JPH04371393A - Detection of packing ratio of flux in welding wire including flux - Google Patents

Detection of packing ratio of flux in welding wire including flux

Info

Publication number
JPH04371393A
JPH04371393A JP17174391A JP17174391A JPH04371393A JP H04371393 A JPH04371393 A JP H04371393A JP 17174391 A JP17174391 A JP 17174391A JP 17174391 A JP17174391 A JP 17174391A JP H04371393 A JPH04371393 A JP H04371393A
Authority
JP
Japan
Prior art keywords
flux
welding wire
displacement sensor
filling rate
packing ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17174391A
Other languages
Japanese (ja)
Other versions
JP2607772B2 (en
Inventor
Kanji Mogi
茂木勘司
Tomoyuki Tachibana
立花知之
Takao Shimazaki
島崎孝男
Yoshihisa Kawaguchi
川口義久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3171743A priority Critical patent/JP2607772B2/en
Publication of JPH04371393A publication Critical patent/JPH04371393A/en
Application granted granted Critical
Publication of JP2607772B2 publication Critical patent/JP2607772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement for long time under intense resistance to contamination of mesureing instrument and to detect packing ratio of flux in a welding wire including flux at high accuracy. CONSTITUTION:In the method for detecting the packing ratio of flux in manufacturing process for the welding wire including the flux, recessed groove having almost a fixed shape is formed while running a strip steel 1 in the length direction, and after packing the flux 2 in this recessed groove, by using a displacement sensor 4 for detecting distance of the material to be measured with the position of reflecting light to continuously measure the packing height of flux in the recessed groove, the packing ratio of flux is detected. As the displacement sensor, laser beam type, etc., is used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はフラックス入り溶接ワイ
ヤにおけるフラックス充填率の検知方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a flux filling rate in a flux-cored welding wire.

【0002】0002

【従来の技術】フラックス入り溶接ワイヤ(以下、「複
合ワイヤ」という)は、例えば、図1に示す如く、鋼帯
(外皮)1を長手方向に走行させつつ断面半円状(又は
コ字状)の凹溝を形成し、該凹溝にフラックス2を充填
した後、凹溝を更に丸めてから伸線して所定線径に形成
している。
[Prior Art] Flux-cored welding wire (hereinafter referred to as "composite wire") is manufactured by, for example, as shown in FIG. ) is formed, and after filling the groove with flux 2, the groove is further rounded and wire drawn to form a predetermined wire diameter.

【0003】ところが、複合ワイヤの上記成形過程にお
いて、伸線装置のワイヤ引取機構或いはフラックス供給
装置のフラックス供給部に不都合が生じて、フラックス
2の充填率(複合ワイヤの単位長さ重量に対するフラッ
クス重量比)が変化するような場合がある。そのため、
従来では、形成された1ロットの複合ワイヤから一定長
さのサンプルを切り出し、当該サンプルの全重量を測定
した後、溶接ワイヤの合わせ面3を開き、包み込まれた
フラックス2を取り除いて。外皮1のみの重量を測定す
る。そして求められた各重量を次式に従って計算して、
フラックス充填率(%)を算出している。
However, during the above-mentioned forming process of the composite wire, a problem occurred in the wire take-up mechanism of the wire drawing device or the flux supply section of the flux supply device, and the filling rate of flux 2 (flux weight per unit length weight of the composite wire) ratio) may change. Therefore,
Conventionally, a sample of a certain length is cut out from one lot of composite wire that has been formed, and after measuring the total weight of the sample, the mating surface 3 of the welding wire is opened and the wrapped flux 2 is removed. Measure the weight of only the outer skin 1. Then, calculate each weight obtained according to the following formula,
The flux filling rate (%) is calculated.

【0004】フラックス充填率(%)={(サンプルの
複合ワイヤ全重量−外皮重量)/(サンプルの複合ワイ
ヤ全重量)}×100
[0004] Flux filling rate (%) = {(total weight of composite wire in sample - weight of outer skin)/(total weight of composite wire in sample)}×100

