JPH04372133A - Semiconductor integrated circuit and manufacture thereof - Google Patents

Semiconductor integrated circuit and manufacture thereof

Info

Publication number
JPH04372133A
JPH04372133A JP14907991A JP14907991A JPH04372133A JP H04372133 A JPH04372133 A JP H04372133A JP 14907991 A JP14907991 A JP 14907991A JP 14907991 A JP14907991 A JP 14907991A JP H04372133 A JPH04372133 A JP H04372133A
Authority
JP
Japan
Prior art keywords
wiring
interconnection
metal layer
film
large current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14907991A
Other languages
Japanese (ja)
Inventor
Akira Tamakoshi
晃 玉越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14907991A priority Critical patent/JPH04372133A/en
Publication of JPH04372133A publication Critical patent/JPH04372133A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To increase the packing density of a semiconductor device by providing an interconnection for small current and a thick interconnection for large current on the same layer so that the interconnection for large current may be narrowed to reduce the area of interconnections. CONSTITUTION:A first interconnection 6 for small current is formed on an insulating film 2 over a semiconductor substrate 1. A second interconnection 7 for large current, thicker than the first interconnection, is formed on the same layer as the first interconnection. For example, a first PR film 4 is applied over an aluminum layer 3, and it is patterned into a mask to be used to form the interconnection for large current. The mask is used to anisotropically etch the upper part of the aluminum layer 3. As a result, the aluminum layer is thinned selectively. Then, a second PR film is applied and patterned into a mask to be used to form the interconnection for signal interconnection on the thin part of the aluminum layer 3. The aluminum layer 3 is subjected to anisotropic etching with the PR films 4 and 5 used as masks to form the first and second interconnections 6 and 7.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体集積回路及びその
製造方法に関し、特に配線及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor integrated circuit and a method of manufacturing the same, and more particularly to wiring and a method of manufacturing the same.

【0002】0002

【従来の技術】従来の半導体集積回路は、図2(a),
(b)に示すように、P型シリコン基板1に設けたN型
ウェル9にPチャネルMOSFETを形成し、P型シリ
コン基板1にNチャネルMOSFETを形成して電源V
ccとGND配線8及び入力と出力配線6に接続しCM
OSインバータ回路を構成している。
[Prior Art] A conventional semiconductor integrated circuit is shown in FIG.
As shown in (b), a P-channel MOSFET is formed in the N-type well 9 provided in the P-type silicon substrate 1, and an N-channel MOSFET is formed in the P-type silicon substrate 1, and the power source V
Connect to cc and GND wiring 8 and input and output wiring 6 and connect CM
It constitutes an OS inverter circuit.

【0003】0003

【発明が解決しようとする課題】この従来の半導体集積
回路では、電力供給源となるVcc配線やGND配線は
、通常配線幅を広く(40μm以上)にして、ノイズに
対して強いレイアウト構成にしなければならない。一方
、信号配線は太くしすぎると、配線容量が増大し、スイ
ッチング速度の遅れの原因となり、また、レイアウト面
積を増大させる原因にもなるため、配線抵抗またはマイ
グレーションの許容範囲内で、最小配線幅にしておくの
が望ましい。
[Problems to be Solved by the Invention] In this conventional semiconductor integrated circuit, the Vcc wiring and GND wiring, which serve as power supply sources, usually have a wide wiring width (40 μm or more) and have a layout configuration that is resistant to noise. Must be. On the other hand, if the signal wiring is too thick, the wiring capacitance will increase, causing a delay in switching speed, and will also cause an increase in the layout area. It is preferable to leave it as

【0004】最近のLSIの大規模化にともない微細加
工技術が進み、マイグレーション強化策としてアルミ配
線へのCu添加などの技術が可能になってくると信号配
線は増々細く、また、配線膜厚も薄膜化が進む方向にあ
るのに対し、VccやGND配線は、その能力を維持さ
せる必要性から細くさせることが出来ず、逆に太く設計
させなければならない場合も生じており、縮小化を妨げ
る大きな一因になっている。
With the recent increase in the scale of LSIs, microfabrication technology has progressed, and as technology such as adding Cu to aluminum wiring becomes possible as a measure to enhance migration, signal wiring becomes thinner and thinner, and wiring film thickness also increases. While the trend is towards thinner films, Vcc and GND wiring cannot be made thinner due to the need to maintain their performance, and on the contrary, there are cases where they have to be designed thicker, which hinders downsizing. This is a major contributing factor.

