焼
結し、両平面を研磨し、カラーコーティングを行い、カ
ラー焼成を行う。ざらに両平面にアルミニウムのメタリ
コン電極を付けて径100m、厚”2251I11の非
直線抵抗体を得た。
Thereafter, a high-resistance material is applied, sintered in air at 1200'C, both surfaces polished, color coated, and color fired. A non-linear resistor having a diameter of 100 m and a thickness of "2251I11" was obtained by attaching aluminum metallic electrodes on both flat surfaces.

上述のようにして完成した非直線抵抗体の放電耐愚の測
定を行った。第1図に結果を示す。放電耐量特性は2.
5mSの矩形波電流を用いて5回印加して耐えたエネル
ギーの値を示め分布図にした。
The discharge resistance of the nonlinear resistor completed as described above was measured. Figure 1 shows the results. The discharge withstand characteristics are 2.
Using a 5 mS rectangular wave current, the energy withstood after being applied five times was shown in a distribution diagram.

aは本発明により1100ppのBNで混合したCO3
O4を用いたものであり、比較のため未処理の四・三酸
化コバルト原料を用いたものをbに従来のコバルト原料
(Cod)を用いたものをCに示した。
a is CO3 mixed with 1100 pp BN according to the invention
For comparison, B shows a model using an untreated cobalt tetraoxide raw material, and C shows a model using a conventional cobalt raw material (Cod).

第2図はコバルト原料との混合に用いた窒化ホウ素の量
と200 J/ccの放電耐量特性での合格率との関係
を示す。この結果から窒化ホウ素と混合し、コバルト原
料の分散性を向上させることが放電耐量特性に大きくか
かわっていることがわかる。すなわち、CO3O4量に
対する窒化ホウ素の量が1100pp以上の窒化ホウ素
とともに、湿式で混合したCO304原料を用いること
により、放電耐量特性が良好となることを示している。
FIG. 2 shows the relationship between the amount of boron nitride used for mixing with the cobalt raw material and the pass rate in the discharge capacity characteristic of 200 J/cc. This result shows that improving the dispersibility of the cobalt raw material by mixing it with boron nitride has a large impact on the discharge withstand characteristics. That is, it is shown that by using a CO304 raw material wet-mixed with boron nitride in which the amount of boron nitride is 1100 pp or more relative to the amount of CO3O4, the discharge withstand characteristics can be improved.

これらの結果からBNとともに湿式で混合したco3o
4原料を用いることにより優れた放電耐量特性を有する
非直線抵抗体が得られることは明らかである。
From these results, co3o mixed wet with BN
It is clear that a nonlinear resistor having excellent discharge withstand characteristics can be obtained by using the four raw materials.

以上の様にコバルト原料として四・三酸化コバルト(C
O304)であり、かつあらかじめ窒化ホウ素(BN)
と湿式混合を行ったものを用いる事により、放電耐量特
性が向上した理由ははっきりしてはいないがCO3O4
は焼結過程においてco3o4→3 co。
As mentioned above, cobalt tetraoxide (C) is used as a cobalt raw material.
O304), and boron nitride (BN)
It is not clear why the discharge withstand characteristics were improved by wet mixing with CO3O4.
is co3o4→3co during the sintering process.

+0に変化することが知られている。この時放出される
酸素が非直線抵抗体の生成反応に好影響を与えているも
のと考えられる。非直線抵抗体にかかわらず酸化物系セ
ラミックスは空気中、もしくは空気士酸素による酸化性
雰囲気で焼結することが良好な特性を得る条件である事
が知られている。
It is known that it changes to +0. It is thought that the oxygen released at this time has a favorable effect on the reaction for producing the nonlinear resistor. Regardless of the non-linear resistor, it is known that sintering oxide ceramics in air or in an oxidizing atmosphere with atmospheric oxygen is a condition for obtaining good characteristics.

したがって焼結中、素体内部まで充分酸素が行きわたら
ないと正常な生成反応が阻害されて特性に悪影響をおよ
ぼす事がめった。ごのように非直線抵抗体自身から酸素
が供給されることはのぞましいことである。
Therefore, during sintering, if sufficient oxygen does not reach inside the element body, the normal production reaction is inhibited and the properties are rarely affected. It is desirable that oxygen be supplied from the nonlinear resistor itself, as shown in the figure.

