JP2607772B2 - Flux filling rate detection method for flux cored welding wire - Google Patents

Flux filling rate detection method for flux cored welding wire

Info

Publication number
JP2607772B2
JP2607772B2 JP3171743A JP17174391A JP2607772B2 JP 2607772 B2 JP2607772 B2 JP 2607772B2 JP 3171743 A JP3171743 A JP 3171743A JP 17174391 A JP17174391 A JP 17174391A JP 2607772 B2 JP2607772 B2 JP 2607772B2
Authority
JP
Japan
Prior art keywords
flux
filling rate
welding wire
displacement sensor
cored welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3171743A
Other languages
Japanese (ja)
Other versions
JPH04371393A (en
Inventor
茂木勘司
立花知之
島崎孝男
川口義久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3171743A priority Critical patent/JP2607772B2/en
Publication of JPH04371393A publication Critical patent/JPH04371393A/en
Application granted granted Critical
Publication of JP2607772B2 publication Critical patent/JP2607772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はフラックス入り溶接ワイ
ヤにおけるフラックス充填率の検知方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a flux filling rate in a flux-cored welding wire.

【0002】[0002]

【従来の技術】フラックス入り溶接ワイヤ(以下、「複
合ワイヤ」という)は、例えば、図1に示す如く、鋼帯
(外皮)1を長手方向に走行させつつ断面半円状(又はコ
字状)の凹溝を形成し、該凹溝にフラックス2を充填し
た後、凹溝を更に丸めてから伸線して所定線径に形成し
ている。
2. Description of the Related Art A flux-cored welding wire (hereinafter referred to as "composite wire") is, for example, a steel strip as shown in FIG.
(Outer skin) A concave groove having a semicircular cross section (or U-shape) is formed while running 1 in the longitudinal direction, and after filling the concave groove with flux 2, the concave groove is further rounded and then drawn. It has a predetermined wire diameter.

【0003】ところが、複合ワイヤの上記成形過程にお
いて、伸線装置のワイヤ引取機構或いはフラックス供給
装置のフラックス供給部に不都合が生じて、フラックス
2の充填率(複合ワイヤの単位長さ重量に対するフラッ
クス重量比)が変化するような場合がある。そのため、
従来では、形成された1ロットの複合ワイヤから一定長
さのサンプルを切り出し、当該サンプルの全重量を測定
した後、溶接ワイヤの合わせ面3を開き、包み込まれた
フラックス2を取り除いて。外皮1のみの重量を測定す
る。そして求められた各重量を次式に従って計算して、
フラックス充填率(%)を算出している。
However, in the above-described forming process of the composite wire, a drawback mechanism of the wire drawing device or a flux supply portion of the flux supply device is disadvantageous, and the filling rate of the flux 2 (the flux weight per unit length weight of the composite wire). Ratio) may change. for that reason,
Conventionally, a fixed length sample is cut out from a formed lot of composite wire, and after measuring the total weight of the sample, the mating surface 3 of the welding wire is opened and the wrapped flux 2 is removed. The weight of the outer skin 1 alone is measured. Then, calculate each calculated weight according to the following formula,
The flux filling rate (%) is calculated.

【0004】フラックス充填率(%)={(サンプルの複合
ワイヤ全重量−外皮重量)/(サンプルの複合ワイヤ全重
量)}×100
Flux filling rate (%) = {(total weight of sample composite wire−weight of outer skin) / (total weight of sample composite wire)} × 100