【0005】[0005]

【課題を解決するための手段】本発明の半導体集積回路
は、半導体基板上に設けた絶縁膜上に配置して設けた小
電流用の第1の配線と、前記第1の配線と同一層に配置
して設け且つ前記第1の配線より厚い膜厚を有する大電
流用の第2の配線とを備えている。
[Means for Solving the Problems] A semiconductor integrated circuit of the present invention includes a first wiring for small current disposed on an insulating film provided on a semiconductor substrate, and a layer in the same layer as the first wiring. and a second wiring for large current, which is disposed in the second wiring and has a thicker film thickness than the first wiring.

【0006】本発明の半導体集積回路の製造方法は、半
導体基板上に設けた絶縁膜上に金属層を堆積する工程と
、前記金属層の上にパターニングして設けた第1のフォ
トレジスト膜を設ける工程と、前記第1のフォトレジス
ト膜をマスクとして前記金属層の上部を異方性エッチン
グし前記金属層の膜厚を薄くする工程と、前記第1のフ
ォトレジスト膜を熱処理して硬化させた後前記第1のフ
ォトレジスト膜を含む表面に第2のフォトレジスト膜を
塗布してパターニングし前記金属層の膜厚の薄い領域上
に配線形成用のパターンを形成する工程と、前記第1及
び第2のフォトレジスト膜をマスクとして前記金属層を
異方性エッチングし膜厚の薄い小電流用の第1の配線及
び膜厚の厚い大電流用の第2の配線を同時に形成する工
程とを含んで構成される。
The method for manufacturing a semiconductor integrated circuit of the present invention includes the steps of depositing a metal layer on an insulating film provided on a semiconductor substrate, and depositing a first photoresist film patterned on the metal layer. a step of anisotropically etching the upper part of the metal layer using the first photoresist film as a mask to reduce the thickness of the metal layer; and heating and hardening the first photoresist film. After that, applying a second photoresist film to the surface including the first photoresist film and patterning it to form a pattern for forming wiring on a thin region of the metal layer; and a step of anisotropically etching the metal layer using a second photoresist film as a mask to simultaneously form a thin first wiring for small current and a thick second wiring for large current. It consists of:

【0007】[0007]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0008】図1(a)〜(e)は本発明の一実施例の
製造方法を説明するための工程順に示した半導体チップ
の断面図である。
FIGS. 1A to 1E are cross-sectional views of a semiconductor chip shown in order of steps for explaining a manufacturing method according to an embodiment of the present invention.

【0009】まず図1(a)に示すように、P型のシリ
コン基板1の上に形成された層間絶縁膜2の上にスパッ
タ法によりアルミニウム層3を2〜3μmの厚さに堆積
して設け、アルミニウム層3の上に第1のフォトレジス
ト膜(以下PR膜と記す)4を塗布してパターニングし
、電源又は接地線等の大電流配線形成用のパターンを形
成する。
First, as shown in FIG. 1(a), an aluminum layer 3 is deposited to a thickness of 2 to 3 μm by sputtering on an interlayer insulating film 2 formed on a P-type silicon substrate 1. A first photoresist film (hereinafter referred to as PR film) 4 is coated on the aluminum layer 3 and patterned to form a pattern for forming large current wiring such as a power supply or ground line.

【0010】次に、図1(b)に示すように、PR膜4
をマスクとしてアルミニウム層3の上部を異方性エッチ
ングし、アルミニウム層3の膜厚を1μm程度に薄くす
る。次に、焼きしめを行い、PR膜4を硬化させる。
Next, as shown in FIG. 1(b), the PR film 4
Using this as a mask, the upper part of the aluminum layer 3 is anisotropically etched to reduce the thickness of the aluminum layer 3 to about 1 μm. Next, baking is performed to harden the PR film 4.

【0011】次に、図1(c)に示すように、PR膜4
を含む表面に第2のPR膜5を塗布する。
Next, as shown in FIG. 1(c), the PR film 4
A second PR film 5 is applied to the surface including the.