【0005】しかし、上記抜取り破壊検査法では、製造
工程のバラツキに対処できず、十分な品質管理が行なえ
ているとはいい難い。また、上記の破壊検査法では、製
造完了後の製品についての事後検査か、或いは製造ライ
ンを一旦停止して中間検査を行なうが、前者では応答が
遅いので、最悪の場合製品全体の廃棄を余儀なくされる
し、後者の方法では稼働率が低下するばかりでなく、再
開後の条件変動によって、新たな不良品を発生させるこ
ともある。
However, the sampling destructive inspection method described above cannot deal with variations in the manufacturing process, and it cannot be said that sufficient quality control is achieved. In addition, with the above destructive inspection method, a post-inspection is performed on the product after manufacturing is completed, or an intermediate inspection is performed by temporarily stopping the production line, but in the former case, the response is slow, so in the worst case, the entire product may have to be discarded. However, the latter method not only reduces the operating rate but also may result in new defective products due to changes in conditions after restarting.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明者等は
、鋼帯に供給されるフラックス充填率を製造工程中に連
続して全長測定できる方法について研究したところ、フ
ラックス充填位置での鋼帯走行速度並びに当該位置にお
けるフラックス供給量が一定であれば、凹溝内における
フラックス載置厚さ、すなわち、フラックスの充填高さ
が、一定になることに想到した。また、断面半円溝の場
合における充填高さがほぼ中央であるとき或いは断面コ
字形溝のときは、フラックスレベルとフラックス充填率
の間には1次函数的な比例関係があると考えた。そして
、本発明者等は、充填高さの変化を検知すれば、フラッ
クス充填率が判り、これにより鋼帯の走行速度若しくは
フラックス供給量の異常が検知でき、製品の品質均一化
に寄与できるとの知見に基づいて更に検討を重ねた結果
、先に特公昭61−50717号にて新規なフラックス
充填検知方法を提案した。
[Problems to be Solved by the Invention] Therefore, the present inventors researched a method that can continuously measure the entire length of the flux filling rate supplied to the steel strip during the manufacturing process, and found that the flux filling rate of the steel strip at the flux filling position We have come up with the idea that if the running speed and the amount of flux supplied at the position are constant, the thickness of the flux placed in the groove, that is, the filling height of the flux, will be constant. Further, it was considered that when the filling height is approximately at the center in the case of a semicircular groove in cross section, or in the case of a U-shaped groove in cross section, there is a linear proportional relationship between the flux level and the flux filling rate. The inventors believe that by detecting changes in the filling height, the flux filling rate can be determined, which can detect abnormalities in the running speed of the steel strip or the amount of flux supplied, contributing to uniform product quality. As a result of further studies based on this knowledge, we previously proposed a new flux filling detection method in Japanese Patent Publication No. 50717/1983.

【0007】この特公昭61−50717号に係る方法
は、フラックス入り溶接ワイヤの製造工程中でフラック
ス充填率を検知する方法であって、帯状鋼材を長さ方向
に走行させつつほぼ一定形状の凹溝を形成し、該凹溝に
フラックスを充填した後、反射光量の強弱によって非測
定物との距離を検出する光電センサーを用い、該光電セ
ンサーの動作領域内における電圧出力極小値をとる距離
よりも近距離となるように光電センサーを充填フラック
スレベルに近接させ、該光電センサーで凹溝内における
フラックス充填高さを連続的に測定することによりフラ
ックスの充填率を検知することを特徴とする方法である
The method disclosed in Japanese Patent Publication No. 61-50717 is a method for detecting the flux filling rate during the manufacturing process of flux-cored welding wire, and is a method for detecting the flux filling rate during the manufacturing process of flux-cored welding wire. After forming a groove and filling the groove with flux, a photoelectric sensor is used to detect the distance to a non-measurable object based on the strength of the amount of reflected light. A method characterized in that the filling rate of the flux is detected by placing a photoelectric sensor close to the filling flux level so that it is at a short distance, and continuously measuring the height of the flux filling in the groove with the photoelectric sensor. It is.

【0008】しかしながら、この方法においては、光電
センサーを用いて反射光量の強弱を電圧に変換している
ため、フラックスの粉塵の飛散によるレンズ面及び受光
面の汚れにより投光能力及び受光感度が変化し、正常に
測定できる期間が短くなってしまう。また、汚れ程度を
検知し、補正するようなことも考えられるが、繁雑であ
り、また精度の面でも問題があった。
However, since this method uses a photoelectric sensor to convert the intensity of the amount of reflected light into voltage, the light emitting ability and light receiving sensitivity may change due to dirt on the lens surface and light receiving surface due to scattering of flux dust. However, the period during which normal measurements can be made becomes shorter. It is also possible to detect the degree of contamination and correct it, but this is complicated and has problems in terms of accuracy.

