JP4588907B2 - Fracture inspection method and apparatus - Google Patents

Fracture inspection method and apparatus Download PDF

Info

Publication number
JP4588907B2
JP4588907B2 JP2001071666A JP2001071666A JP4588907B2 JP 4588907 B2 JP4588907 B2 JP 4588907B2 JP 2001071666 A JP2001071666 A JP 2001071666A JP 2001071666 A JP2001071666 A JP 2001071666A JP 4588907 B2 JP4588907 B2 JP 4588907B2
Authority
JP
Japan
Prior art keywords
thickness
fracture
ray
detecting
image density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001071666A
Other languages
Japanese (ja)
Other versions
JP2002267433A (en
JP2002267433A5 (en
Inventor
泰康 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001071666A priority Critical patent/JP4588907B2/en
Publication of JP2002267433A publication Critical patent/JP2002267433A/en
Publication of JP2002267433A5 publication Critical patent/JP2002267433A5/ja
Application granted granted Critical
Publication of JP4588907B2 publication Critical patent/JP4588907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、難視対象物や不可視対象物に設けられた破断部の位置や厚みを検査する破断部検査方法及び装置に関するものである。
【0002】
【従来の技術】
近年、生産物の検査工程において、難視対象物や不可視対象物の自動検査が求められることが多くなっている。例えば、リチウムイオン電池などにおいては、内部液漏れ等による万一の爆発を防止するため、ケースの一部にスクライブと呼ばれる破断部を設け、内圧上昇時にこのスクライブを破断させることで内圧上昇を防止するように構成されている。そのため、破断部の厚みの管理は、この機能を保証する上で非常に重要である。
【0003】
しかるに、破断部厚みを容易に精度良く測定する方法はなく、そのため専任の作業員により3次元測定機などを用いて、破断部の断面形状を測定し、標準肉厚との差を求めて破断部厚みを推定している。
【0004】
【発明が解決しようとする課題】
しかしながら、上記3次元測定機などを用いた測定方法では、測定に手間と時間がかかり過ぎ、高速にて高精度な自動検査を行うことができないという問題があった。
【0005】
本発明は、上記従来の問題に鑑み、X線を利用して破断部の位置と厚みを高速、高精度、安定的に検出できる破断部検査方法及び装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
本発明の破断部検査方法は、X線源とX線撮像管とを結ぶ線分に対して対象物に形成されたV字状の破断部の傾斜面の一方が平行になるように配置した状態で、前記X線源より放射され前記対象物を透過したX線の撮像画像に基づいて対象物中の前記破断部の位置及び厚みを検出するものであり、X線を利用して破断部の位置と厚みを高速、高精度、安定的に検出でき、特にX線源とX線撮像管とを結ぶ線分に対して対象物の破断部の壁面が平行になるように配置することで破断部位のコントラストを明瞭にでき、明瞭なコントラストにて破断部の位置を確実に検出することができる。
【0008】
また、前記破断部の厚みを検出する工程において、前記対象物の材料による画像濃度の減衰係数と前記撮像画像中の破断部の画像濃度から厚みを演算すると、厚みを精度良く検出することができて好適である。
【0009】
また、前記破断部の厚みを検出する工程において、前記対象物像と同時に厚みが既知の参照物を撮像し、前記破断部及び前記参照物の画像濃度と参照物の厚みから破断部厚みを演算すると、X線源の放射レベルや撮像器のゲインの変動の影響を受けずに精度よく厚みを検出できてさらに好適である。
【0010】
また、本発明の破断部検査装置は、対象物にX線を放射するX線源と、前記対象物を透過したX線を撮像するX線撮像管と、前記X線源と前記X線撮像管とを結ぶ線分に対して前記対象物に形成されたV字状の破断部の傾斜面の一方が平行になるように配置する配置手段と、前記X線撮像管で撮像された撮像画像より前記対象物中の破断部の位置を検出する位置検出手段と、前記対象物中の破断部の厚みを検出する厚み検出手段とを備えたものであり、上記検査方法を実施して破断部の位置と厚みを高速、高精度、安定的に検出でき、特に前記X線源と前記対象物とを結ぶ線分に対して前記対象物の破断部の壁面が平行になるように配置する配置手段を備えていることで破断部の位置を明瞭なコントラストで検出できて好適である。