【0012】次に、図1(d)に示すように、信号配線
形成用パターンのレチクルを用いて露光し、現像してア
ルミニウム層3の膜厚の薄い領域上に信号配線形成用の
パターンを形成する。ここで、PR膜4は焼きしめられ
ているため通常の現像方法では剥離されないで残る。
Next, as shown in FIG. 1(d), a signal wiring pattern is formed on the thin area of the aluminum layer 3 by exposure using a reticle with a signal wiring pattern and development. Form. Here, since the PR film 4 is baked, it remains without being peeled off by a normal developing method.

【0013】次に、図1(e)に示すように、PR膜4
,5をマスクとしてアルミニウム層3を異方性エッチン
グした後プラズマ法によりPR膜4,5を剥離して小電
流用の幅が狭く膜厚の薄い第1の配線6と、大電流用の
幅が広く膜厚の厚い第2の配線7の夫々を形成する。
Next, as shown in FIG. 1(e), the PR film 4
, 5 as a mask, and then the PR films 4 and 5 are peeled off using a plasma method to form a narrow first wiring 6 for small current and a thin first wiring 6 for large current. Each of the second wirings 7 having a wide width and a thick film thickness is formed.

【0014】上記実施例において、配線6どうしの間隔
は、従来通りの間隔である約1μmを満していればよい
が、配線6と、配線7との間隔が第1と第2のPR膜4
,5の目合せマージン及び配線7の端部でPR膜5の膜
厚差が生じることを考慮して間隔を広げなければならな
い(約4〜5μm程度)が配線幅の縮小化の効果の方が
大きく、レイアウト面積の縮小化を妨げることはない。
In the above embodiment, the spacing between the interconnections 6 should satisfy the conventional spacing of about 1 μm, but the spacing between the interconnections 6 and 7 is different from that between the first and second PR films. 4
, 5 and the difference in the film thickness of the PR film 5 at the end of the wiring 7, it is necessary to widen the interval (approximately 4 to 5 μm), but the effect of reducing the wiring width is greater. is large and does not hinder the reduction of the layout area.

【0015】[0015]

【発明の効果】以上説明したように、本発明は、膜厚の
薄い小電流用の第1の配線と、膜厚の厚い大電流用の第
2の配線とを同一層に設けることにより、従来の大面積
を占有していた大電流用の配線の幅を縮小して配線の占
有面積を縮減し、集積度を向上させることができるとい
う効果を有する。
As explained above, the present invention provides a thin first wiring for small current and a thick second wiring for large current in the same layer. This has the effect of reducing the width of the large current wiring, which occupies a large area in the past, thereby reducing the area occupied by the wiring and improving the degree of integration.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の製造方法を説明するための
工程順に示した半導体チップの断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip shown in order of steps for explaining a manufacturing method according to an embodiment of the present invention.

【図2】従来の半導体集積回路の一例を示すレイアウト
図及びA−A′線断面拡大図。
FIG. 2 is a layout diagram and an enlarged cross-sectional view taken along line A-A' showing an example of a conventional semiconductor integrated circuit.

【符号の説明】[Explanation of symbols]

1    P型シリコン基板 2    層間絶縁膜 3    アルミニウム層 4,5    PR膜 6,7,8    配線 9    N型ウェル 1 P-type silicon substrate 2 Interlayer insulation film 3 Aluminum layer 4,5 PR film 6,7,8 Wiring 9 N type well