【0009】本発明は、このような問題点を解決するた
めになされたものであって、測定機器の汚れに対して強
く長期間の測定を可能にし且つ高精度にフラックス入り
溶接ワイヤのフラックス充填率を検知し得る方法を提供
することを目的とするものである。
[0009] The present invention has been made to solve these problems, and is capable of resisting dirt on measuring equipment, enabling long-term measurement, and highly accurate flux filling of flux-cored welding wire. The purpose of this invention is to provide a method by which the rate can be detected.

【0010】0010

【課題を解決するための手段】前記課題を解決するため
、本発明者は、レンズ等の測定機器の汚れに影響を受け
ない測定系について鋭意研究を重ねた結果、光電センサ
ーに変えてレーザー式等の変位センサーの使用により可
能であることを見い出し、ここに本発明をなしたもので
ある。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the inventor of the present invention has conducted intensive research into a measurement system that is not affected by dirt on measuring instruments such as lenses, and has developed a laser-based measurement system instead of a photoelectric sensor. We have discovered that this is possible by using a displacement sensor such as the above, and have hereby accomplished the present invention.

【0011】すなわち、本発明は、フラックス入り溶接
ワイヤの製造工程中でフラックス充填率を検知する方法
であって、帯状鋼材を長さ方向に走行させつつほぼ一定
形状の凹溝を形成し、該凹溝にフラックスを充填した後
、反射光の位置によって被測定物との距離を検出する変
位センサーを用い、該変位センサーで凹溝内におけるフ
ラックス充填高さを連続的に測定することにより、フラ
ックスの充填率を検知することを特徴とするフラックス
入り溶接ワイヤのフラックス充填率検知方法を要旨とす
るものである。
That is, the present invention is a method for detecting the flux filling rate during the manufacturing process of flux-cored welding wire, in which a concave groove of a substantially constant shape is formed while a steel strip is running in the length direction, and a concave groove of a substantially constant shape is formed. After filling the groove with flux, a displacement sensor that detects the distance to the object to be measured based on the position of reflected light is used to continuously measure the height of flux filling in the groove. The gist of the present invention is a method for detecting a flux filling rate of a flux-cored welding wire, which is characterized by detecting the filling rate of a flux-cored welding wire.

【0012】以下に本発明を図面を参照しつつ更に詳述
する。
The present invention will be explained in more detail below with reference to the drawings.

【実施例】【Example】

【0013】図2は本発明の検知方法で使用されるレー
ザ式等々の光学的変位センサーの配置例を示す斜視図で
、矢印方向に走行する外皮1に供給されたフラックス2
の充填高さ(フラックス載置レベル)を変位センサー4
で測定するように構成されている。なお、5は変位セン
サーの電源と出力表示とを兼ねたものである。
FIG. 2 is a perspective view showing an example of the arrangement of an optical displacement sensor such as a laser type used in the detection method of the present invention.
Displacement sensor 4 determines the filling height (flux placement level) of
It is configured to measure. Note that 5 serves as both a power source and an output display for the displacement sensor.

【0014】すなわち、変位センサー4によるレベル測
定は、図3にその原理を示すように、レーザ等の光源1
0から投光レンズ11を介して非測定物表面に投光した
光の反射光を受光レンズ12を介して光位置検出素子1
4に受光させて、反射光の位置の移動(図示の場合A´
、B´)によって生ずる電気信号を電圧に変換し、当該
反射光の位置を非測定物と変位センサー4との距離の変
化として検知し得るようにしたものである。
That is, level measurement by the displacement sensor 4 is performed using a light source 1 such as a laser, as shown in FIG.
The reflected light of the light projected from 0 to the surface of the non-measurement object through the light projection lens 11 is transmitted to the optical position detection element 1 through the light reception lens 12.
4, and move the position of the reflected light (A' in the case shown)
, B') is converted into a voltage, and the position of the reflected light can be detected as a change in the distance between the non-measurable object and the displacement sensor 4.