焼結体の外からの酸素供給のみでは素体内部まで酸素が
十分にいきわたらない場合でも内部からの酸素供給によ
って酸素雰囲気が形成され内部まで正常な生成反応が進
行することにより構造的に欠陥のない均質な非直線抵抗
体が得られ、放電耐量特性が向上したと考えられる。
Even if oxygen is not sufficiently distributed to the inside of the sintered body only by supplying oxygen from outside the sintered body, an oxygen atmosphere is formed by supplying oxygen from the inside, and the normal production reaction progresses to the inside, causing structural defects. It is thought that a homogeneous non-linear resistor with no cracks was obtained, and the discharge withstand characteristics were improved.

更に、コバルト原料をあらかじめ窒化ホウ素(BN)と
湿式混合することにより良好な放電耐量特性を示した。
Furthermore, by wet-mixing the cobalt raw material with boron nitride (BN) in advance, good discharge withstand characteristics were exhibited.

コバルト原料は原料自体の凝集が強く二次凝集粒子が多
い。しかし、窒化ホウ素と湿式混合することにより二次
凝集粒子がこわれ、良好な分散状態を得ることができる
。その様子を図3に示した。図中、寺は窒化ホウ素と湿
式混合していないもの、eはコバルト原料に対しioo
 ppmの窒化ホウ素と湿式混合したもの、fは同じく
500 ppmの窒化ホウ素と湿式混合したコバルト原
料の粒度分布をそれぞれ示した。窒化ホウ素と湿式混合
することによりコバルト原料の分散状態が良好となって
いることは明らかである。この結果、コバルト原料と酸
化亜鉛(ZnO)との分散が良好となり、均質な粒成長
が行われ優れた放電耐量特性を得ることができると考え
られる。
The cobalt raw material itself has strong agglomeration and many secondary agglomerated particles. However, by wet mixing with boron nitride, the secondary agglomerated particles are broken and a good dispersion state can be obtained. The situation is shown in Figure 3. In the figure, temple is not wet mixed with boron nitride, and e is ioo for cobalt raw material.
f shows the particle size distribution of the cobalt raw material wet-mixed with 500 ppm of boron nitride, and f shows the particle size distribution of the cobalt raw material wet-mixed with 500 ppm of boron nitride. It is clear that wet mixing with boron nitride improves the dispersion state of the cobalt raw material. As a result, it is thought that the cobalt raw material and zinc oxide (ZnO) are well dispersed, uniform grain growth occurs, and excellent discharge withstand characteristics can be obtained.

尚、本実験例は非直線抵抗体の形状は100X″22 
rrmのものを示したが言損の小ざいものでも同じ効果
がある事を確認した。ざらに非直線抵抗体が大容量化し
た場合の効果は今まで述べてきた理由によって明らかで
ある。
In addition, in this experimental example, the shape of the non-linear resistor is 100X''22
Although I showed the one with rrm, I confirmed that the same effect can be obtained even with a small word. The effect of increasing the capacity of the nonlinear resistor is obvious for the reasons described above.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によればコバルト原
料として四・三酸化コバルト(CO304)でかつあら
かじめ窒化ホウ素(BN)とともに湿式混合を行った原
料を用いることにより混合時においてコバルト原料と酸
化亜鉛とを均質に分散させることができ、ざらに焼結過
程において素体内部からも酸素を供給できるため素体内
で均一で正常な生成反応が進行することができ、内部ま
で構造的に欠陥のない均質な焼結体を得ることができる
。その結果、放電耐量特性の極めて大きい非直線抵抗体
を経済的な製造方法で提供することができる。
As explained in detail above, according to the present invention, cobalt tetraoxide (CO304) is used as a cobalt raw material, and by wet-mixing it with boron nitride (BN) in advance, the cobalt raw material and oxidized Zinc can be homogeneously dispersed, and oxygen can be supplied from inside the element body during the sintering process, so that the formation reaction can proceed uniformly and normally within the element body, and there are no structural defects even inside the element body. A homogeneous sintered body can be obtained. As a result, it is possible to provide a nonlinear resistor with extremely high discharge withstand characteristics using an economical manufacturing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非直線抵抗体製造方法の実施例と従来
例との放電耐量特性の比較を示す図、第2図はコバルト
原料と混合した窒化ホウ素の量と放電耐量試験での合格
率との関係を示す図、第3図はコバルト原料と混合した
窒化ホウ素の巳によるコバルト原料の粒度分布の比較を
示す図である。
Figure 1 is a diagram showing a comparison of discharge withstand characteristics between an embodiment of the non-linear resistor manufacturing method of the present invention and a conventional example, and Figure 2 is a diagram showing the amount of boron nitride mixed with the cobalt raw material and the passing of the discharge withstand test. FIG. 3 is a diagram showing a comparison of the particle size distribution of the cobalt raw material according to the size of boron nitride mixed with the cobalt raw material.