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上に設けた絶縁膜上に配置
して設けた小電流用の第1の配線と、前記第1の配線と
同一層に配置して設け且つ前記第1の配線より厚い膜厚
を有する大電流用の第2の配線とを備えたことを特徴と
する半導体集積回路。
1. A first wiring for small current disposed on an insulating film provided on a semiconductor substrate, and a first wiring disposed on the same layer as the first wiring and further from the first wiring. 1. A semiconductor integrated circuit comprising: a second wiring for large current having a thick film thickness.
【請求項2】  第2の配線が電源配線又は接地配線で
ある請求項1記載の半導体集積回路。
2. The semiconductor integrated circuit according to claim 1, wherein the second wiring is a power supply wiring or a ground wiring.
【請求項3】  半導体基板上に設けた絶縁膜上に金属
層を堆積する工程と、前記金属層の上にパターニングし
て設けた第1のフォトレジスト膜を設ける工程と、前記
第1のフォトレジスト膜をマスクとして前記金属層の上
部を異方性エッチングし前記金属層の膜厚を薄くする工
程と、前記第1のフォトレジスト膜を熱処理して硬化さ
せた後前記第1のフォトレジスト膜を含む表面に第2の
フォトレジスト膜を塗布してパターニングし前記金属層
の膜厚の薄い領域上に配線形成用のパターンを形成する
工程と、前記第1及び第2のフォトレジスト膜をマスク
として前記金属層を異方性エッチングし膜厚の薄い小電
流用の第1の配線及び膜厚の厚い大電流用の第2の配線
を同時に形成する工程とを含むことを特徴とする半導体
集積回路の製造方法。
3. Depositing a metal layer on an insulating film provided on a semiconductor substrate; providing a first photoresist film patterned on the metal layer; a step of anisotropically etching the upper part of the metal layer using a resist film as a mask to reduce the thickness of the metal layer, and heating the first photoresist film to harden it, and then curing the first photoresist film. a step of applying and patterning a second photoresist film on a surface including the metal layer to form a pattern for forming wiring on a thin region of the metal layer; and masking the first and second photoresist films. a step of anisotropically etching the metal layer to simultaneously form a thin first wiring for small current and a thick second wiring for large current. Method of manufacturing circuits.
JP14907991A 1991-06-21 1991-06-21 Semiconductor integrated circuit and manufacture thereof Pending JPH04372133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14907991A JPH04372133A (en) 1991-06-21 1991-06-21 Semiconductor integrated circuit and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14907991A JPH04372133A (en) 1991-06-21 1991-06-21 Semiconductor integrated circuit and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04372133A true JPH04372133A (en) 1992-12-25

Family

ID=15467237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14907991A Pending JPH04372133A (en) 1991-06-21 1991-06-21 Semiconductor integrated circuit and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04372133A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543358A (en) * 1993-12-03 1996-08-06 Sgs-Thomson Microelectronics S.A. Method for forming thin and thick metal layers
US6822334B2 (en) 2000-05-30 2004-11-23 Renesas Technology Corp. Semiconductor device having a layered wiring structure with hard mask covering

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5543358A (en) * 1993-12-03 1996-08-06 Sgs-Thomson Microelectronics S.A. Method for forming thin and thick metal layers
US6822334B2 (en) 2000-05-30 2004-11-23 Renesas Technology Corp. Semiconductor device having a layered wiring structure with hard mask covering

Similar Documents

Publication Publication Date Title
KR100190365B1 (en) Semiconductor device manufacturing of photomask & forming method thereof
JPH04372133A (en) Semiconductor integrated circuit and manufacture thereof
JPH08279488A (en) Fabrication of semiconductor device
JPS59205735A (en) Manufacture of semiconductor device
JP2809274B2 (en) Method for manufacturing semiconductor device
JP2000077414A (en) Manufacture of semiconductor device
JPH02262338A (en) Manufacture of semiconductor device
JPH0427125A (en) Method of producing wiring member
JP2887370B2 (en) Method for manufacturing semiconductor device
JPH0237707A (en) Manufacture of semiconductor device
JPH0123944B2 (en)
JPH04101447A (en) Manufacture of multilayer interconnection semiconductor integrated circuit
JPS5984444A (en) Pattern formation
JP2538048B2 (en) Method for manufacturing semiconductor device
JPS63160224A (en) Manufacture of semiconductor device
JPH02128449A (en) Manufacture of semiconductor device
JPH0595048A (en) Manufacture of semiconductor integrated circuit device
JPS5843520A (en) Semiconductor device
JPS62281328A (en) Manufacture of semiconductor device
JPS62243341A (en) Manufacture of semiconductor device
JPH05121561A (en) Manufacture of semiconductor device
JPH05243221A (en) Semiconductor integrated circuit device
JPS58178538A (en) Manufacture of semiconductor device
JPH05183060A (en) Semiconductor integrated circuit
JPH0669347A (en) Manufacture of semiconductor device