【0005】しかし、上記抜取り破壊検査法では、製造
工程のバラツキに対処できず、十分な品質管理が行なえ
ているとはいい難い。また、上記の破壊検査法では、製
造完了後の製品についての事後検査か、或いは製造ライ
ンを一旦停止して中間検査を行なうが、前者では応答が
遅いので、最悪の場合製品全体の廃棄を余儀なくされる
し、後者の方法では稼働率が低下するばかりでなく、再
開後の条件変動によって、新たな不良品を発生させるこ
ともある。
[0005] However, the above-mentioned sampling and destructive inspection method cannot cope with variations in the manufacturing process, and it is difficult to say that sufficient quality control can be performed. In the above-described destructive inspection method, post-production inspection is performed on the product after the completion of the production, or the production line is temporarily stopped and the intermediate inspection is performed. In the former case, the response is slow. In the latter method, not only the operating rate decreases, but also a new defective product may be generated due to a change in conditions after the restart.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明者等
は、鋼帯に供給されるフラックス充填率を製造工程中に
連続して全長測定できる方法について研究したところ、
フラックス充填位置での鋼帯走行速度並びに当該位置に
おけるフラックス供給量が一定であれば、凹溝内におけ
るフラックス載置厚さ、すなわち、フラックスの充填高
さが、一定になることに想到した。また、断面半円溝の
場合における充填高さがほぼ中央であるとき或いは断面
コ字形溝のときは、フラックスレベルとフラックス充填
率の間には1次函数的な比例関係があると考えた。そし
て、本発明者等は、充填高さの変化を検知すれば、フラ
ックス充填率が判り、これにより鋼帯の走行速度若しく
はフラックス供給量の異常が検知でき、製品の品質均一
化に寄与できるとの知見に基づいて更に検討を重ねた結
果、先に特公昭61−50717号にて新規なフラック
ス充填検知方法を提案した。
The inventors of the present invention have studied a method capable of continuously measuring the total length of the flux supplied to the steel strip during the manufacturing process.
If the running speed of the steel strip at the flux filling position and the amount of flux supply at the position are constant, it has been conceived that the thickness of the flux placed in the groove, that is, the filling height of the flux, becomes constant. Also, when the filling height in the case of a semicircular groove in the cross section was substantially at the center or when the groove was a U-shaped cross section, it was considered that there was a linear functional proportional relationship between the flux level and the flux filling rate. Then, the present inventors can detect the change in the filling height to know the flux filling rate, and thereby detect an abnormality in the running speed of the steel strip or the amount of supplied flux, which can contribute to uniform quality of products. As a result of further study based on the findings of the above, a new flux filling detection method was proposed in Japanese Patent Publication No. Sho 61-50717.

【0007】この特公昭61−50717号に係る方法
は、フラックス入り溶接ワイヤの製造工程中でフラック
ス充填率を検知する方法であって、帯状鋼材を長さ方向
に走行させつつほぼ一定形状の凹溝を形成し、該凹溝に
フラックスを充填した後、反射光量の強弱によって非測
定物との距離を検出する光電センサーを用い、該光電セ
ンサーの動作領域内における電圧出力極小値をとる距離
よりも近距離となるように光電センサーを充填フラック
スレベルに近接させ、該光電センサーで凹溝内における
フラックス充填高さを連続的に測定することによりフラ
ックスの充填率を検知することを特徴とする方法であ
る。
The method according to Japanese Patent Publication No. 61-50717 is a method for detecting a flux filling rate during a manufacturing process of a flux-cored welding wire. After forming the groove and filling the concave groove with flux, using a photoelectric sensor that detects the distance to the non-measurement object according to the intensity of the reflected light, the distance from the minimum value of the voltage output in the operation area of the photoelectric sensor is used. A method of detecting the filling rate of the flux by bringing the photoelectric sensor close to the filling flux level so as to be also at a short distance and continuously measuring the filling height of the flux in the concave groove with the photoelectric sensor. It is.

【0008】しかしながら、この方法においては、光電
センサーを用いて反射光量の強弱を電圧に変換している
ため、フラックスの粉塵の飛散によるレンズ面及び受光
面の汚れにより投光能力及び受光感度が変化し、正常に
測定できる期間が短くなってしまう。また、汚れ程度を
検知し、補正するようなことも考えられるが、繁雑であ
り、また精度の面でも問題があった。
However, in this method, the intensity of the reflected light is converted into a voltage by using a photoelectric sensor, so that the projection ability and the light receiving sensitivity are changed due to the contamination of the lens surface and the light receiving surface due to the scattering of the dust of the flux. However, the period during which measurement can be performed normally becomes short. Further, it is conceivable to detect and correct the degree of dirt, but it is complicated and has a problem in accuracy.