【0012】
また、前記厚み検出手段が、前記対象物の材料による画像濃度の減衰係数と前記撮像画像中の前記破断部の画像濃度から厚みを演算する手段から成ると、厚みを精度良く検出することができて好適である。
【0013】
また、前記厚み検出手段が、前記対象物撮像と同時に厚みが既知の参照物を撮像し、前記破断部及び前記参照物の画像濃度と前記参照物の厚みから前記破断部の厚みを演算する手段から成ると、X線源の放射レベルや撮像器のゲインの変動の影響を受けずにさらに精度良く厚みを検出することができて好適である。
【0014】
【発明の実施の形態】
以下、本発明の破断部検査方法及び装置の一実施形態について、図1〜図4を参照して説明する。
【0015】
図1に、透過X線を利用した破断部検査装置の概略構成を示す。図1において、1はX線放射線源、2は放射X線、3は対象物、4はX線撮像管、5は撮像した画像から対象物3内の破断部7の位置と厚みを求める画像処理装置、6は撮像画像のモニタである。
【0016】
放射X線2は、X線放射線源1の放射点(焦点)から直線放射状に進行し、途中の対象物3により減衰しつつ、その一部がX線撮像管4に到達し、画像化される。破断部7はその近傍の肉厚に比べて薄くなっている。透過X線の吸収は肉厚の厚い近傍が破断部7に比べて多くなる。このため、破断部7は透過X線が多く、その近傍はX線透過が少ないため、この差が画像の濃度差となって現れる。
【0017】
図2は、測定時における破断部7のV字状の断面形状と放射X線2の位置関係を示している。このように測定時には放射X線2の主軸に対して、対象物3はある角度を付けて斜めに配置する。これは、肉厚測定の対象となるケースの総厚みを最小限にして、破断部7の近傍に対する厚みの違いの割合を相対的に大きくするためである。
【0018】
また、破断部7のV字断面の両壁面のうち、一方の壁面を放射X線2の主軸、すなわちX線放射線源1の焦点とX線撮像管4の管面中央とを結ぶ軸に略平行に配置している。こうすることにより、破断部7のこの斜面の前後での透過X線量の変化が急峻となり、X線撮像管4によって撮像される画像の濃度変化が斜面前後で明瞭なエッジが現れる。従って、対象物3に位置変動が生じても、エッジサーチを行うことで破断部7の位置を安定的に求めることができる。
【0019】
画像処理装置5は、図3に示すように、X線撮像管4からの画像信号をデジタル画像データに変換するA/D変換器10と、画像データを記憶する画像メモリ11と、画像データをモニタ6に出力するI/O12と、画像メモリ11の画像データから破断部7のエッジを検出して破断部7の位置を求めるエッジ検出手段13と、後述の如く破断部7の厚みやそれを求めるための係数を演算する厚み・係数演算手段14と、求めた係数を記憶する係数記憶手段15と、求めた破断部7の厚みを出力する出力手段16と、これらエッジ検出手段13と厚み・係数演算手段14と係数記憶手段15と出力手段16を制御する制御手段17にて構成されている。
【0020】
図4に破断部7の断面近傍の撮像画像濃度をグラフ化した例を示す。縦軸は画像濃度、横軸は図2における横方向(水平方向)の位置を示し、位置Lで急峻なエッジの立ち上がりが生じており、破断部7の斜面の位置を示している。エッジ検出手段13は、この立ち上がりを検出するエッジサーチを行うことで破断部7の位置を検出する。なお、立ち上がったエッジでの画像濃度Iと破断部7の厚みが関係しており、次のようにして厚みを演算する。
【0021】
図5に、対象物3の破断部7の厚みと透過X線量(撮像画像濃度I)の関係を示している。縦軸は画像濃度I、横軸は対象物3の破断部7の厚みTである。厚みTに対する画像濃度Iの関係式は、
I=I0 ・EXP(−μ・T) (I0 は厚み0のときの濃度)
で示される。このため、対象物3と同一材料で厚みTが既知の2つの参照物を個別に撮像して濃度を求めておけば、I0 及びμを求めることができる。図4中、T1 、T2 はこれら参照物の厚み、I1 、I2 はそれぞれの画像濃度であり、これらからI0 及びμが求められる。厚み・係数演算手段14は、このようにして係数I0 及びμを求めて係数記憶手段15に記憶させておく。
【0022】
上式を厚みについて換算すると、T=−1/μ・LN(I/I0 )となるため、上記係数I0 、μと画像濃度Iから厚みTを求めることができる。かくして、厚み・係数演算手段14は、検出した画像濃度Iと係数記憶手段15に記憶されているI0 及びμから破断部7の厚みTを演算し、その結果が出力手段16にて出力される。
【0023】
以上の実施形態の説明では、厚みTが既知の2つの参照物を予め個別に撮像して濃度を求め、係数I0 、μを求める例を示したが、図6に示すように、対象物3と同一材質で厚みTが既知の参照物8、9を対象物3に並列配置し、これらを同時に撮像するようにすることもできる。
【0024】
こうすると、対象物3の厚みを求める際に、その都度係数I0 、μを算出することができ、したがってX線放射線源1の放射レベルが変動したり、X線撮像管4のゲインが変動することに起因する画像濃度のレベル変動が生じた際にも、その都度既知の厚みの参照物8、9を用いて係数を再計算した後、対象物3の破断部7の厚みを求めるため、変動に起因する測定結果の変動を極めて小さく抑えることができる。
【0025】
本発明によれば、以上のような構成及び処理によってリチウムイオン電池のケースにおける内圧上昇防止用の破断部など、難視な対象物の破断部の厚みをX線を利用して正確、高速、安定的に自動検査することができる。
【0026】
【発明の効果】