Claims (2)

【特許請求の範囲】[Claims] (1)酸化亜鉛を主成分とし、副成分としてコバルトを
含む非直線抵抗体において、前記コバルトは窒化ホウ素
と湿式混合した四・三酸化コバルトとした非直線抵抗体
(1) A nonlinear resistor containing zinc oxide as a main component and cobalt as a subcomponent, wherein the cobalt is cobalt tetraoxide and trioxide wet mixed with boron nitride.
(2)酸化亜鉛を主成分とし、副成分としてコバルトを
添加する非直線抵抗体の製造方法において、前記コバル
トは四・三酸化コバルトを用い予め窒化ホウ素と湿式混
合したことを特徴とする非直線抵抗体の製造方法。
(2) A method for manufacturing a non-linear resistor in which zinc oxide is the main component and cobalt is added as a sub-component, wherein the cobalt is wet-mixed with boron nitride in advance using cobalt tetra-trioxide. Method of manufacturing a resistor.
JP61279724A 1986-11-26 1986-11-26 Nonlinear resistor and manufacture of the same Pending JPS63133502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61279724A JPS63133502A (en) 1986-11-26 1986-11-26 Nonlinear resistor and manufacture of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61279724A JPS63133502A (en) 1986-11-26 1986-11-26 Nonlinear resistor and manufacture of the same

Publications (1)

Publication Number Publication Date
JPS63133502A true JPS63133502A (en) 1988-06-06

Family

ID=17614994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61279724A Pending JPS63133502A (en) 1986-11-26 1986-11-26 Nonlinear resistor and manufacture of the same

Country Status (1)

Country Link
JP (1) JPS63133502A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106548840A (en) * 2015-09-18 2017-03-29 华中科技大学 A kind of lamination sheet type zno varistor and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106548840A (en) * 2015-09-18 2017-03-29 华中科技大学 A kind of lamination sheet type zno varistor and preparation method thereof

Similar Documents

Publication Publication Date Title
US5225111A (en) Voltage non-linear resistor and method of producing the same
JPS63133502A (en) Nonlinear resistor and manufacture of the same
JPS63117402A (en) Manufacture of nonlinear resistor
JP2001233668A (en) Voltage nonlinear resistor and lightning arrester using the same
JP3323701B2 (en) Method for producing zinc oxide based porcelain composition
JPS605062A (en) Manufacture of zinc oxide varistor
JP3256366B2 (en) Method of manufacturing voltage non-linear resistor
JP2522522B2 (en) Non-linear resistor manufacturing method
JPH01319905A (en) Manufacture of nonlinear resistor
JPH0128481B2 (en)
WO2019146065A1 (en) Material for current-voltage non-linear resistors, and current-voltage non-linear resistor and method for manufacturing same
CA1182278A (en) Varistor with tetragonal antimony zinc oxide additive
JP2943367B2 (en) Method of manufacturing voltage non-linear resistor
CN117497267A (en) Zinc oxide high-gradient nonlinear resistor and preparation method thereof
JPS62269301A (en) Manufacture of nonlinear resistance element
JPH01290204A (en) Manufacture of nonlinear resistor
JPS63132401A (en) Manufacture of voltage nonlinear resistor
JPS62159402A (en) Manufacture of nonlinear resistor
JPH0630283B2 (en) Non-linear resistor manufacturing method
JPS6322602B2 (en)
JPH01309302A (en) Manufacture of nonlinear resistor
JPS58188101A (en) Method of producing nonlinear resistor
JPH08124717A (en) Nonlinear resistor
JP2001093705A (en) Nonlinear resistor and method for manufacture thereof
JPH08203708A (en) Nonlinear resistor