【0009】本発明は、このような問題点を解決するた
めになされたものであって、測定機器の汚れに対して強
く長期間の測定を可能にし且つ高精度にフラックス入り
溶接ワイヤのフラックス充填率を検知し得る方法を提供
することを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and is capable of performing a long-term measurement with a high degree of resistance to contamination of a measuring device, and highly accurately filling a flux-cored welding wire with a flux. It is an object to provide a method capable of detecting a rate.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するた
め、本発明者は、レンズ等の測定機器の汚れに影響を受
けない測定系について鋭意研究を重ねた結果、光電セン
サーに変えてレーザー式等の変位センサーの使用により
可能であることを見い出し、ここに本発明をなしたもの
である。
In order to solve the above-mentioned problems, the present inventor has conducted intensive studies on a measurement system which is not affected by contamination of a measurement device such as a lens. The present invention has been made here by using a displacement sensor such as that described above.

【0011】すなわち、本発明は、フラックス入り溶接
ワイヤの製造工程中でフラックス充填率を検知する方法
であって、帯状鋼材を長さ方向に走行させつつほぼ一定
形状の凹溝を形成し、該凹溝にフラックスを充填した
後、レーザ光を照射しそのフラックスからの反射光の位
置によって被測定物との距離を検出する変位センサーを
用い、該変位センサーで凹溝内におけるフラックス充填
高さを連続的に測定することにより、フラックスの充填
率を検知することを特徴とするフラックス入り溶接ワイ
ヤのフラックス充填率検知方法を要旨とするものであ
る。
That is, the present invention is a method for detecting a flux filling rate during a manufacturing process of a flux-cored welding wire, comprising forming a substantially constant-shaped concave groove while running a strip-shaped steel material in a longitudinal direction. After filling the groove with the flux, use a displacement sensor that irradiates a laser beam and detects the distance to the object to be measured based on the position of the reflected light from the flux , and the displacement sensor determines the flux filling height in the groove. The gist of the present invention is a method for detecting the flux filling rate of a flux-cored welding wire, characterized in that the flux filling rate is detected by continuously measuring.

【0012】以下に本発明を図面を参照しつつ更に詳述
する。
Hereinafter, the present invention will be described in more detail with reference to the drawings.

【実施例】【Example】

【0013】図2は本発明の検知方法で使用されるレー
ザ式等々の光学的変位センサーの配置例を示す斜視図
で、矢印方向に走行する外皮1に供給されたフラックス
2の充填高さ(フラックス載置レベル)を変位センサー4
で測定するように構成されている。なお、5は変位セン
サーの電源と出力表示とを兼ねたものである。
FIG. 2 is a perspective view showing an arrangement example of an optical displacement sensor such as a laser type used in the detection method of the present invention. The filling height of the flux 2 supplied to the outer skin 1 running in the direction of the arrow ( Flux placement level) displacement sensor 4
It is configured to measure with. Reference numeral 5 indicates both a power supply for the displacement sensor and an output display.

【0014】すなわち、変位センサー4によるレベル測
定は、図3にその原理を示すように、レーザ等の光源1
0から投光レンズ11を介して非測定物表面に投光した
光の反射光を受光レンズ12を介して光位置検出素子1
4に受光させて、反射光の位置の移動(図示の場合A
´、B´)によって生ずる電気信号を電圧に変換し、当
該反射光の位置を非測定物と変位センサー4との距離の
変化として検知し得るようにしたものである。
That is, the level measurement by the displacement sensor 4 is performed by using a light source 1 such as a laser as shown in FIG.
The reflected light of the light projected from 0 to the surface of the non-measurement object via the light projecting lens 11 is reflected by the light position detecting element 1 via the light receiving lens 12.
4 and move the position of the reflected light (A in the case shown).
', B') are converted into voltages so that the position of the reflected light can be detected as a change in the distance between the non-measured object and the displacement sensor 4.

【0015】変位センサー4としては、変位センサー
4の出力電圧と、変位センサー4と非測定物間の距離
(動作距離)との間に、図4に示すような関係がある特性
のものを使用する。図5は、横軸(x)にフラックスの充
填高さ、縦軸(y)に出力電圧をとった場合、この内実線
で示される部分(C´点とD´点の間)はほぼy=ax+
bで示される1次函数の関係になるが、出力電圧がC´
点より大きくなったり、D´点より低い領域では正確な
判定を下すことはできない。
The displacement sensor 4 includes an output voltage of the displacement sensor 4 and a distance between the displacement sensor 4 and a non-measurement object.
(Operating distance) and a characteristic having a relationship as shown in FIG. 4 are used. FIG. 5 shows that when the horizontal axis (x) indicates the filling height of the flux and the vertical axis (y) indicates the output voltage, the portion indicated by the solid line (between points C ′ and D ′) is substantially y. = Ax +
b, the output voltage is C '
An accurate determination cannot be made in an area larger than the point or lower than the point D '.