本発明の破断部検査方法及び装置によれば、以上のようにX線源とX線撮像管とを結ぶ線分に対して対象物に形成されたV字状の破断部の傾斜面の一方が平行になるように配置した状態で、前記X線源より放射され前記対象物を透過したX線の撮像画像に基づいて対象物中の前記破断部の位置及び厚みを検出するようにしたので、X線を利用して破断部の位置と厚みを高速、高精度、安定的に自動検査することができ、特にX線源とX線撮像管とを結ぶ線分に対して対象物の破断部の壁面が平行になるように配置することで破断部位のコントラストを明瞭にでき、明瞭なコントラストにて破断部の位置を確実に検出することができる。
【0028】
また、前記破断部の厚みを検出する際に、前記対象物の材料による画像濃度の減衰係数と前記撮像画像中の破断部の画像濃度から厚みを演算すると、厚みを精度良く検出することができる。
【0029】
また、前記破断部の厚みを検出する際に、前記対象物像と同時に厚みが既知の参照物を撮像し、前記破断部及び前記参照物の画像濃度と参照物の厚みから破断部厚みを演算すると、X線源の放射レベルや撮像器のゲインの変動の影響を受けずにさらに精度よく厚みを検出できる。
【図面の簡単な説明】
【図1】本発明の一実施形態における破断部検査方法の概略構成図である。
【図2】同実施形態の破断部の断面形状と放射X線との位置関係の説明図である。
【図3】同実施形態の画像処理装置の構成図である。
【図4】同実施形態における破断部断面近傍の画像濃度を示すグラフである。
【図5】対象物の厚みと画像濃度の関係を示すグラフである。
【図6】本発明の他の実施形態における破断部検査方法の概略構成図である。
【符号の説明】
1 X線放射線源
2 放射X線
3 対象物
4 X線撮像管
5 画像処理装置
7 破断部
8、9 参照物
13 エッジ検出手段
14 厚み・係数演算手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fracture portion inspection method and apparatus for inspecting the position and thickness of a fracture portion provided on a hard-to-see object or an invisible object.
[0002]
[Prior art]
In recent years, automatic inspection of difficult-to-see objects and invisible objects is often required in the product inspection process. For example, in a lithium-ion battery, in order to prevent an explosion due to internal liquid leakage, etc., a rupture part called a scribe is provided in a part of the case, and this scribe is broken when the internal pressure rises to prevent an increase in internal pressure. Is configured to do. Therefore, management of the thickness of the fractured portion is very important for ensuring this function.
[0003]
However, there is no easy and accurate method for measuring the thickness of the fractured part, so a dedicated worker uses a three-dimensional measuring machine to measure the cross-sectional shape of the fractured part and determine the difference from the standard thickness. The part thickness is estimated.
[0004]
[Problems to be solved by the invention]
However, the measurement method using the above three-dimensional measuring machine has a problem that the measurement takes too much time and time, and high-speed and high-precision automatic inspection cannot be performed.
[0005]
In view of the above-described conventional problems, an object of the present invention is to provide a fracture portion inspection method and apparatus capable of stably detecting the position and thickness of a fracture portion at high speed, high accuracy, and using X-rays.