【0015】変位センサー4としては、■変位センサー
4の出力電圧と、■変位センサー4と非測定物間の距離
(動作距離)との間に、図4に示すような関係がある特
性のものを使用する。図5は、横軸(x)にフラックス
の充填高さ、縦軸(y)に出力電圧をとった場合、この
内実線で示される部分(C´点とD´点の間)はほぼy
=ax+bで示される1次函数の関係になるが、出力電
圧がC´点より大きくなったり、D´点より低い領域で
は正確な判定を下すことはできない。
The displacement sensor 4 has characteristics as shown in FIG. 4 between (1) the output voltage of the displacement sensor 4, and (2) the distance between the displacement sensor 4 and the non-measurable object (operating distance). use. In Fig. 5, when the horizontal axis (x) is the flux filling height and the vertical axis (y) is the output voltage, the portion shown by the solid line (between points C' and D') is approximately y
Although the relationship is a linear function represented by =ax+b, accurate determination cannot be made in a region where the output voltage is higher than point C' or lower than point D'.

【0016】なお、平坦な板面上との距離を測定するの
ではなく、粉体との距離を測定するのであるから、光の
乱反射等があって、測定誤差を生ずる要因があるが、実
験的に各種の定数を定めておけば、かなり高精度の測定
結果が得られることがわかった。
Note that since the distance to the powder is measured rather than the distance to a flat plate surface, there is diffuse reflection of light, which can cause measurement errors. It has been found that fairly accurate measurement results can be obtained if various constants are determined in advance.

【0017】すなわち、実際の製造ラインにおいて、上
記y=ax+bの線上にあるべき任意の(x1、y1)
点及び(x2、y2)点を実験的に求め、これによって
a、bの定数を決定した場合には、当該製造ラインにお
けるy=ax+bを正しい姿で設定できるから、測定精
度は極めて高いものとなる。例えば、y=ax+bの1
次函数において、変位センサーの出力電圧が1.2Vの
時のフラックス充填率が12.6%、出力電圧が1.6
Vの時のフラックス充填率が15.6%であったとする
と、これらの値から、a=7.5、b=3.5が得られ
、結局、上記1次函数式は、y=7.5x+3.5とな
る。こうして得られた1次函数を基準として、例えば図
6に示すような検定線を設定することができる。
That is, on the actual production line, any (x1, y1) that should be on the line y=ax+b above
If the constants a and b are determined by experimentally determining the point and (x2, y2) point, the measurement accuracy will be extremely high because y = ax + b can be set correctly on the production line. Become. For example, 1 of y=ax+b
In the following function, when the output voltage of the displacement sensor is 1.2V, the flux filling rate is 12.6%, and the output voltage is 1.6
Assuming that the flux filling rate at the time of V is 15.6%, a=7.5 and b=3.5 are obtained from these values, and the above linear function formula is finally y=7.5. It becomes 5x+3.5. Based on the linear function obtained in this way, a verification line as shown in FIG. 6, for example, can be set.

【0018】このように構成される本発明の検知方法を
実施するに当っては、検知スタートに先立って、まず最
適なフラックス充填率を計算によって求めると共に、フ
ラックス充填率の許容範囲を設定し、これら許容範囲の
上限及び下限を電気的パルスに変換した後、デジタル的
に記憶させる。
In carrying out the detection method of the present invention constructed as described above, before starting detection, the optimum flux filling rate is first determined by calculation, and the allowable range of the flux filling rate is set. The upper and lower limits of these tolerance ranges are converted into electrical pulses and then stored digitally.

【0019】次いで、検知用変位センサー4によるフラ
ックスレベルの検知を開始し、検知されたレベルが前記
許容範囲内にあるかどうかを比較しつつ成形を進めてい
く。そして、フラックスレベルが許容範囲を外れた場合
には警報を発し、成形の異常を知らせて適当な措置を講
ずる。
Next, the detection displacement sensor 4 starts detecting the flux level, and the molding is continued while comparing whether the detected level is within the above-mentioned allowable range. If the flux level is out of the allowable range, an alarm is issued to notify the molding abnormality and take appropriate measures.

【0020】[0020]

【発明の効果】本発明は、上述のように構成されている
ので、■成形された複合ワイヤを破壊することなく検査
できる、■製造工程中で連続的に全長検査することがで
きるので、不良品の発生が可及的に防止され、製品に対
する信頼度も極めて高い、■稼働率の低下や不良品の大
量発生を招かない等、従来技術と同様の効果が得られる
のは勿論のこと、更には、非測定物の距離を反射光の位
置の変化によって検知するので、受光面或いは投光面の
汚れによって光量が変化(低下)しても検出精度は殆ど
影響を受けることがなく、また補正等も不要で、常に精
度よくフラックス充填率を検知することができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to (1) inspect the formed composite wire without destroying it; and (2) to inspect the entire length continuously during the manufacturing process, thereby making it possible to It goes without saying that the same effects as conventional technology can be obtained, such as preventing the occurrence of non-defective products as much as possible, ensuring extremely high reliability of the product, and not causing a decrease in operating rates or the production of a large number of defective products. Furthermore, since the distance to the non-measurable object is detected by changes in the position of the reflected light, detection accuracy is hardly affected even if the light intensity changes (decreases) due to dirt on the light receiving surface or the light emitting surface. No correction is required, and the flux filling rate can always be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】フラックス入り溶接ワイヤの製造手順を説明す
る図である。
FIG. 1 is a diagram illustrating the manufacturing procedure of a flux-cored welding wire.

【図2】本発明の検知方法で使用される変位センサーの
配置例を示す斜視図である。
FIG. 2 is a perspective view showing an example of the arrangement of displacement sensors used in the detection method of the present invention.

【図3】変位センサーによるレベル測定の動作原理を説
明する図である。
FIG. 3 is a diagram illustrating the operating principle of level measurement using a displacement sensor.

【図4】変位センサー4の出力電圧と、変位センサー4
と非測定物間の距離(動作距離)との関係を示す図であ
る。
[Figure 4] Output voltage of displacement sensor 4 and displacement sensor 4
FIG. 3 is a diagram showing the relationship between the distance and the distance between non-measurable objects (operating distance).

【図5】フラックスの充填高さと変位センサーの出力電
圧の関係を示す図である。
FIG. 5 is a diagram showing the relationship between the filling height of flux and the output voltage of a displacement sensor.

【図6】フラックス充填率と変位センサーの出力電圧の
関係(検定線)を示す図である。
FIG. 6 is a diagram showing the relationship (verification line) between the flux filling rate and the output voltage of the displacement sensor.

【符号の説明】[Explanation of symbols]

1  鋼帯(外皮) 2  フラックス 3  合わせ目 4  変位センサー 10  光源 11  投光レンズ 12  受光レンズ 13  光位置検出素子 1 Steel strip (outer skin) 2 Flux 3 Seam 4 Displacement sensor 10 Light source 11 Flood lens 12 Light receiving lens 13 Optical position detection element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  フラックス入り溶接ワイヤの製造工程
中でフラックス充填率を検知する方法であって、帯状鋼
材を長さ方向に走行させつつほぼ一定形状の凹溝を形成
し、該凹溝にフラックスを充填した後、反射光の位置に
よって被測定物との距離を検出する変位センサーを用い
、該変位センサーで凹溝内におけるフラックス充填高さ
を連続的に測定することにより、フラックスの充填率を
検知することを特徴とするフラックス入り溶接ワイヤの
フラックス充填率検知方法。
1. A method for detecting flux filling rate during the manufacturing process of flux-cored welding wire, in which a concave groove of a substantially constant shape is formed while a strip-shaped steel material is running in the longitudinal direction, and flux is applied to the concave groove. After filling the groove, a displacement sensor that detects the distance to the object to be measured based on the position of the reflected light is used to continuously measure the flux filling height in the groove, thereby determining the flux filling rate. A method for detecting a flux filling rate of a flux-cored welding wire.
JP3171743A 1991-06-17 1991-06-17 Flux filling rate detection method for flux cored welding wire Expired - Lifetime JP2607772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171743A JP2607772B2 (en) 1991-06-17 1991-06-17 Flux filling rate detection method for flux cored welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171743A JP2607772B2 (en) 1991-06-17 1991-06-17 Flux filling rate detection method for flux cored welding wire

Publications (2)

Publication Number Publication Date
JPH04371393A true JPH04371393A (en) 1992-12-24
JP2607772B2 JP2607772B2 (en) 1997-05-07

Family

ID=15928867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171743A Expired - Lifetime JP2607772B2 (en) 1991-06-17 1991-06-17 Flux filling rate detection method for flux cored welding wire

Country Status (1)

Country Link
JP (1) JP2607772B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104648A (en) * 2009-11-20 2011-06-02 Kobe Steel Ltd Method for detecting abnormal condition in process of manufacturing flux cored welding wire
CN102601549A (en) * 2011-01-20 2012-07-25 株式会社神户制钢所 Apparatus, method and system for determining a filling ratio of flux, and computer readable storage medium for recording program of determining a filling ratio of flux
JP2012152777A (en) * 2011-01-25 2012-08-16 Kuramoto Tekkosho:Kk Apparatus for manufacturing composite wire for thermal spraying
CN112067545A (en) * 2020-10-09 2020-12-11 郑州机械研究所有限公司 Method and system for continuously detecting soldering flux by flux-cored wire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102403587B1 (en) * 2020-05-28 2022-05-30 정조우 리서치 인스티튜트 오브 머케니컬 엔지니어링 컴퍼니 리미티드 Controller, flux-cored wire fill rate detection method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108035A (en) * 1977-03-03 1978-09-20 Hitachi Shipbuilding Eng Co Detecting apparatus for molten metal surface position within mold in continuous casting installation
JPS6150717A (en) * 1984-08-21 1986-03-13 Oyo Jiki Kenkyusho:Kk Electrolytic discharging grindstone and electrolytic discharge machining method
JPS6482943A (en) * 1987-09-25 1989-03-28 Dainippon Ink & Chemicals Inspection of defect due to projection and recess on surface of plywood
JPH02144711U (en) * 1989-05-08 1990-12-07

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108035A (en) * 1977-03-03 1978-09-20 Hitachi Shipbuilding Eng Co Detecting apparatus for molten metal surface position within mold in continuous casting installation
JPS6150717A (en) * 1984-08-21 1986-03-13 Oyo Jiki Kenkyusho:Kk Electrolytic discharging grindstone and electrolytic discharge machining method
JPS6482943A (en) * 1987-09-25 1989-03-28 Dainippon Ink & Chemicals Inspection of defect due to projection and recess on surface of plywood
JPH02144711U (en) * 1989-05-08 1990-12-07

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011104648A (en) * 2009-11-20 2011-06-02 Kobe Steel Ltd Method for detecting abnormal condition in process of manufacturing flux cored welding wire
CN102601549A (en) * 2011-01-20 2012-07-25 株式会社神户制钢所 Apparatus, method and system for determining a filling ratio of flux, and computer readable storage medium for recording program of determining a filling ratio of flux
JP2012148330A (en) * 2011-01-20 2012-08-09 Kobe Steel Ltd Device, method, system, and program for determining flux filling rate
CN102601549B (en) * 2011-01-20 2014-10-01 株式会社神户制钢所 Apparatus, method and system for determining a filling ratio of flux
JP2012152777A (en) * 2011-01-25 2012-08-16 Kuramoto Tekkosho:Kk Apparatus for manufacturing composite wire for thermal spraying
CN112067545A (en) * 2020-10-09 2020-12-11 郑州机械研究所有限公司 Method and system for continuously detecting soldering flux by flux-cored wire
CN112067545B (en) * 2020-10-09 2024-02-27 郑州机械研究所有限公司 Flux-cored wire flux continuous detection method and flux continuous detection system

Also Published As

Publication number Publication date
JP2607772B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
EP0047250B1 (en) Dimension measuring apparatus
JPH04371393A (en) Detection of packing ratio of flux in welding wire including flux
JP3106845B2 (en) Apparatus and method for measuring film thickness and method for producing film
EP0243961B1 (en) Film thickness measuring device
CN105783738A (en) Incremental type small-measurement-range displacement sensor and measurement method
JP2010197143A (en) Measuring apparatus and measuring method for measuring axis tilt of shaft of motor for polygon mirror
JPH0228541A (en) Optical concentration detector
JPS6150717B2 (en)
JPH03251748A (en) Method and apparatus for inspecting tablet
JPS61104202A (en) Optical displacement meter
JPH02184706A (en) Dimension measuring device
JPH01292203A (en) Length measuring apparatus
JPH061175B2 (en) Lead bend detection device
JPH0439522Y2 (en)
JP4588907B2 (en) Fracture inspection method and apparatus
JPH03269307A (en) Gap measuring machine
JPH0452504A (en) Measuring apparatus of length of linear body
JPH05332764A (en) Thickness measurement device
JPH0781841B2 (en) Thickness measuring device
JPH08166212A (en) Measuring device for position or length
JPS63201514A (en) Method for measuring plastic sheet width
JPH09126746A (en) Thickness gauge
JPH04196455A (en) Tester of lead bend in electronic component
JPS5832103A (en) Noncontacting measuring device
SU1408225A1 (en) Device for determining displacements

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15