【0016】なお、平坦な板面上との距離を測定するの
ではなく、粉体との距離を測定するのであるから、光の
乱反射等があって、測定誤差を生ずる要因があるが、実
験的に各種の定数を定めておけば、かなり高精度の測定
結果が得られることがわかった。
Since the distance to the powder is measured instead of the distance to the flat plate surface, there is a factor that causes measurement errors due to irregular reflection of light and the like. It was found that if various constants were determined in advance, a measurement result with considerably high accuracy could be obtained.

【0017】すなわち、実際の製造ラインにおいて、上
記y=ax+bの線上にあるべき任意の(x1、y1)点及
び(x2、y2)点を実験的に求め、これによってa、bの
定数を決定した場合には、当該製造ラインにおけるy=
ax+bを正しい姿で設定できるから、測定精度は極め
て高いものとなる。例えば、y=ax+bの1次函数に
おいて、変位センサーの出力電圧が1.2Vの時のフラ
ックス充填率が12.6%、出力電圧が1.6Vの時のフ
ラックス充填率が15.6%であったとすると、これら
の値から、a=7.5、b=3.5が得られ、結局、上記
1次函数式は、y=7.5x+3.5となる。こうして得
られた1次函数を基準として、例えば図6に示すような
検定線を設定することができる。
That is, in an actual production line, arbitrary (x 1 , y 1 ) points and (x 2 , y 2 ) points which should be on the line of y = ax + b are experimentally obtained, whereby a, b Is determined, y =
Since ax + b can be set in a correct form, the measurement accuracy is extremely high. For example, in the first order function of y = ax + b, when the output voltage of the displacement sensor is 1.2 V, the flux filling rate is 12.6%, and when the output voltage is 1.6 V, the flux filling rate is 15.6%. If so, from these values, a = 7.5 and b = 3.5 are obtained. In the end, the above primary function is y = 7.5x + 3.5. For example, a test line as shown in FIG. 6 can be set on the basis of the thus obtained primary function.

【0018】このように構成される本発明の検知方法を
実施するに当っては、検知スタートに先立って、まず最
適なフラックス充填率を計算によって求めると共に、フ
ラックス充填率の許容範囲を設定し、これら許容範囲の
上限及び下限を電気的パルスに変換した後、デジタル的
に記憶させる。
In implementing the detection method of the present invention configured as described above, prior to the start of detection, first, an optimum flux filling rate is obtained by calculation, and an allowable range of the flux filling rate is set. After converting the upper and lower limits of these allowable ranges into electrical pulses, they are stored digitally.

【0019】次いで、検知用変位センサー4によるフラ
ックスレベルの検知を開始し、検知されたレベルが前記
許容範囲内にあるかどうかを比較しつつ成形を進めてい
く。そして、フラックスレベルが許容範囲を外れた場合
には警報を発し、成形の異常を知らせて適当な措置を講
ずる。
Next, the detection of the flux level by the detection displacement sensor 4 is started, and the molding is performed while comparing whether the detected level is within the allowable range. Then, when the flux level is out of the allowable range, an alarm is issued, an abnormality in the molding is notified, and appropriate measures are taken.

【0020】[0020]

【発明の効果】本発明は、上述のように構成されている
ので、成形された複合ワイヤを破壊することなく検査
できる、製造工程中で連続的に全長検査することがで
きるので、不良品の発生が可及的に防止され、製品に対
する信頼度も極めて高い、稼働率の低下や不良品の大
量発生を招かない等、従来技術と同様の効果が得られる
のは勿論のこと、更には、非測定物の距離を反射光の位
置の変化によって検知するので、受光面或いは投光面の
汚れによって光量が変化(低下)しても検出精度は殆ど影
響を受けることがなく、また補正等も不要で、常に精度
よくフラックス充填率を検知することができる。
The present invention is constructed as described above, so that the formed composite wire can be inspected without destruction, and the whole length can be continuously inspected during the manufacturing process. Occurrence is prevented as much as possible, the reliability of the product is extremely high, such as lowering the operation rate and not causing a large number of defective products, and of course, the same effect as the conventional technology can be obtained. Since the distance of the non-measurement object is detected by the change in the position of the reflected light, the detection accuracy is hardly affected even if the light amount changes (decreases) due to contamination of the light receiving surface or the light projecting surface, and correction is not performed It is unnecessary, and the flux filling rate can always be accurately detected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】フラックス入り溶接ワイヤの製造手順を説明す
る図である。
FIG. 1 is a diagram illustrating a procedure for manufacturing a flux-cored welding wire.

【図2】本発明の検知方法で使用される変位センサーの
配置例を示す斜視図である。
FIG. 2 is a perspective view showing an arrangement example of a displacement sensor used in the detection method of the present invention.

【図3】変位センサーによるレベル測定の動作原理を説
明する図である。
FIG. 3 is a diagram illustrating an operation principle of level measurement by a displacement sensor.

【図4】変位センサー4の出力電圧と、変位センサー4
と非測定物間の距離(動作距離)との関係を示す図であ
る。
FIG. 4 shows the output voltage of the displacement sensor 4 and the displacement sensor 4
FIG. 6 is a diagram showing a relationship between the distance between the object and a non-measurement object (operating distance).

【図5】フラックスの充填高さと変位センサーの出力電
圧の関係を示す図である。
FIG. 5 is a diagram showing a relationship between a filling height of a flux and an output voltage of a displacement sensor.

【図6】フラックス充填率と変位センサーの出力電圧の
関係(検定線)を示す図である。
FIG. 6 is a diagram showing a relationship (test line) between a flux filling rate and an output voltage of a displacement sensor.

【符号の説明】[Explanation of symbols]

1 鋼帯(外皮) 2 フラックス 3 合わせ目 4 変位センサー 10 光源 11 投光レンズ 12 受光レンズ 13 光位置検出素子 DESCRIPTION OF SYMBOLS 1 Steel strip (skin) 2 Flux 3 Joint 4 Displacement sensor 10 Light source 11 Light emitting lens 12 Light receiving lens 13 Optical position detecting element

───────────────────────────────────────────────────── フロントページの続き (72)発明者 島崎孝男 神奈川県藤沢市宮前字裏河内100−1株 式会社神戸製鋼所藤沢事業所内 (72)発明者 川口義久 神奈川県藤沢市宮前字裏河内100−1株 式会社神戸製鋼所藤沢事業所内 (56)参考文献 特開 昭64−82943(JP,A) 実開 平2−144711(JP,U) 特公 昭61−50717(JP,B2) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takao Shimazaki 100-1 Urakawachi, Miyama-ji, Fujisawa-shi, Kanagawa Prefecture Inside Fujisawa Works of Kobe Steel, Ltd. 1 Kobe Steel Fujisawa Works, Ltd. (56) References JP-A-64-82943 (JP, A) JP-A-2-144711 (JP, U) JP-B-61-50717 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フラックス入り溶接ワイヤの製造工程中
でフラックス充填率を検知する方法であって、帯状鋼材
を長さ方向に走行させつつほぼ一定形状の凹溝を形成
し、該凹溝にフラックスを充填した後、レーザ光を照射
しそのフラックスからの反射光の位置によって被測定物
との距離を検出する変位センサーを用い、該変位センサ
ーで凹溝内におけるフラックス充填高さを連続的に測定
することにより、フラックスの充填率を検知することを
特徴とするフラックス入り溶接ワイヤのフラックス充填
率検知方法。
1. A method for detecting a flux filling rate in a manufacturing process of a flux-cored welding wire, comprising forming a substantially constant-shaped groove while running a strip-shaped steel material in a longitudinal direction, and forming a flux in the groove. Irradiates laser light after filling
Then, by using a displacement sensor that detects the distance from the object to be measured based on the position of the reflected light from the flux, and continuously measuring the flux filling height in the concave groove with the displacement sensor, the flux filling rate can be reduced. A method for detecting a flux filling rate of a flux-cored welding wire, characterized by detecting.
JP3171743A 1991-06-17 1991-06-17 Flux filling rate detection method for flux cored welding wire Expired - Lifetime JP2607772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171743A JP2607772B2 (en) 1991-06-17 1991-06-17 Flux filling rate detection method for flux cored welding wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171743A JP2607772B2 (en) 1991-06-17 1991-06-17 Flux filling rate detection method for flux cored welding wire

Publications (2)

Publication Number Publication Date
JPH04371393A JPH04371393A (en) 1992-12-24
JP2607772B2 true JP2607772B2 (en) 1997-05-07

Family

ID=15928867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171743A Expired - Lifetime JP2607772B2 (en) 1991-06-17 1991-06-17 Flux filling rate detection method for flux cored welding wire

Country Status (1)

Country Link
JP (1) JP2607772B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327588B1 (en) * 2011-01-20 2013-11-12 가부시키가이샤 고베 세이코쇼 Apparatus, method and system for determining a filling ratio of flux, and computer readable storage medium for recording program of determining a filling ratio of flux
WO2021237583A1 (en) * 2020-05-28 2021-12-02 郑州机械研究所有限公司 Controller, and method and device for detecting filling rate of flux-cored welding wire

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268866B2 (en) * 2009-11-20 2013-08-21 株式会社神戸製鋼所 Method for detecting abnormal state in process of manufacturing welding wire containing flux
JP5800310B2 (en) * 2011-01-25 2015-10-28 株式会社倉本鉄工所 Composite wire manufacturing equipment for thermal spraying
CN112067545B (en) * 2020-10-09 2024-02-27 郑州机械研究所有限公司 Flux-cored wire flux continuous detection method and flux continuous detection system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53108035A (en) * 1977-03-03 1978-09-20 Hitachi Shipbuilding Eng Co Detecting apparatus for molten metal surface position within mold in continuous casting installation
JPS6150717A (en) * 1984-08-21 1986-03-13 Oyo Jiki Kenkyusho:Kk Electrolytic discharging grindstone and electrolytic discharge machining method
JPS6482943A (en) * 1987-09-25 1989-03-28 Dainippon Ink & Chemicals Inspection of defect due to projection and recess on surface of plywood
JPH02144711U (en) * 1989-05-08 1990-12-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101327588B1 (en) * 2011-01-20 2013-11-12 가부시키가이샤 고베 세이코쇼 Apparatus, method and system for determining a filling ratio of flux, and computer readable storage medium for recording program of determining a filling ratio of flux
WO2021237583A1 (en) * 2020-05-28 2021-12-02 郑州机械研究所有限公司 Controller, and method and device for detecting filling rate of flux-cored welding wire

Also Published As

Publication number Publication date
JPH04371393A (en) 1992-12-24

Similar Documents

Publication Publication Date Title
EP0047250B1 (en) Dimension measuring apparatus
JP2607772B2 (en) Flux filling rate detection method for flux cored welding wire
JPH06241740A (en) Electro-resistance welded tube weld beam defective cutting and defect detecting method
JP5117039B2 (en) Film thickness measuring method and film thickness measuring apparatus
JPH0228541A (en) Optical concentration detector
CA1177858A (en) Dual head measuring techniques for radiation gaging of reinforcing bar
KR20180032459A (en) Method for measuring Suspended Particle in air
JP3570488B2 (en) Measurement method of alloying degree of galvanized steel sheet using laser beam
JPS6150717B2 (en)
JPH02114146A (en) Method and device for measuring crack length and strain in structure part and test piece
JPH01292203A (en) Length measuring apparatus
JPH0439522Y2 (en)
JP2002090306A (en) Self-diagnostic method for surface inspection device
JPS5960203A (en) Device for measuring change in film thickness
JP2011191161A (en) Weld zone undercut inspection device
JPH0535984B2 (en)
Ng et al. Measurement of linear shear in digital shearing speckle interferometry
FR2681886A1 (en) METHOD AND DEVICE FOR MEASURING THE AVERAGE THICKNESS OF A GROUND LAYER
JPS6035609B2 (en) Surface roughness measuring device
JP2004009339A (en) Method and apparatus for inspecting joint part of band-like member
JPH0814843A (en) Measurement method for edge winding shape
KR20010017651A (en) Automatic V-groove Joint Tracking System Using a Laser Displacement Sensor and PLC
JPH0244019B2 (en)
JPS6255625B2 (en)
JPS6098305A (en) Method and device for inspecting surface of structure member

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 15