[0006]
[Means for Solving the Problems]
The fracture portion inspection method of the present invention is arranged so that one of the inclined surfaces of the V-shaped fracture portion formed on the object is parallel to the line segment connecting the X-ray source and the X-ray imaging tube. In the state, the position and thickness of the fractured portion in the object are detected based on the X-ray captured image emitted from the X-ray source and transmitted through the object. The position and thickness of the object can be detected stably at high speed, with high accuracy, and in particular, by arranging the wall of the fractured part of the object parallel to the line segment connecting the X-ray source and the X-ray imaging tube The contrast of the broken part can be made clear, and the position of the broken part can be reliably detected with a clear contrast.
[0008]
Further, in the step of detecting the thickness of the rupture portion, when calculating the thickness from the image density of breaks in the attenuation coefficient and the captured image of the image density due to the material of the object, detecting the thickness accuracy This is preferable.
[0009]
Further, in the step of detecting the thickness of the breakable portion, at the same time the thickness IMAGING and of the object by imaging a known reference object, it breaks the thickness from the thickness of the reference object and the image density of the breaking portion and the reference product Is more preferable because the thickness can be accurately detected without being affected by the radiation level of the X-ray source or the fluctuation of the gain of the imaging device.
[0010]
The fracture inspection apparatus of the present invention includes an X-ray source that emits X-rays to an object, an X-ray imaging tube that images X-rays transmitted through the object, the X-ray source, and the X-ray imaging. An arrangement unit arranged so that one of the inclined surfaces of the V-shaped fracture portion formed on the object is parallel to a line segment connecting the tube, and a captured image captured by the X-ray imaging tube And a position detecting means for detecting the position of the broken portion in the object and a thickness detecting means for detecting the thickness of the broken portion in the object. The position and thickness of the object can be detected stably at high speed, with high accuracy, and in particular, the arrangement is such that the wall surface of the fracture portion of the object is parallel to the line segment connecting the X-ray source and the object By providing the means, the position of the fracture portion can be detected with clear contrast, which is preferable.
[0012]
Further, the thickness detection hand stage and consists hands stage or al for calculating the thickness from the image density of the breaking portion in the attenuation coefficient and the captured image of the image density due to the material of the object, accurately thickness This is suitable because it can be detected.
[0013]
Further, the thickness detecting means images a reference object having a known thickness simultaneously with the imaging of the object, and calculates the thickness of the fractured part from the fractured part and the image density of the reference object and the thickness of the reference object. It is preferable that the means can detect the thickness with higher accuracy without being affected by the fluctuation of the radiation level of the X-ray source and the gain of the image pickup device.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a fracture portion inspection method and apparatus according to the present invention will be described with reference to FIGS.
[0015]
FIG. 1 shows a schematic configuration of a fracture inspection apparatus using transmitted X-rays. In FIG. 1, 1 is an X-ray radiation source, 2 is a radiation X-ray, 3 is an object, 4 is an X-ray imaging tube, and 5 is an image for obtaining the position and thickness of the fracture portion 7 in the object 3 from the captured image. The processing device 6 is a captured image monitor.
[0016]
The radiation X-ray 2 travels linearly from the radiation point (focal point) of the X-ray radiation source 1 and is attenuated by the object 3 in the middle while a part thereof reaches the X-ray imaging tube 4 and is imaged. The The fracture portion 7 is thinner than the thickness in the vicinity thereof. Absorption of transmitted X-rays is greater in the vicinity of the thicker portion than the fractured portion 7. For this reason, the broken portion 7 has a large amount of transmitted X-rays and the vicinity thereof has a small amount of X-ray transmission.
[0017]
FIG. 2 shows the positional relationship between the V-shaped cross-sectional shape of the fracture portion 7 and the radiation X-ray 2 at the time of measurement. Thus, at the time of measurement, the object 3 is disposed at an angle with respect to the main axis of the radiation X-ray 2 at an angle. This is to minimize the total thickness of the case that is the object of thickness measurement and relatively increase the ratio of the difference in thickness with respect to the vicinity of the fracture portion 7.
[0018]
Of the two wall surfaces of the V-shaped cross section of the fracture portion 7, one wall surface is approximately the main axis of the radiation X-ray 2, that is, the axis connecting the focal point of the X-ray radiation source 1 and the tube surface center of the X-ray imaging tube 4. They are arranged in parallel. By doing so, the change in the transmitted X-ray dose before and after the slope of the fracture portion 7 becomes steep, and a clear edge appears in the density change of the image captured by the X-ray imaging tube 4 before and after the slope. Therefore, even if the position of the object 3 varies, the position of the fracture portion 7 can be obtained stably by performing an edge search.
[0019]
As shown in FIG. 3, the image processing apparatus 5 includes an A / D converter 10 that converts an image signal from the X-ray imaging tube 4 into digital image data, an image memory 11 that stores image data, and image data. The I / O 12 output to the monitor 6, the edge detecting means 13 for detecting the edge of the breakage portion 7 from the image data of the image memory 11 and determining the position of the breakage portion 7, the thickness of the breakage portion 7 and the thickness thereof as described later. Thickness / coefficient calculating means 14 for calculating a coefficient to be obtained, coefficient storing means 15 for storing the obtained coefficient, output means 16 for outputting the obtained thickness of the fracture portion 7, the edge detecting means 13, the thickness / The coefficient calculation means 14, the coefficient storage means 15, and the control means 17 that controls the output means 16 are configured.
[0020]
FIG. 4 shows an example in which the captured image density in the vicinity of the cross section of the fracture portion 7 is graphed. The vertical axis indicates the image density, and the horizontal axis indicates the position in the horizontal direction (horizontal direction) in FIG. 2. A steep edge rises at the position L, indicating the position of the slope of the fracture portion 7. The edge detection means 13 detects the position of the fracture portion 7 by performing an edge search for detecting the rising edge. The image density I at the rising edge and the thickness of the fracture portion 7 are related, and the thickness is calculated as follows.
[0021]
FIG. 5 shows the relationship between the thickness of the broken portion 7 of the object 3 and the transmitted X-ray dose (captured image density I). The vertical axis represents the image density I, and the horizontal axis represents the thickness T of the fracture portion 7 of the object 3. The relational expression of the image density I with respect to the thickness T is
I = I 0 · EXP (−μ · T) (I 0 is the concentration when thickness is 0)
Indicated by For this reason, if two reference objects having the same material as the object 3 and having a known thickness T are separately imaged to obtain the density, I 0 and μ can be obtained. In FIG. 4, T 1 and T 2 are the thicknesses of these reference materials, I 1 and I 2 are the respective image densities, and I 0 and μ are determined from these. The thickness / coefficient calculation means 14 obtains the coefficients I 0 and μ in this way and stores them in the coefficient storage means 15.
[0022]
When the above equation is converted with respect to the thickness, T = −1 / μ · LN (I / I 0 ), and therefore the thickness T can be obtained from the coefficients I 0 and μ and the image density I. Thus, the thickness / coefficient calculating means 14 calculates the thickness T of the fracture portion 7 from the detected image density I and I 0 and μ stored in the coefficient storing means 15, and the result is output by the output means 16. The
[0023]
In the above description of the embodiment, an example is shown in which two reference objects with known thicknesses T are separately imaged in advance to obtain the density and the coefficients I 0 and μ are obtained. As shown in FIG. It is also possible to arrange reference objects 8 and 9 having the same material as that of FIG.
[0024]
In this way, the coefficients I 0 and μ can be calculated each time the thickness of the object 3 is obtained. Therefore, the radiation level of the X-ray radiation source 1 varies and the gain of the X-ray imaging tube 4 varies. In order to obtain the thickness of the fracture portion 7 of the object 3 after recalculating the coefficient using the reference objects 8 and 9 having a known thickness each time the image density level fluctuation caused by Thus, the fluctuation of the measurement result due to the fluctuation can be suppressed to be extremely small.
[0025]
According to the present invention, the thickness and the thickness of a rupture part of a difficult object such as a rupture part for preventing an increase in internal pressure in the case of a lithium ion battery can be accurately and high-speed using X-rays. Automatic inspection can be stably performed.
[0026]
【The invention's effect】
According to the fracture portion inspection method and apparatus of the present invention , one of the inclined surfaces of the V-shaped fracture portion formed on the object with respect to the line segment connecting the X-ray source and the X-ray imaging tube as described above. Since the position and thickness of the fractured portion in the object are detected based on the X-ray captured image that is emitted from the X-ray source and transmitted through the object in a state where the two are arranged in parallel with each other. Using X-rays, the position and thickness of the rupture part can be automatically inspected at high speed, high accuracy, and stably. Especially, the rupture of the object with respect to the line segment connecting the X-ray source and the X-ray imaging tube. By arranging so that the wall surfaces of the portions are parallel, the contrast of the broken portion can be made clear, and the position of the broken portion can be reliably detected with clear contrast.
[0028]
Furthermore, in detecting the thickness of the rupture portion, when calculating the thickness from the image density of breaks in the attenuation coefficient and the captured image of the image density due to the material of the object, detecting the thickness accuracy Can do.
[0029]
Furthermore, in detecting the thickness of the breakable portion, at the same time the thickness IMAGING and of the object by imaging a known reference object, breaks the thickness from the thickness of the reference object and the image density of the breaking portion and the reference product , The thickness can be detected more accurately without being affected by fluctuations in the radiation level of the X-ray source and the gain of the imager.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a fracture portion inspection method according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram of a positional relationship between a cross-sectional shape of a fracture portion and radiation X-rays according to the embodiment.
FIG. 3 is a configuration diagram of an image processing apparatus according to the embodiment.
FIG. 4 is a graph showing an image density in the vicinity of a cross section of a fracture portion in the same embodiment.
FIG. 5 is a graph showing the relationship between the thickness of an object and the image density.
FIG. 6 is a schematic configuration diagram of a fracture portion inspection method according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 X-ray radiation source 2 Radiation X-ray 3 Object 4 X-ray imaging tube 5 Image processing apparatus 7 Breaking part 8, 9 Reference object 13 Edge detection means 14 Thickness / coefficient calculation means

Claims (6)

X線源とX線撮像管とを結ぶ線分に対して対象物に形成されたV字状の破断部の傾斜面の一方が平行になるように配置した状態で、前記X線源より放射され前記対象物を透過したX線の撮像画像に基づいて対象物中の前記破断部の位置及び厚みを検出することを特徴とする破断部検査方法。Radiation from the X-ray source in a state where one of the inclined surfaces of the V-shaped fractured portion formed on the object is parallel to the line segment connecting the X-ray source and the X-ray imaging tube And detecting the position and thickness of the breakage portion in the object based on an X-ray captured image transmitted through the object. 前記破断部の厚みを検出する工程において、
前記対象物の材料による画像濃度の減衰係数と前記撮像画像中の破断部の画像濃度から厚みを演算することを特徴とする請求項1記載の破断部検査方法。
In the step of detecting the thickness of the fracture portion,
2. The fracture portion inspection method according to claim 1, wherein the thickness is calculated from an attenuation coefficient of image density due to the material of the object and an image density of the fracture portion in the captured image.
前記破断部の厚みを検出する工程において、
前記対象物の撮像と同時に厚みが既知の参照物を撮像し、前記破断部及び前記参照物の画像濃度と参照物の厚みから破断部厚みを演算することを特徴とする請求項1記載の破断部検査方法。
In the step of detecting the thickness of the fracture portion,
2. The fracture according to claim 1, wherein a reference object having a known thickness is imaged simultaneously with the imaging of the object, and the fracture part thickness is calculated from the image density of the fracture part and the reference object and the thickness of the reference object. Department inspection method.
対象物にX線を放射するX線源と、
前記対象物を透過したX線を撮像するX線撮像管と、
前記X線源と前記X線撮像管とを結ぶ線分に対して前記対象物に形成されたV字状の破断部の傾斜面の一方が平行になるように配置する配置手段と、
前記X線撮像管で撮像された撮像画像より前記対象物中の破断部の位置を検出する位置検出手段と、
前記対象物中の破断部の厚みを検出する厚み検出手段と
を備えたことを特徴とする破断部検査装置。
An X-ray source that emits X-rays to an object;
An X-ray imaging tube for imaging X-rays transmitted through the object;
Arranging means for arranging one of the inclined surfaces of the V-shaped fracture portion formed on the object in parallel with a line segment connecting the X-ray source and the X-ray imaging tube ;
Position detecting means for detecting the position of the fracture portion in the object from the captured image captured by the X-ray imaging tube;
A breaking portion inspection apparatus comprising: a thickness detecting means for detecting a thickness of a breaking portion in the object.
前記厚み検出手段は、
前記対象物の材料による画像濃度の減衰係数と前記撮像画像中の前記破断部の画像濃度から厚みを演算する手段から成ることを特徴とする請求項4記載の破断部検査装置。
The thickness detecting means includes
5. The fracture portion inspection apparatus according to claim 4, further comprising means for calculating a thickness from an attenuation coefficient of image density due to the material of the object and an image density of the fracture portion in the captured image.
前記厚み検出手段は、
前記対象物撮像と同時に厚みが既知の参照物を撮像し、前記破断部及び前記参照物の画像濃度と前記参照物の厚みから前記破断部の厚みを演算する手段から成ることを特徴とする請求項4記載の破断部検査装置。
The thickness detecting means includes
It comprises means for imaging a reference object having a known thickness at the same time as imaging of the object, and calculating the thickness of the fracture part from the image density of the fracture part and the reference object and the thickness of the reference object. The fracture | rupture part inspection apparatus of Claim 4.
JP2001071666A 2001-03-14 2001-03-14 Fracture inspection method and apparatus Expired - Fee Related JP4588907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071666A JP4588907B2 (en) 2001-03-14 2001-03-14 Fracture inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071666A JP4588907B2 (en) 2001-03-14 2001-03-14 Fracture inspection method and apparatus

Publications (3)

Publication Number Publication Date
JP2002267433A JP2002267433A (en) 2002-09-18
JP2002267433A5 JP2002267433A5 (en) 2008-01-24
JP4588907B2 true JP4588907B2 (en) 2010-12-01

Family

ID=18929356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071666A Expired - Fee Related JP4588907B2 (en) 2001-03-14 2001-03-14 Fracture inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4588907B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471032B1 (en) * 2009-03-27 2010-06-02 システム・プロダクト株式会社 X-ray image composition apparatus, method and program
JP6582146B1 (en) * 2019-01-24 2019-09-25 札幌施設管理株式会社 Thickness detection method and piping inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988610A (en) * 1982-11-12 1984-05-22 Fuji Electric Co Ltd Thickness gauge
JPH01312405A (en) * 1988-06-13 1989-12-18 Rigaku Corp Measurement of burying depth
JPH03257309A (en) * 1990-03-07 1991-11-15 Nippon Denshi Raiosonitsuku Kk Non-destructive inspecting apparatus of can lid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988610A (en) * 1982-11-12 1984-05-22 Fuji Electric Co Ltd Thickness gauge
JPH01312405A (en) * 1988-06-13 1989-12-18 Rigaku Corp Measurement of burying depth
JPH03257309A (en) * 1990-03-07 1991-11-15 Nippon Denshi Raiosonitsuku Kk Non-destructive inspecting apparatus of can lid

Also Published As

Publication number Publication date
JP2002267433A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
US11493459B2 (en) Inspection method and manufacturing method for molded resin product as well as inspection device and manufacturing device for molded resin product
US6111649A (en) Thickness measuring apparatus using light from slit
US11841332B2 (en) Inspection method and manufacturing method for structure and inspection apparatus and manufacturing apparatus for structure
JP2005091288A (en) Discrimination method for casting defect
FI85769C (en) X-ray tomographic procedure for observing faults and twigs in wood
JP4588907B2 (en) Fracture inspection method and apparatus
JP2020159747A (en) Method for estimating current stress of structure and device therefor
TW201421010A (en) Monitoring incident beam position in a wafer inspection system
JP5507050B2 (en) 3D sensor
JP2008175604A (en) Optical displacement sensor and displacement measuring device using it
JP3219565B2 (en) Defect depth position detection apparatus and method
JP7375458B2 (en) Appearance inspection equipment and defect inspection method
JP3637146B2 (en) Method and apparatus for determining wounds to be inspected
JP2009103662A (en) Laser welding evaluation method
JPH0763699A (en) Flaw inspection apparatus
JPH03251748A (en) Method and apparatus for inspecting tablet
JP2001041908A (en) Apparatus for inspecting grout defect of pc steel material by neutron beam
JPH04371393A (en) Detection of packing ratio of flux in welding wire including flux
JP2010223753A (en) Image processing device, inspection device for long object, and computer program
JP3084082B2 (en) Method for detecting defects in metal tubes with spiral ribs inside
JP3920713B2 (en) Optical displacement measuring device
JPH0151124B2 (en)
JPH11216551A (en) Method and device to measure continuous casting molten metal level
JPH10300436A (en) Lead frame inspection device
JP2683745B2 (en) Optical fiber end face state detection method and detection device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees