JP2009103662A - Laser welding evaluation method - Google Patents

Laser welding evaluation method Download PDF

Info

Publication number
JP2009103662A
JP2009103662A JP2007277909A JP2007277909A JP2009103662A JP 2009103662 A JP2009103662 A JP 2009103662A JP 2007277909 A JP2007277909 A JP 2007277909A JP 2007277909 A JP2007277909 A JP 2007277909A JP 2009103662 A JP2009103662 A JP 2009103662A
Authority
JP
Japan
Prior art keywords
imaging
measurement
specimen
laser welding
scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007277909A
Other languages
Japanese (ja)
Other versions
JP5133651B2 (en
Inventor
Naoki Kawada
直樹 河田
Kazuo Genji
一夫 玄地
Hidemitsu Morita
英充 盛田
Yosuke Otsuka
陽介 大塚
Masashi Oikawa
昌志 及川
Shunichi Iwaki
俊一 岩木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Car Corp
Original Assignee
Tokyu Car Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Car Corp filed Critical Tokyu Car Corp
Priority to JP2007277909A priority Critical patent/JP5133651B2/en
Publication of JP2009103662A publication Critical patent/JP2009103662A/en
Application granted granted Critical
Publication of JP5133651B2 publication Critical patent/JP5133651B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser welding evaluation method simplified in procedures necessary to determine weld quality at welded portions, ensuring a constant determination accuracy without depending on skills of surveyors. <P>SOLUTION: The laser welding evaluation method includes a cutting step S101 of cutting out a test piece 15 from a metal material to make a cross section of welded portion a measuring surface 22; a disposing step S103 of preparing an imaging stage 11 having a scale 16 disposed on an imaging surface 11a, and of disposing multiple test pieces 15 to bring the measuring surface 22 into contact with the imaging surface 11a; an imaging step S104 of taking an image of the test pieces along with the scale 16 using an imaging means 12; a calculating step S105 of calculating a physical amount of measuring items from images of measured surfaces of the test pieces; and an evaluation step S106 of evaluating the weld quality at the welded portions by comparing the physical amount with an evaluation criteria. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、レーザ溶接において溶接部の溶接品質を評価するレーザ溶接評価方法に関する。   The present invention relates to a laser welding evaluation method for evaluating the welding quality of a welded part in laser welding.

YAGレーザなどの高エネルギー密度のレーザビームを金属材などの被加工物に照射して、この被加工物に溶接部を形成するレーザ溶接が知られている。レーザ溶接において、溶接部の溶融状態を安定させて溶接部に十分な強度を確保すべく、溶融部断面の形状が均一になることが望ましい。例えば、特許文献1には、被加工物の材質特性や所望の断面形状に関するデータを用いて、最適なレーザビームの制御パラメータ(レーザ出力、走査速度)を算出する技術が記載されている。このように算出された制御パラメータを用いて溶接を行えば、溶接部の断面形状を所望の形状に形成することができる。   Laser welding is known in which a workpiece such as a metal material is irradiated with a laser beam having a high energy density such as a YAG laser, and a weld is formed on the workpiece. In laser welding, it is desirable that the cross-section shape of the melted portion be uniform in order to stabilize the molten state of the welded portion and ensure sufficient strength in the welded portion. For example, Patent Document 1 describes a technique for calculating optimal laser beam control parameters (laser output and scanning speed) using data on material properties of a workpiece and a desired cross-sectional shape. If welding is performed using the control parameters calculated in this way, the cross-sectional shape of the welded portion can be formed into a desired shape.

一方、同一の制御パラメータで溶接を実施しても、溶接装置の故障などにより、溶融部の断面形状が所望の形状に形成されない場合がある。このような状況を把握するために、例えば特許文献2に記載されるように、被加工物にレーザ溶接を施した後に、溶接部の断面を試片として切り出して、この断面を観察することにより、接合材ののど厚や脚長など溶接状態の品質を評価する検査手法がある。
特開2007−260743号公報 特開2007−57485号公報
On the other hand, even if welding is performed with the same control parameters, the cross-sectional shape of the melted part may not be formed in a desired shape due to a failure of the welding apparatus or the like. In order to grasp such a situation, for example, as described in Patent Document 2, after performing laser welding on a workpiece, a cross section of a welded part is cut out as a specimen, and this cross section is observed. There are inspection methods for evaluating the quality of the welded state, such as the throat thickness and leg length of the joining material.
JP 2007-260743 A JP 2007-57485 A

しかしながら、従来の溶接断面を観察して溶接品質を評価する手法では、検査する試片の数が増えるほど作業工程が煩雑になるという問題があった。従来手法では、一般的に、溶接部から試片を切り出して、撮像用ステージに上面が溶接部の断面となるように試片を固定し、この上面を測定面としてマイクロスコープなどの撮像手段で上方から測定面を撮像していた。マイクロスコープで一度に撮像できる範囲は小さく、1度に1個の試片しか観察することができない。また、測定面上の任意の位置における焦点距離がすべて同一になるように、測定面を水平に保持すべく、新たな試片を観察する度に試片を撮像用ステージ上に固定する必要があった。このように、検査する試片の数が増加するに従って、作業工程が煩雑となっていた。   However, the conventional method of evaluating the welding quality by observing the weld cross section has a problem that the work process becomes complicated as the number of test pieces to be inspected increases. In the conventional method, generally, a specimen is cut out from a welded part, and the specimen is fixed to an imaging stage so that the upper surface is a cross section of the welded part, and this upper surface is used as a measurement surface by an imaging means such as a microscope. The measurement surface was imaged from above. The range that can be imaged at a time with a microscope is small, and only one specimen can be observed at a time. In addition, it is necessary to fix the specimen on the imaging stage every time a new specimen is observed in order to keep the measurement plane horizontal so that the focal lengths at any position on the measurement plane are the same. there were. Thus, the work process has become complicated as the number of specimens to be inspected increases.

また、従来手法では、作業効率が検査者の技量に依存するという問題点があった。例えば、溶接部から試片を切り出す際に、試片の加工精度によって検査の工程数に影響が出る。試片の加工精度が高いと、撮像用ステージ上に固定した試片の厚みが一定となるので、撮像用ステージの試片を置き換える度にマイクロスコープと測定面との焦点距離を調整する工程が不要となる。これに対して、試片の加工精度が低いと、試片毎に測定面とマイクロスコープとの距離がばらばらになるので、試片毎にマイクロスコープの焦点距離を調整する必要が生じる。このように、検査者の加工技術などの技量によって検査の作業工程数が影響を受けるので、作業効率が検査者の技量に依存していた。   Further, the conventional method has a problem that the work efficiency depends on the skill of the inspector. For example, when cutting a specimen from a weld, the number of inspection steps is affected by the processing accuracy of the specimen. When the processing accuracy of the specimen is high, the thickness of the specimen fixed on the imaging stage is constant, so the process of adjusting the focal length between the microscope and the measurement surface every time the specimen on the imaging stage is replaced. It becomes unnecessary. On the other hand, when the processing accuracy of the specimen is low, the distance between the measurement surface and the microscope varies for each specimen, so that it is necessary to adjust the focal length of the microscope for each specimen. As described above, the number of inspection work steps is affected by the skill of the inspector's processing technique and the work efficiency depends on the skill of the inspector.

また、従来手法では、1試片毎に測定面を撮像して溶接部の断面を観察するので、試片の大きさや厚みによってマイクロスコープと測定面との距離やマイクロスコープの焦点距離が試片毎に異なってしまう場合がある。従来、実寸法の基準となるスケールが試片と共に撮像され、このスケールに基づいて、測定面の撮像画像から断面形状の各種実寸法を算出し、溶接状態の品質を評価している。しかし、マイクロスコープと測定面との距離が試片毎に変わると、撮像画像中のスケールの大きさも試片毎に異なってしまうので、溶接部の品質を判定する精度が均一にならないという問題があった。   In the conventional method, the measurement surface is imaged for each specimen and the cross section of the weld is observed. Therefore, the distance between the microscope and the measurement surface and the focal length of the microscope depend on the size and thickness of the specimen. It may be different every time. Conventionally, a scale serving as a reference for an actual dimension is imaged together with a specimen, and based on this scale, various actual dimensions of a cross-sectional shape are calculated from a captured image of a measurement surface, and the quality of a welded state is evaluated. However, if the distance between the microscope and the measurement surface changes for each specimen, the size of the scale in the captured image will also differ for each specimen, so the accuracy of judging the quality of the welded part is not uniform. there were.

本発明は、上記課題の解決のためになされたものであり、溶接部の溶接品質を判定するのに要する手順を簡単化するとともに、検査者の技量に依存することなく一定の判定精度を確保することができるレーザ溶接評価方法を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. The present invention simplifies the procedure required to determine the weld quality of the welded portion, and ensures a certain determination accuracy without depending on the skill of the inspector. An object of the present invention is to provide a laser welding evaluation method that can be used.

本発明に係るレーザ溶接評価方法は、レーザ溶接において金属材の溶接部の溶接品質を評価するレーザ溶接評価方法であって、溶接部の断面が測定面となるように、金属材から試片を切り出す切出しステップと、撮像面上にスケールが配置された撮像用ステージを用意し、測定面が撮像用ステージの撮像面に対面して接するように、撮像面上に複数の試片を配置する配置ステップと、撮像面上に配置された試片を、スケールと共に撮像手段を用いて撮像する撮像ステップと、スケールを共通の基準とし、各試片の測定面の画像から溶接部の溶接品質に関する各測定項目の物理量を算出する算出ステップと、物理量を予め定めた評価基準と比較して、溶接部の溶接品質を評価する評価ステップと、を備えることを特徴としている。   The laser welding evaluation method according to the present invention is a laser welding evaluation method for evaluating the welding quality of a welded portion of a metal material in laser welding, wherein a specimen is taken from a metal material so that a cross section of the welded portion becomes a measurement surface. A cutout step to cut out and an imaging stage having a scale arranged on the imaging surface are prepared, and a plurality of specimens are arranged on the imaging surface so that the measurement surface faces and contacts the imaging surface of the imaging stage Steps, imaging steps for imaging specimens arranged on the imaging surface using an imaging means together with a scale, and scales as a common reference, each image relating to the welding quality of the welded portion from the measurement surface image of each specimen The method includes a calculation step for calculating a physical quantity of a measurement item, and an evaluation step for evaluating the welding quality of the welded part by comparing the physical quantity with a predetermined evaluation criterion.

このレーザ溶接評価方法では、各試片の測定面が撮像用ステージの撮像面に対面して接するように、複数の試片が撮像用ステージの撮像面上に配置され、同じく撮像用ステージの撮像面上に配置されているスケールと共に、撮像手段を用いて撮像される。このような構成により、試片を撮像用ステージに固定させる必要がなくなり、また、複数の試片の測定面を同時に撮像することができるので、検査すべき試片の数が増えても作業工程が煩雑にはならず、溶接部の溶接品質を判定するのに要する手順を簡単化することができる。また、撮像用ステージの撮像面に対面して接するように配置された試片の測定面を、撮像手段により撮像するため、撮像手段と試片の測定面との距離は、試片の加工精度に関係なく常に一定になるので、検査者の技量に依存せずに一定の精度で測定面を撮像することができる。更に、スケールを共通の基準として、複数の試片の測定面を同時に撮像した画像から溶接部の溶接品質に関する各測定項目の物理量を算出するので、溶接部の溶接品質を判定する精度を、複数の試片の間で均一にすることができる。   In this laser welding evaluation method, a plurality of specimens are arranged on the imaging surface of the imaging stage so that the measurement surface of each specimen faces and contacts the imaging surface of the imaging stage. The image is picked up using the image pickup means together with the scale arranged on the surface. With such a configuration, it is not necessary to fix the specimen to the imaging stage, and the measurement surface of a plurality of specimens can be imaged at the same time, so even if the number of specimens to be inspected increases, the work process Is not complicated, and the procedure required to determine the welding quality of the welded portion can be simplified. In addition, since the measurement surface of the specimen placed so as to face and contact the imaging surface of the imaging stage is imaged by the imaging means, the distance between the imaging means and the measurement surface of the specimen is the processing accuracy of the specimen. Therefore, the measurement surface can be imaged with a certain accuracy without depending on the skill of the inspector. Furthermore, since the physical quantity of each measurement item related to the welding quality of the welded part is calculated from an image obtained by simultaneously imaging the measurement surfaces of a plurality of specimens using the scale as a common reference, the accuracy of determining the welded quality of the welded part is Can be made uniform between the specimens.

また、本発明のレーザ溶接評価方法は、切出しステップと配置ステップとの間に、試片の測定面に金属エッチングを施すエッチングステップをさらに備えるのが好適である。これにより、試片の測定面において、溶接部とその他の部分の表面粗さが異なるようになり、両者の色のコントラストがより一層大きくなるので、溶接部がより明確に識別できるようになり、算出ステップにおいて溶接部の溶接品質に関する各測定項目を精度よく算出することができる。   Moreover, it is preferable that the laser welding evaluation method of the present invention further includes an etching step for performing metal etching on the measurement surface of the specimen between the cutting step and the placement step. Thereby, in the measurement surface of the specimen, the surface roughness of the welded portion and other portions will be different, and the contrast of both colors will be further increased, so that the welded portion can be more clearly identified, In the calculation step, each measurement item related to the welding quality of the welded portion can be accurately calculated.

本発明のレーザ溶接評価方法によると、試片を撮像用ステージに固定させる必要がなくなり、また、複数の試片の測定面を同時に撮像することができるので、検査すべき試片の数が増えても作業工程が煩雑にはならず、溶接部の溶接品質を判定するのに要する手順を簡単化することができる。また、撮像手段と試片の測定面との距離は、試片の加工精度に関係なく常に一定になるので、検査者の技量に依存せずに一定の精度で測定面を撮像することができる。更に、スケールを共通の基準として、複数の試片の測定面を同時に撮像した画像から溶接部の溶接品質に関する各測定項目の物理量を算出するので、溶接部の溶接品質を判定する精度を、複数の試片の間で均一にすることができる。   According to the laser welding evaluation method of the present invention, it is not necessary to fix the specimen to the imaging stage, and since the measurement surface of a plurality of specimens can be imaged simultaneously, the number of specimens to be inspected increases. However, the work process is not complicated, and the procedure required to determine the welding quality of the welded portion can be simplified. In addition, since the distance between the imaging means and the measurement surface of the specimen is always constant regardless of the processing accuracy of the specimen, the measurement surface can be imaged with a constant accuracy without depending on the skill of the inspector. . Furthermore, since the physical quantity of each measurement item related to the welding quality of the welded part is calculated from an image obtained by simultaneously imaging the measurement surfaces of a plurality of specimens using the scale as a common reference, the accuracy of determining the welded quality of the welded part is Can be made uniform between the specimens.

以下、図面を参照して本発明に係るレーザ溶接部評価方法の好適な実施形態について説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of a laser weld evaluation method according to the invention will be described with reference to the drawings.

図1に、本実施形態に係るレーザ溶接部評価方法を実施するためのレーザ溶接部評価システム10の構成を示す。図1に示すように、レーザ溶接部評価システム10は、試片15a、15b、15cおよびスケール16を撮像面11a上に配置する撮像用ステージ11と、撮像用ステージ11の下側から撮像面11aを撮像する撮像ユニット(撮像手段)12と、撮像ユニット12により撮像された試片15a、15b、15cの測定面22a、22b、22cの画像から、溶接部の溶接品質に関する各測定項目の物理量を算出する測定項目算出部13と、測定項目算出部13で算出された測定項目の物理量を予め定めた評価基準と比較して、溶接部の溶接品質を評価する品質評価部14と、を有する。   In FIG. 1, the structure of the laser welded part evaluation system 10 for implementing the laser welded part evaluation method which concerns on this embodiment is shown. As shown in FIG. 1, the laser weld evaluation system 10 includes an imaging stage 11 in which specimens 15a, 15b, 15c and a scale 16 are arranged on an imaging surface 11a, and an imaging surface 11a from the lower side of the imaging stage 11. The physical quantity of each measurement item related to the welding quality of the welded portion is determined from the image of the imaging unit (imaging means) 12 and the measurement surfaces 22a, 22b, and 22c of the specimens 15a, 15b, and 15c captured by the imaging unit 12. A measurement item calculation unit 13 to be calculated, and a quality evaluation unit 14 to evaluate the welding quality of the welded part by comparing the physical quantity of the measurement item calculated by the measurement item calculation unit 13 with a predetermined evaluation criterion.

撮像用ステージ11は、ガラスや透明プラスチックのような透過性の材料から成る板状部材である。撮像用ステージ11は、その上面に撮像面11aが設けられており、撮像面11aには、長さの目盛りが付けられたスケール16が配置されている。   The imaging stage 11 is a plate member made of a transparent material such as glass or transparent plastic. The imaging stage 11 is provided with an imaging surface 11a on the upper surface, and a scale 16 with a scale of length is arranged on the imaging surface 11a.

試片15a、15b、15cは、レーザ出力、発振方式、溶接速度等の制御パラメータや、溶接を施す金属材の厚みなどの条件を変えて金属材にレーザ溶接を施した後に、金属材の溶接部の断面が測定面22a、22b、22cとなるように、金属材から切り出されたものである。図2に、試片15a、15b、15cの切り出し方の一例を示す。   The specimens 15a, 15b, and 15c are welded to a metal material after laser welding is performed on the metal material while changing control parameters such as laser output, oscillation method, welding speed, and thickness of the metal material to be welded. It is cut out from the metal material so that the cross section of the part becomes the measurement surfaces 22a, 22b, 22c. FIG. 2 shows an example of how to cut out the specimens 15a, 15b, and 15c.

図2に示すように、本実施形態では、金属材の上板21aと下板21bとの間で重ね溶接を行ったときの溶接部21を例示している。金属材の上板21aと下板21bは、例えば、ステンレス鋼におけるオーステナイト系、フェライト系等、また、アルミニウム合金における5000系、6000系、7000系等の各系でくくられる材料で形成される。   As shown in FIG. 2, in this embodiment, the welding part 21 when performing lap welding between the upper plate 21a and the lower plate 21b of the metal material is illustrated. The upper plate 21a and the lower plate 21b of the metal material are made of, for example, a material that is encased in each system such as austenite and ferrite in stainless steel, and 5000 series, 6000 series, and 7000 series in aluminum alloys.

試片15a、15b、15cは、その一面が溶接部の断面である測定面22a、22b、22cとなるように、金属材の溶接部21から切り出される。試片15a、15b、15cは、例えば20mm四方の大きさで切り出される。その後に、試片15a、15b、15cは、測定面22a、22b、22cに金属エッチングが施される。測定面22a、22b、22cにエッチングが施されると、測定面の表面がエッチング液の働きにより溶解除去される。このとき、測定面のうち溶接部分はレーザ溶接によって材質が変化しており、他の部分とエッチング速度が異なるので、エッチングを施した後の測定面22a、22b、22cの表面は、溶接部分とその他の部分で表面粗さが異なるようになる。金属エッチングにおいて、エッチング液には例えばエタノール90%及び硝酸10%の混合液を用いることができる。また、エッチング時間は、例えば5秒程度である。   The specimens 15a, 15b, and 15c are cut out from the welded portion 21 of the metal material so that one surface thereof becomes the measurement surfaces 22a, 22b, and 22c that are cross sections of the welded portion. The specimens 15a, 15b, and 15c are cut out with a size of 20 mm square, for example. Thereafter, the specimens 15a, 15b, and 15c are subjected to metal etching on the measurement surfaces 22a, 22b, and 22c. When the measurement surfaces 22a, 22b, and 22c are etched, the surface of the measurement surface is dissolved and removed by the action of the etching solution. At this time, since the material of the welded portion of the measurement surface is changed by laser welding and the etching rate is different from that of the other portions, the surfaces of the measurement surfaces 22a, 22b, and 22c after etching are the welded portions. The surface roughness is different in other parts. In metal etching, for example, a mixed solution of 90% ethanol and 10% nitric acid can be used as an etchant. The etching time is about 5 seconds, for example.

図1に戻り、試片15a、15b、15cは、本実施形態に係るレーザ溶接評価方法を実施する際には、それぞれの測定面22a、22b、22cが撮像用ステージ11の撮像面11aに対面して接するように、撮像用ステージ11の撮像面11a上に配置される。つまり、試片15a、15b、15cは、測定面22a、22b、22cを下向きにして撮像用ステージ11の撮像面11a上に置かれる。なお、図1には、撮像用ステージ11上に3個の試片15a、15b、15cが配置されている様子が図示されているが、撮像用ステージ11の上に置く試片の数は、撮像用ステージ11および試片の大きさに応じて、3個より多くても良いし、少なくても良い。   Returning to FIG. 1, when the laser welding evaluation method according to the present embodiment is performed, the specimens 15 a, 15 b, and 15 c face each of the measurement surfaces 22 a, 22 b, and 22 c on the imaging surface 11 a of the imaging stage 11. Then, it is disposed on the imaging surface 11a of the imaging stage 11 so as to come into contact with each other. That is, the specimens 15a, 15b, and 15c are placed on the imaging surface 11a of the imaging stage 11 with the measurement surfaces 22a, 22b, and 22c facing downward. FIG. 1 shows a state in which three specimens 15a, 15b, and 15c are arranged on the imaging stage 11, but the number of specimens placed on the imaging stage 11 is as follows. Depending on the size of the imaging stage 11 and the specimen, the number may be more or less than three.

撮像ユニット12は、撮像用ステージ11より下側に配置され、上方の撮像用ステージ11の撮像面11aを撮像できるように設置されている。撮像ユニット12は、撮像用ステージ11の撮像面11aに焦点距離が合うように予め位置決めされている。撮像ユニット12は、図示しない発光部、受光部および走査部を備えており、走査部により一軸方向に移動しながら、発光部により撮像面11aに光を照射し、撮像面11aからの反射光を受光部により検出して、撮像面の画像データを取得する。撮像ユニット12は、具体的には、イメージスキャナのキャリッジであり、発光部は白色蛍光ランプや発光ダイオードなどの光源であり、受光部はCCDやCMOSなどのリニアイメージセンサであり、走査部はリニアイメージセンサのセンサ列と直角方向にキャリッジを移動させるモータなどの駆動手段である。撮像ユニット12の発光部から撮像面11aに照射される照射光は、通常のイメージスキャナと同様に白色光でも良いし、波長が400nm程度の短波長側の可視光線など任意の波長の可視光線を適宜選択して良い。   The imaging unit 12 is disposed below the imaging stage 11 and is installed so that the imaging surface 11a of the upper imaging stage 11 can be imaged. The imaging unit 12 is positioned in advance so that the focal length matches the imaging surface 11 a of the imaging stage 11. The imaging unit 12 includes a light emitting unit, a light receiving unit, and a scanning unit (not shown). While the scanning unit moves in a uniaxial direction, the light emitting unit irradiates the imaging surface 11a with light and reflects the reflected light from the imaging surface 11a. Detection is performed by the light receiving unit, and image data of the imaging surface is acquired. Specifically, the imaging unit 12 is a carriage of an image scanner, a light emitting unit is a light source such as a white fluorescent lamp or a light emitting diode, a light receiving unit is a linear image sensor such as a CCD or CMOS, and a scanning unit is a linear unit. Drive means such as a motor for moving the carriage in a direction perpendicular to the sensor array of the image sensor. Irradiation light applied to the imaging surface 11a from the light emitting unit of the imaging unit 12 may be white light as in a normal image scanner, or visible light having an arbitrary wavelength such as a short wavelength visible light having a wavelength of about 400 nm. You may select suitably.

なお、撮像ユニット12は、具体的には、デジタルカメラであっても良い。この場合、撮像ユニット12は、一箇所に固定され、撮像用ステージの撮像面11aの全面を一度に撮影するように構成される。また、本実施形態とは反対に、撮像ユニット12が一箇所に固定され、撮像用ステージ11が移動して、撮像面全体の画像データを取得するよう構成しても良い。   The imaging unit 12 may specifically be a digital camera. In this case, the imaging unit 12 is fixed at one place and configured to capture the entire imaging surface 11a of the imaging stage at a time. In contrast to the present embodiment, the imaging unit 12 may be fixed at one place, and the imaging stage 11 may be moved to acquire image data of the entire imaging surface.

測定項目算出部13は、撮像ユニット12で撮像された画像データを受け取ると、この画像データの中から溶接部断面を特定し、同一画像データにあるスケールの目盛りを共通の基準として利用して、所定の測定項目の物理量を算出する。品質評価部14は、測定項目算出部13から測定項目のデータを受け取ると、各試片15a、15b、15cの溶接部の溶接品質を評価する。測定項目算出部13および品質評価部14は、物理的には、CPU、メモリ、通信インタフェース、ハードディスクなどの格納部、ディスプレイなどの表示部等を備えたコンピュータシステムで実現される。測定項目算出部13および品質評価部14における具体的な処理については後述する。   When the measurement item calculation unit 13 receives the image data captured by the imaging unit 12, the measurement item calculation unit 13 identifies a cross section of the weld from the image data, and uses the scale scale in the same image data as a common reference, A physical quantity of a predetermined measurement item is calculated. When the quality evaluation unit 14 receives the measurement item data from the measurement item calculation unit 13, the quality evaluation unit 14 evaluates the welding quality of the welded portions of the specimens 15a, 15b, and 15c. The measurement item calculation unit 13 and the quality evaluation unit 14 are physically realized by a computer system including a CPU, a memory, a communication interface, a storage unit such as a hard disk, a display unit such as a display, and the like. Specific processing in the measurement item calculation unit 13 and the quality evaluation unit 14 will be described later.

次に、本実施形態に係るレーザ溶接部評価方法について説明する。図4に、レーザ溶接部評価方法のフローチャートを示す。   Next, the laser weld evaluation method according to this embodiment will be described. FIG. 4 shows a flowchart of the laser weld evaluation method.

まず、溶接部の断面が試片の測定面22a、22b、22cとなるように、試片15a、15b、15cが金属材の溶接部21から切り出される(S101:切出しステップ)。試片15a、15b、15cを切り出す工程は、切削機械などを用いて検査者が手作業で行っても良いし、コンピュータなどの制御手段により自動で行っても良い。その後に、試片の測定面22a、22b、22cに金属エッチングが実施される(S102:エッチングステップ)。   First, the specimens 15a, 15b, and 15c are cut out from the welded part 21 of the metal material so that the cross section of the welded part becomes the measurement surfaces 22a, 22b, and 22c of the specimen (S101: cutting step). The step of cutting the specimens 15a, 15b, and 15c may be performed manually by an inspector using a cutting machine or the like, or may be automatically performed by a control unit such as a computer. Thereafter, metal etching is performed on the measurement surfaces 22a, 22b, and 22c of the specimen (S102: etching step).

次に、切り出された試片15a、15b、15cは、試片の測定面22a、22b、22cが撮像用ステージ11の撮像面11aに対面して接するように、撮像用ステージ11の撮像面上に配置される(S103:配置ステップ)。具体的には、例えば図1に示すように、試片15a、15b、15cは、測定面22a、22b、22cを下向きにして撮像面11aに配置される。そして、撮像面11a上に配置された試片15a、15b、15cが、同じく撮像面11a上に配置されているスケール16と共に、撮像ユニット12によって撮像される(S104:撮像ステップ)。   Next, the cut specimens 15 a, 15 b, and 15 c are on the imaging surface of the imaging stage 11 so that the measurement surfaces 22 a, 22 b, and 22 c of the specimen face the imaging surface 11 a of the imaging stage 11. (S103: placement step). Specifically, for example, as shown in FIG. 1, the specimens 15a, 15b, and 15c are arranged on the imaging surface 11a with the measurement surfaces 22a, 22b, and 22c facing downward. Then, the specimens 15a, 15b, and 15c arranged on the imaging surface 11a are imaged by the imaging unit 12 together with the scale 16 that is also arranged on the imaging surface 11a (S104: imaging step).

次に、測定項目算出部13によって、撮像ユニット12により撮像されたスケール16を共通の基準として、各試片の測定面22a、22b、22cの画像から、溶接部21の溶接品質に関する各測定項目の物理量が算出される(S105:算出ステップ)。具体的には、測定項目算出部13は、まず、画像データを撮像ユニット12から受け取ると、画像データの中から試片15a、15b、15cの測定面22a、22b、22cを抽出する。測定面22a、22b、22cを抽出するためには、例えば、画像中の色の違いから画像処理ソフトウェアを利用して自動的に検出する手法や、画像データをディプレイ表示してポインティングデバイスなどで検査者が測定ポイントを入力する手法などを適宜選択して良い。次に、画像データのスケールの一目盛りが何ピクセル分あるかを計測して、1ピクセル辺りの実際の長さを算出する。そして、測定面22a、22b、22cの測定項目をピクセル数で測定し、実際の長さに換算して、測定項目を算出する。図3に測定項目の一例を示す。図3に示すように、本実施形態では、測定項目は、溶接部断面の面積S、溶接部断面の輪郭線長L、上板21aおよび下板21bの境界での溶接部断面の幅B、および溶接部断面の深さDである。   Next, each measurement item related to the welding quality of the welded part 21 from the images of the measurement surfaces 22a, 22b, and 22c of each specimen using the scale 16 imaged by the imaging unit 12 by the measurement item calculation unit 13 as a common reference. Is calculated (S105: calculation step). Specifically, the measurement item calculation unit 13 first receives the image data from the imaging unit 12, and extracts the measurement surfaces 22a, 22b, and 22c of the specimens 15a, 15b, and 15c from the image data. In order to extract the measurement surfaces 22a, 22b, and 22c, for example, a method of automatically detecting the difference in colors in the image using image processing software, a display device that displays image data, and a pointing device are used. A method of inputting a measurement point by the inspector may be appropriately selected. Next, the number of pixels on the scale of the image data is measured to calculate the actual length per pixel. And the measurement item of measurement surface 22a, 22b, 22c is measured by the number of pixels, is converted into actual length, and a measurement item is calculated. FIG. 3 shows an example of measurement items. As shown in FIG. 3, in the present embodiment, the measurement items are the area S of the weld cross section, the contour length L of the weld cross section, the width B of the weld cross section at the boundary between the upper plate 21a and the lower plate 21b, And the depth D of the weld section.

そして、品質評価部14によって、測定項目算出部13により算出された測定項目が予め定めた評価基準と比較され、溶接部の溶接品質が評価される(S105:評価ステップ)。具体的には、品質評価部14は、例えば、以下のような評価基準を設けている。なお、以下の例は、金属材の上板21aおよび下板21bの板厚がそれぞれ0.8mmおよび1.5mmの重ね溶接の場合の評価基準である。
・面積S:正常品との差が10%以下
・輪郭線長L:正常品との差が10%以下
・幅B:0.8mm以上
・深さD:1.2mm以上。
なお、上記の評価基準で用いた「正常品」とは、この試片の作成時に設定されているレーザ溶接の制御パラメータ(レーザ出力、発振方式、溶接速度等)でレーザ溶接を実施した場合に、本来実現されるべき断面形状のことをいう。
Then, the quality evaluation unit 14 compares the measurement item calculated by the measurement item calculation unit 13 with a predetermined evaluation criterion, and evaluates the welding quality of the welded portion (S105: evaluation step). Specifically, the quality evaluation unit 14 provides the following evaluation criteria, for example. The following examples are evaluation criteria in the case of lap welding in which the thicknesses of the upper plate 21a and the lower plate 21b of the metal material are 0.8 mm and 1.5 mm, respectively.
-Area S: 10% or less difference from normal product
・ Outline length L: Difference from normal product is 10% or less
・ Width B: 0.8mm or more
-Depth D: 1.2 mm or more.
Note that the “normal product” used in the above evaluation criteria refers to the case where laser welding is performed with the laser welding control parameters (laser output, oscillation method, welding speed, etc.) set when the specimen is created. This refers to the cross-sectional shape that should be realized.

品質評価部14は、測定項目の各項目について評価基準を満たしているか否かを判定し、全ての評価基準を満たしている場合に、試片の溶接品質が「正常」であると判定する。それ以外の場合には、その試片の溶接品質が「異常」であると判定する。   The quality evaluation unit 14 determines whether or not each measurement item satisfies the evaluation criteria, and determines that the weld quality of the specimen is “normal” when all the evaluation criteria are satisfied. In other cases, it is determined that the welding quality of the specimen is “abnormal”.

本実施形態のレーザ溶接評価方法では、試片15a、15b、15cのそれぞれの測定面22a、22b、22cが撮像用ステージ11の撮像面11aに対面して接するように、撮像用ステージ11の撮像面11a上に配置され、同じく撮像用ステージ11の撮像面11a上に配置されているスケール16と共に、撮像ユニット12を用いて撮像される。このような構成により、試片15a、15b、15cを撮像用ステージ11に固定させる必要がなくなり、また、複数の試片15a、15b、15cの測定面22a、22b、22cを同時に撮像することができるので、検査すべき試片の数が増えても作業工程が煩雑にはならず、溶接部の溶接品質を判定するのに要する手順を簡単化することができる。   In the laser welding evaluation method of the present embodiment, the imaging stage 11 is imaged so that the measurement surfaces 22a, 22b, and 22c of the specimens 15a, 15b, and 15c face and come into contact with the imaging surface 11a of the imaging stage 11. The image is picked up using the image pickup unit 12 together with the scale 16 that is arranged on the surface 11 a and is similarly arranged on the image pickup surface 11 a of the image pickup stage 11. With such a configuration, it is not necessary to fix the specimens 15a, 15b, and 15c to the imaging stage 11, and it is possible to simultaneously image the measurement surfaces 22a, 22b, and 22c of the plurality of specimens 15a, 15b, and 15c. Therefore, even if the number of specimens to be inspected increases, the work process does not become complicated, and the procedure required to determine the welding quality of the welded portion can be simplified.

また、撮像用ステージ11の撮像面11aに対面して接するように配置された試片の測定面22a、22b、22cを撮像ユニット12により撮像するため、撮像ユニット12と試片の測定面22a、22b、22cとの距離は、試片の加工精度に関係なく常に一定になるので、検査者の技量に依存せずに一定の精度で測定面を撮像することができる。更に、スケール16を共通の基準として、複数の試片の測定面22a、22b、22cを同時に撮像した画像から溶接部21の溶接品質に関する各測定項目の物理量を算出するので、溶接部の溶接品質を判定する精度を、複数の試片の間で均一にすることができる。   In addition, since the imaging unit 12 images the measurement surfaces 22a, 22b, and 22c of the specimen arranged so as to face and contact the imaging surface 11a of the imaging stage 11, the imaging unit 12 and the measurement surface 22a of the specimen are used. Since the distances from 22b and 22c are always constant regardless of the processing accuracy of the specimen, the measurement surface can be imaged with constant accuracy without depending on the skill of the inspector. Furthermore, since the physical quantity of each measurement item related to the welding quality of the welded part 21 is calculated from images obtained by simultaneously imaging the measurement surfaces 22a, 22b, and 22c of a plurality of specimens using the scale 16 as a common reference, the weld quality of the welded part is calculated. Can be made uniform among a plurality of specimens.

また、エッチングステップS102において、試片の測定面22a、22b、22cに金属エッチングを施すことによって、試片の測定面22a、22b、22cにおいて、溶接部21とその他の部分の表面粗さが異なるようになり、両者の色のコントラストがより一層大きくなるので、溶接部21がより明確に識別できるようになり、算出ステップS105において溶接部の溶接品質に関する各測定項目を精度よく算出することができる。   Further, in the etching step S102, by performing metal etching on the measurement surfaces 22a, 22b, and 22c of the specimen, the surface roughness of the welded portion 21 and other portions on the measurement surfaces 22a, 22b, and 22c of the specimen is different. As a result, the contrast between the two colors is further increased, so that the welded portion 21 can be more clearly identified, and each measurement item related to the weld quality of the welded portion can be accurately calculated in the calculation step S105. .

以上、本発明に係るレーザ溶接評価方法について好適な実施形態を挙げて説明したが、本発明は上記実施形態に限られるものではない。   As described above, the laser welding evaluation method according to the present invention has been described with reference to the preferred embodiment, but the present invention is not limited to the above embodiment.

本発明の一実施形態に係るレーザ溶接部評価方法を実施するためのレーザ溶接部評価システムの構成を示す図である。It is a figure which shows the structure of the laser welding part evaluation system for enforcing the laser welding part evaluation method which concerns on one Embodiment of this invention. 溶接部から試片を切り出す工程の一例を示す図である。It is a figure which shows an example of the process of cutting out a test piece from a welding part. 算出ステップにおいて算出される溶接部の断面に係る測定項目を示す図である。It is a figure which shows the measurement item which concerns on the cross section of the welding part calculated in a calculation step. 本発明の一実施形態に係るレーザ溶接部評価方法のフローチャートである。It is a flowchart of the laser welding part evaluation method which concerns on one Embodiment of this invention.

符号の説明Explanation of symbols

11…撮像用ステージ、12…撮像ユニット(撮像手段)、13…測定項目算出部、14…品質評価部、15a、15b、15c…試片、16…スケール、22…測定面、S101…切出しステップ、S102…配置ステップ、S103…撮像ステップ、S104…算出ステップ、S105…評価ステップ。

DESCRIPTION OF SYMBOLS 11 ... Imaging stage, 12 ... Imaging unit (imaging means), 13 ... Measurement item calculation part, 14 ... Quality evaluation part, 15a, 15b, 15c ... Specimen, 16 ... Scale, 22 ... Measurement surface, S101 ... Extraction step , S102 ... placement step, S103 ... imaging step, S104 ... calculation step, S105 ... evaluation step.

Claims (2)

レーザ溶接において金属材の溶接部の溶接品質を評価するレーザ溶接評価方法であって、
前記溶接部の断面が測定面となるように、前記金属材から試片を切り出す切出しステップと、
撮像面上にスケールが配置された撮像用ステージを用意し、前記測定面が前記撮像用ステージの撮像面に対面して接するように、前記撮像面上に複数の前記試片を配置する配置ステップと、
前記撮像面上に配置された試片を、前記スケールと共に撮像手段を用いて撮像する撮像ステップと、
前記スケールを共通の基準とし、前記各試片の測定面の画像から前記溶接部の溶接品質に関する各測定項目の物理量を算出する算出ステップと、
前記物理量を予め定めた評価基準と比較して、前記溶接部の溶接品質を評価する評価ステップと、
を備えるレーザ溶接評価方法。
A laser welding evaluation method for evaluating the welding quality of a welded portion of a metal material in laser welding,
A cutting step of cutting a specimen from the metal material so that a cross section of the weld becomes a measurement surface;
An arrangement step of preparing an imaging stage having a scale arranged on the imaging surface, and arranging the plurality of specimens on the imaging surface such that the measurement surface faces and contacts the imaging surface of the imaging stage. When,
An imaging step of imaging the specimen placed on the imaging surface using an imaging means together with the scale;
A calculation step for calculating a physical quantity of each measurement item related to the weld quality of the weld from the image of the measurement surface of each specimen, using the scale as a common reference,
An evaluation step for comparing the physical quantity with a predetermined evaluation criterion to evaluate the weld quality of the weld,
A laser welding evaluation method comprising:
前記切出しステップと前記配置ステップとの間に、前記試片の測定面に金属エッチングを施すエッチングステップをさらに備えた請求項1に記載のレーザ溶接評価方法。






















The laser welding evaluation method according to claim 1, further comprising an etching step of performing metal etching on the measurement surface of the specimen between the cutting step and the arranging step.






















JP2007277909A 2007-10-25 2007-10-25 Laser welding evaluation method Expired - Fee Related JP5133651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007277909A JP5133651B2 (en) 2007-10-25 2007-10-25 Laser welding evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007277909A JP5133651B2 (en) 2007-10-25 2007-10-25 Laser welding evaluation method

Publications (2)

Publication Number Publication Date
JP2009103662A true JP2009103662A (en) 2009-05-14
JP5133651B2 JP5133651B2 (en) 2013-01-30

Family

ID=40705459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007277909A Expired - Fee Related JP5133651B2 (en) 2007-10-25 2007-10-25 Laser welding evaluation method

Country Status (1)

Country Link
JP (1) JP5133651B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150166820A1 (en) * 2012-04-06 2015-06-18 Nitto Denko Corporation Air-permeable sheet imparted with oil repellency
WO2020089993A1 (en) * 2018-10-30 2020-05-07 京セラ株式会社 Terminal, system, and support method
JP2021185344A (en) * 2020-05-25 2021-12-09 日本車輌製造株式会社 Measurement device and measurement program

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541843U (en) * 1978-09-11 1980-03-18
JPS619637A (en) * 1984-06-25 1986-01-17 Masayoshi Fukashiro Illuminating lamp for copying device
JP2000221016A (en) * 1999-02-02 2000-08-11 Fuji Photo Film Co Ltd Welding inspection method
JP2003029161A (en) * 2001-07-18 2003-01-29 Olympus Optical Co Ltd Specimen observation device
JP2003166814A (en) * 2001-12-04 2003-06-13 Hitachi Eng Co Ltd Shape inspection device
JP2003334687A (en) * 2002-05-20 2003-11-25 Kawasaki Heavy Ind Ltd Method for laser welding
WO2004111619A1 (en) * 2003-06-12 2004-12-23 Nippon Light Metal Company,Ltd. Impurity measuring method and device
JP2006078234A (en) * 2004-09-07 2006-03-23 Kyoto Univ Gravel measuring instrument and method
JP2007260743A (en) * 2006-03-29 2007-10-11 Tokyu Car Corp Laser welding method
JP2008215976A (en) * 2007-03-02 2008-09-18 Nikon Corp Substrate inspection device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541843U (en) * 1978-09-11 1980-03-18
JPS619637A (en) * 1984-06-25 1986-01-17 Masayoshi Fukashiro Illuminating lamp for copying device
JP2000221016A (en) * 1999-02-02 2000-08-11 Fuji Photo Film Co Ltd Welding inspection method
JP2003029161A (en) * 2001-07-18 2003-01-29 Olympus Optical Co Ltd Specimen observation device
JP2003166814A (en) * 2001-12-04 2003-06-13 Hitachi Eng Co Ltd Shape inspection device
JP2003334687A (en) * 2002-05-20 2003-11-25 Kawasaki Heavy Ind Ltd Method for laser welding
WO2004111619A1 (en) * 2003-06-12 2004-12-23 Nippon Light Metal Company,Ltd. Impurity measuring method and device
JP2006078234A (en) * 2004-09-07 2006-03-23 Kyoto Univ Gravel measuring instrument and method
JP2007260743A (en) * 2006-03-29 2007-10-11 Tokyu Car Corp Laser welding method
JP2008215976A (en) * 2007-03-02 2008-09-18 Nikon Corp Substrate inspection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150166820A1 (en) * 2012-04-06 2015-06-18 Nitto Denko Corporation Air-permeable sheet imparted with oil repellency
US9255209B2 (en) * 2012-04-06 2016-02-09 Nitto Denko Corporation Air-permeable sheet imparted with oil repellency
WO2020089993A1 (en) * 2018-10-30 2020-05-07 京セラ株式会社 Terminal, system, and support method
JP2021185344A (en) * 2020-05-25 2021-12-09 日本車輌製造株式会社 Measurement device and measurement program
JP7482686B2 (en) 2020-05-25 2024-05-14 日本車輌製造株式会社 Measurement device and measurement program

Also Published As

Publication number Publication date
JP5133651B2 (en) 2013-01-30

Similar Documents

Publication Publication Date Title
JP2008175686A (en) Visual examination device and visual examination method
US20240261907A1 (en) Laser welding quality inspection method and laser welding quality inspection apparatus
KR101026720B1 (en) High-speed laser vision sensor system, high-speed image processing method and weld bead inspection mehtod using the same
JP4876599B2 (en) Quality detection method and apparatus for butt welds
JP5133651B2 (en) Laser welding evaluation method
KR101987223B1 (en) Burr inspection system and method
JP2005091288A (en) Discrimination method for casting defect
CN116429791A (en) Crack detection method for monocrystalline silicon rod
JP4412180B2 (en) Laser ultrasonic inspection method and laser ultrasonic inspection device
JP2006170684A (en) Method and device for inspecting press failure
JP2007284288A (en) Scribing method and scribing device for substrate
JP5611177B2 (en) Ablation abnormality detection device and anomaly detection method
JP5042503B2 (en) Defect detection method
CN116053155A (en) Method and system for detecting depth of damaged layer on surface of silicon wafer
JP2007171582A (en) Sample imaging apparatus and sample analysis apparatus provided with the same
JP4793161B2 (en) Quality inspection method and apparatus for butt welds
JP2008058133A (en) Measuring device for curvature radius of long tool edge and its method
JP2005207858A (en) Inspection method and inspection device for steel product surface defect
JP4797568B2 (en) Slab vertical crack detection method and apparatus
JP2012002605A (en) Defect inspection method of welded surface
JP2008196866A (en) Weld crack detection method and device
Schick et al. Fast scanning confocal sensor provides high-fidelity surface profiles on a microscopic scale
US20240261891A1 (en) Laser processing device and laser processing method
JP4002842B2 (en) Evaluation method of steel cleanliness by water immersion ultrasonic testing
JP2020116602A (en) Detection system and detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120921

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5133651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees