JP2002267433A - Method and apparatus for inspecting rupture section - Google Patents

Method and apparatus for inspecting rupture section

Info

Publication number
JP2002267433A
JP2002267433A JP2001071666A JP2001071666A JP2002267433A JP 2002267433 A JP2002267433 A JP 2002267433A JP 2001071666 A JP2001071666 A JP 2001071666A JP 2001071666 A JP2001071666 A JP 2001071666A JP 2002267433 A JP2002267433 A JP 2002267433A
Authority
JP
Japan
Prior art keywords
thickness
detecting
broken
image
broken portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001071666A
Other languages
Japanese (ja)
Other versions
JP4588907B2 (en
JP2002267433A5 (en
Inventor
Hiroyasu Kubo
泰康 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001071666A priority Critical patent/JP4588907B2/en
Publication of JP2002267433A publication Critical patent/JP2002267433A/en
Publication of JP2002267433A5 publication Critical patent/JP2002267433A5/ja
Application granted granted Critical
Publication of JP4588907B2 publication Critical patent/JP4588907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a rupture section inspection method and its apparatus for speedily, accurately, and stably detecting the position and thickness of a rupture section utilizing X rays. SOLUTION: The rupture section inspection apparatus comprises an X-ray radiation source 1 for transmitting radiation X rays 2 through an object 3, an X-ray image pickup tube 4 for picking up the image of the transmitted X rays, and an image-processing apparatus 5 for detecting the thickness of a rupture section 7 by detecting the position of the rupture section 7 in the object 3 by the image that has been picked up, thus transmitting X rays through the object for picking up an image, and detecting the position and thickness of the rupture section 7 in the object 3 from the image that has been picked up.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、難視対象物や不可
視対象物に設けられた破断部の位置や厚みを検査する破
断部検査方法及び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for inspecting a broken portion for inspecting the position and thickness of a broken portion provided on an object that is difficult to view or an invisible object.

【0002】[0002]

【従来の技術】近年、生産物の検査工程において、難視
対象物や不可視対象物の自動検査が求められることが多
くなっている。例えば、リチウムイオン電池などにおい
ては、内部液漏れ等による万一の爆発を防止するため、
ケースの一部にスクライブと呼ばれる破断部を設け、内
圧上昇時にこのスクライブを破断させることで内圧上昇
を防止するように構成されている。そのため、破断部の
厚みの管理は、この機能を保証する上で非常に重要であ
る。
2. Description of the Related Art In recent years, in a product inspection process, automatic inspection of hard-to-sight objects and invisible objects has been increasingly required. For example, in the case of lithium ion batteries, etc.
A break portion called a scribe is provided in a part of the case, and the scribe is broken when the internal pressure rises, thereby preventing the internal pressure from rising. Therefore, management of the thickness of the broken portion is very important in guaranteeing this function.

【0003】しかるに、破断部厚みを容易に精度良く測
定する方法はなく、そのため専任の作業員により3次元
測定機などを用いて、破断部の断面形状を測定し、標準
肉厚との差を求めて破断部厚みを推定している。
[0003] However, there is no method for easily and accurately measuring the thickness of the fractured portion. Therefore, a dedicated worker measures the cross-sectional shape of the fractured portion using a three-dimensional measuring machine or the like to determine the difference from the standard thickness. The thickness of the fractured part is estimated.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記3
次元測定機などを用いた測定方法では、測定に手間と時
間がかかり過ぎ、高速にて高精度な自動検査を行うこと
ができないという問題があった。
However, the above 3)
In a measuring method using a dimension measuring machine or the like, there is a problem that measurement takes too much time and labor, and a high-speed and high-precision automatic inspection cannot be performed.

【0005】本発明は、上記従来の問題に鑑み、X線を
利用して破断部の位置と厚みを高速、高精度、安定的に
検出できる破断部検査方法及び装置を提供することを目
的としている。
The present invention has been made in view of the above-mentioned conventional problems, and has as its object to provide a method and an apparatus for inspecting a broken portion which can detect the position and thickness of the broken portion at high speed, with high accuracy, and stably using X-rays. I have.

【0006】[0006]

【課題を解決するための手段】本発明の破断部検査方法
は、X線源より放射したX線を対象物に透過させ、X線
撮像管で撮像する工程と、撮像画像より対象物中の破断
部の位置及び厚みを検出する工程とから成るものであ
り、X線を利用して破断部の位置と厚みを高速、高精
度、安定的に検出できる。
According to the present invention, there is provided a method for inspecting a fractured portion, comprising transmitting an X-ray radiated from an X-ray source to an object and imaging the object with an X-ray imaging tube. A step of detecting the position and thickness of the broken portion, and the position and thickness of the broken portion can be detected at high speed, with high accuracy, and stably using X-rays.

【0007】また、破断部の位置を検出する工程におい
て、X線源の焦点と撮像管面中央とを結ぶ軸と破断部の
壁面を略平行にして透過画像上に破断部位のコントラス
トを明瞭にし、明瞭なコントラストにて破断部位置を検
出すると、破断部位置を確実に検出することができて好
適である。
In the step of detecting the position of the broken portion, an axis connecting the focal point of the X-ray source and the center of the imaging tube surface and the wall surface of the broken portion are made substantially parallel to make the contrast of the broken portion clear on a transmission image. It is preferable to detect the position of the broken portion with clear contrast, since the position of the broken portion can be reliably detected.

【0008】また、破断部の厚みを検出する工程におい
て、対象物の材料によって決まる画像濃度の減衰係数を
求め、求めた減衰係数と撮像画像中の破断部の画像濃度
から厚みを演算すると、厚みを精度良く検出することが
できて好適である。
In the step of detecting the thickness of the broken portion, the attenuation coefficient of the image density determined by the material of the object is obtained, and the thickness is calculated from the obtained attenuation coefficient and the image density of the broken portion in the captured image. Can be accurately detected.

【0009】また、破断部の厚みを検出する工程におい
て、対象物を撮像するのと同時に厚みが既知の参照物を
撮像し、破断部及び参照物の画像濃度と参照物の厚みか
ら破断部厚みを演算すると、X線源の放射レベルや撮像
器のゲインの変動の影響を受けずに精度よく厚みを検出
できてさらに好適である。
In the step of detecting the thickness of the broken part, a target having a known thickness is imaged at the same time as the object is imaged, and the thickness of the broken part is determined from the image density of the broken part and the reference and the thickness of the reference. Is more preferable because the thickness can be accurately detected without being affected by the fluctuation of the radiation level of the X-ray source or the gain of the imaging device.

【0010】また、本発明の破断部検査装置は、対象物
にX線を透過させるためのX線源と、透過したX線を撮
像するX線撮像管と、撮像画像より対象物中の破断部の
位置を検出する手段と、対象物中の破断部の厚みを検出
する手段とを備えたものであり、上記検査方法を実施し
て破断部の位置と厚みを高速、高精度、安定的に検出で
きる。
[0010] In addition, the breakage inspection apparatus of the present invention includes an X-ray source for transmitting X-rays through an object, an X-ray imaging tube for imaging the transmitted X-rays, and a fracture in the object based on the captured image. Means for detecting the position of the part, and means for detecting the thickness of the fractured part in the object, and implements the above-described inspection method to quickly and accurately determine the position and thickness of the fractured part. Can be detected.

【0011】また、破断部の位置を検出する手段が、X
線源の焦点と撮像管面中央とを結ぶ軸と破断部の壁面が
略平行となるように対象物を配置する手段と、透過画像
上に破断部位のコントラストから破断部位置を検出する
手段とから成ると、破断部位置を明瞭なコントラストで
検出できて好適である。
Further, the means for detecting the position of the break is X
Means for arranging the object such that the axis connecting the focal point of the source and the center of the imaging tube surface and the wall surface of the fractured part are substantially parallel, and means for detecting the fractured part position from the contrast of the fractured part on the transmission image Is preferable because the position of the break can be detected with a clear contrast.

【0012】また、破断部の厚みを検出する手段が、対
象物の材料によって決まる画像濃度の減衰係数を求める
手段と、求めた減衰係数と撮像画像中の破断部の画像濃
度から厚みを演算する手段とから成ると、厚みを精度良
く検出することができて好適である。
Further, the means for detecting the thickness of the broken portion calculates the attenuation coefficient of the image density determined by the material of the object, and calculates the thickness from the obtained attenuation coefficient and the image density of the broken portion in the captured image. This is preferable because the thickness can be accurately detected.

【0013】また、破断部の厚みを検出する手段が、対
象物を撮像するのと同時に厚みが既知の参照物を撮像す
る手段と、破断部及び参照物の画像濃度と参照物の厚み
から破断部厚みを演算する手段とから成ると、X線源の
放射レベルや撮像器のゲインの変動の影響を受けずにさ
らに精度良く厚みを検出することができて好適である。
[0013] The means for detecting the thickness of the broken portion includes a means for imaging a reference object having a known thickness at the same time as the image of the object, and a method for detecting the thickness of the broken portion and the reference object and the thickness of the reference object. The means for calculating the thickness of the portion is preferable because the thickness can be detected with higher accuracy without being affected by the radiation level of the X-ray source or the gain of the imaging device.

【0014】[0014]

【発明の実施の形態】以下、本発明の破断部検査方法及
び装置の一実施形態について、図1〜図4を参照して説
明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the method and the apparatus for inspecting a broken portion according to the present invention will be described below with reference to FIGS.

【0015】図1に、透過X線を利用した破断部検査装
置の概略構成を示す。図1において、1はX線放射線
源、2は放射X線、3は対象物、4はX線撮像管、5は
撮像した画像から対象物3内の破断部7の位置と厚みを
求める画像処理装置、6は撮像画像のモニタである。
FIG. 1 shows a schematic configuration of a breakage inspection apparatus using transmitted X-rays. In FIG. 1, 1 is an X-ray radiation source, 2 is a radiation X-ray, 3 is an object, 4 is an X-ray imaging tube, and 5 is an image for obtaining the position and thickness of the fracture 7 in the object 3 from the captured image. The processing device 6 is a monitor for a captured image.

【0016】放射X線2は、X線放射線源1の放射点
(焦点)から直線放射状に進行し、途中の対象物3によ
り減衰しつつ、その一部がX線撮像管4に到達し、画像
化される。破断部7はその近傍の肉厚に比べて薄くなっ
ている。透過X線の吸収は肉厚の厚い近傍が破断部7に
比べて多くなる。このため、破断部7は透過X線が多
く、その近傍はX線透過が少ないため、この差が画像の
濃度差となって現れる。
The radiation X-ray 2 travels linearly from the radiation point (focal point) of the X-ray radiation source 1, attenuates by an object 3 on the way, and a part of the radiation X-ray reaches the X-ray imaging tube 4. It is imaged. The breaking portion 7 is thinner than the wall thickness in the vicinity. The absorption of transmitted X-rays is larger in the vicinity of the thicker wall than in the broken part 7. For this reason, since the broken portion 7 has a large amount of transmitted X-rays and a small amount of X-ray transmission in the vicinity thereof, this difference appears as a difference in image density.

【0017】図2は、測定時における破断部7のV字状
の断面形状と放射X線2の位置関係を示している。この
ように測定時には放射X線2の主軸に対して、対象物3
はある角度を付けて斜めに配置する。これは、肉厚測定
の対象となるケースの総厚みを最小限にして、破断部7
の近傍に対する厚みの違いの割合を相対的に大きくする
ためである。
FIG. 2 shows the positional relationship between the radiation X-ray 2 and the V-shaped cross-sectional shape of the fractured portion 7 during measurement. In this manner, at the time of measurement, the object 3
Are arranged diagonally at an angle. This minimizes the total thickness of the case for which the thickness is to be measured,
The reason is that the ratio of the difference in the thickness to the vicinity of is relatively large.

【0018】また、破断部7のV字断面の両壁面のう
ち、一方の壁面を放射X線2の主軸、すなわちX線放射
線源1の焦点とX線撮像管4の管面中央とを結ぶ軸に略
平行に配置している。こうすることにより、破断部7の
この斜面の前後での透過X線量の変化が急峻となり、X
線撮像管4によって撮像される画像の濃度変化が斜面前
後で明瞭なエッジが現れる。従って、対象物3に位置変
動が生じても、エッジサーチを行うことで破断部7の位
置を安定的に求めることができる。
Further, one of the two wall surfaces of the V-shaped cross section of the break portion 7 connects the main axis of the radiation X-ray 2, that is, the focal point of the X-ray radiation source 1 and the center of the tube surface of the X-ray imaging tube 4. They are arranged substantially parallel to the axis. By doing so, the change in the transmitted X-ray dose before and after this slope of the fractured portion 7 becomes sharp,
The density change of the image picked up by the line image pickup tube 4 has a clear edge before and after the slope. Therefore, even if the position of the object 3 fluctuates, the position of the break 7 can be stably obtained by performing the edge search.

【0019】画像処理装置5は、図3に示すように、X
線撮像管4からの画像信号をデジタル画像データに変換
するA/D変換器10と、画像データを記憶する画像メ
モリ11と、画像データをモニタ6に出力するI/O1
2と、画像メモリ11の画像データから破断部7のエッ
ジを検出して破断部7の位置を求めるエッジ検出手段1
3と、後述の如く破断部7の厚みやそれを求めるための
係数を演算する厚み・係数演算手段14と、求めた係数
を記憶する係数記憶手段15と、求めた破断部7の厚み
を出力する出力手段16と、これらエッジ検出手段13
と厚み・係数演算手段14と係数記憶手段15と出力手
段16を制御する制御手段17にて構成されている。
As shown in FIG. 3, the image processing device 5
A / D converter 10 for converting an image signal from line imaging tube 4 into digital image data, image memory 11 for storing image data, and I / O 1 for outputting image data to monitor 6
2 and an edge detecting means 1 for detecting the edge of the broken portion 7 from the image data in the image memory 11 and obtaining the position of the broken portion 7
3, a thickness / coefficient calculating means 14 for calculating the thickness of the fractured part 7 and a coefficient for calculating the thickness as described later, a coefficient storage means 15 for storing the determined coefficient, and outputting the determined thickness of the fractured part 7 Output means 16 and the edge detection means 13
And a control means 17 for controlling the thickness / coefficient calculation means 14, the coefficient storage means 15, and the output means 16.

【0020】図4に破断部7の断面近傍の撮像画像濃度
をグラフ化した例を示す。縦軸は画像濃度、横軸は図2
における横方向(水平方向)の位置を示し、位置Lで急
峻なエッジの立ち上がりが生じており、破断部7の斜面
の位置を示している。エッジ検出手段13は、この立ち
上がりを検出するエッジサーチを行うことで破断部7の
位置を検出する。なお、立ち上がったエッジでの画像濃
度Iと破断部7の厚みが関係しており、次のようにして
厚みを演算する。
FIG. 4 shows an example in which the density of a picked-up image in the vicinity of the cross section of the broken portion 7 is graphed. The vertical axis is the image density, and the horizontal axis is FIG.
At the position L, a steep edge rise occurs at the position L, indicating the position of the slope of the fractured portion 7. The edge detecting means 13 detects the position of the broken portion 7 by performing an edge search for detecting the rising edge. Note that the image density I at the rising edge and the thickness of the broken portion 7 are related, and the thickness is calculated as follows.

【0021】図5に、対象物3の破断部7の厚みと透過
X線量(撮像画像濃度I)の関係を示している。縦軸は
画像濃度I、横軸は対象物3の破断部7の厚みTであ
る。厚みTに対する画像濃度Iの関係式は、I=I0
EXP(−μ・T) (I0 は厚み0のときの濃度)で
示される。このため、対象物3と同一材料で厚みTが既
知の2つの参照物を個別に撮像して濃度を求めておけ
ば、I0 及びμを求めることができる。図4中、T1
2 はこれら参照物の厚み、I1 、I2 はそれぞれの画
像濃度であり、これらからI0 及びμが求められる。厚
み・係数演算手段14は、このようにして係数I0 及び
μを求めて係数記憶手段15に記憶させておく。
FIG. 5 shows the relationship between the thickness of the broken portion 7 of the object 3 and the amount of transmitted X-ray (density I of the captured image). The vertical axis represents the image density I, and the horizontal axis represents the thickness T of the broken portion 7 of the object 3. The relational expression of the image density I with respect to the thickness T is I = I 0.
EXP (−μ · T) (I 0 is the density at a thickness of 0). Therefore, if two reference objects of the same material as the object 3 and whose thickness T is known are individually imaged and the density is obtained, I 0 and μ can be obtained. In FIG. 4, T 1 ,
T 2 are the thickness of the reference material, I 1, I 2 are each an image density, these from I 0 and μ are determined. The thickness / coefficient calculating means 14 calculates the coefficients I 0 and μ in this way and stores them in the coefficient storage means 15.

【0022】上式を厚みについて換算すると、T=−1
/μ・LN(I/I0 )となるため、上記係数I0 、μ
と画像濃度Iから厚みTを求めることができる。かくし
て、厚み・係数演算手段14は、検出した画像濃度Iと
係数記憶手段15に記憶されているI0 及びμから破断
部7の厚みTを演算し、その結果が出力手段16にて出
力される。
When the above equation is converted for the thickness, T = −1
/ Μ · LN (I / I 0 ), the coefficient I 0 , μ
And the thickness T can be obtained from the image density I. Thus, the thickness / coefficient calculating means 14 calculates the thickness T of the broken portion 7 from the detected image density I and I 0 and μ stored in the coefficient storage means 15, and the result is output by the output means 16. You.

【0023】以上の実施形態の説明では、厚みTが既知
の2つの参照物を予め個別に撮像して濃度を求め、係数
0 、μを求める例を示したが、図6に示すように、対
象物3と同一材質で厚みTが既知の参照物8、9を対象
物3に並列配置し、これらを同時に撮像するようにする
こともできる。
In the above description of the embodiment, there has been described an example in which two reference objects having known thicknesses T are individually imaged in advance to obtain the density, and the coefficients I 0 and μ are obtained. As shown in FIG. Alternatively, the reference materials 8 and 9 having the same material and a known thickness T as the object 3 may be arranged in parallel with the object 3 so as to image them at the same time.

【0024】こうすると、対象物3の厚みを求める際
に、その都度係数I0 、μを算出することができ、した
がってX線放射線源1の放射レベルが変動したり、X線
撮像管4のゲインが変動することに起因する画像濃度の
レベル変動が生じた際にも、その都度既知の厚みの参照
物8、9を用いて係数を再計算した後、対象物3の破断
部7の厚みを求めるため、変動に起因する測定結果の変
動を極めて小さく抑えることができる。
In this way, each time the thickness of the object 3 is determined, the coefficients I 0 and μ can be calculated, so that the radiation level of the X-ray radiation source 1 fluctuates, Even when the level of the image density fluctuates due to the fluctuation of the gain, the coefficient is recalculated each time using the reference materials 8 and 9 of known thickness, and then the thickness of the broken portion 7 of the object 3 is changed. Is obtained, the fluctuation of the measurement result due to the fluctuation can be suppressed to a very small value.

【0025】本発明によれば、以上のような構成及び処
理によってリチウムイオン電池のケースにおける内圧上
昇防止用の破断部など、難視な対象物の破断部の厚みを
X線を利用して正確、高速、安定的に自動検査すること
ができる。
According to the present invention, the thickness of a broken portion of an invisible object such as a broken portion for preventing an increase in internal pressure in a case of a lithium ion battery can be accurately determined by using X-rays by the above configuration and processing. High-speed, stable and automatic inspection can be performed.

【0026】[0026]

【発明の効果】本発明の破断部検査方法及び装置によれ
ば、以上のようにX線源より放射したX線を対象物に透
過させ、X線撮像管で撮像し、撮像画像より対象物中の
破断部の位置及び厚みを検出するようにしたので、X線
を利用して破断部の位置と厚みを高速、高精度、安定的
に自動検査することができる。
According to the method and the apparatus for inspecting a fractured part of the present invention, the X-rays emitted from the X-ray source are transmitted through the object as described above, imaged by the X-ray image pickup tube, and the object is obtained from the captured image. Since the position and thickness of the break portion in the middle are detected, the position and thickness of the break portion can be automatically inspected at high speed, high accuracy, and stably using X-rays.

【0027】また、破断部の位置を検出する際に、X線
源の焦点と撮像管面中央とを結ぶ軸と破断部の壁面を略
平行にして透過画像上に破断部位のコントラストを明瞭
にし、明瞭なコントラストにて破断部位置を検出する
と、破断部位置を確実に検出することができる。
When detecting the position of the break, the axis connecting the focal point of the X-ray source and the center of the image pickup tube and the wall of the break are made substantially parallel to make the contrast of the break on the transmission image clear. If the position of the break is detected with a clear contrast, the position of the break can be reliably detected.

【0028】また、破断部の厚みを検出する際に、対象
物の材料によって決まる画像濃度の減衰係数を求め、求
めた減衰係数と撮像画像中の破断部の画像濃度から厚み
を演算すると、厚みを精度良く検出することができる。
Further, when detecting the thickness of the broken part, the attenuation coefficient of the image density determined by the material of the object is obtained, and the thickness is calculated from the obtained attenuation coefficient and the image density of the broken part in the captured image. Can be accurately detected.

【0029】また、破断部の厚みを検出する際に、対象
物を撮像するのと同時に厚みが既知の参照物を撮像し、
破断部及び参照物の画像濃度と参照物の厚みから破断部
厚みを演算すると、X線源の放射レベルや撮像器のゲイ
ンの変動の影響を受けずにさらに精度良く厚みを検出す
ることができる。
Further, when detecting the thickness of the fractured portion, an image of a reference object having a known thickness is taken at the same time as the image of the object.
By calculating the thickness of the broken part from the image density of the broken part and the reference object and the thickness of the reference object, the thickness can be detected more accurately without being affected by the fluctuation of the radiation level of the X-ray source or the gain of the imager. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態における破断部検査方法の
概略構成図である。
FIG. 1 is a schematic configuration diagram of a broken part inspection method according to an embodiment of the present invention.

【図2】同実施形態の破断部の断面形状と放射X線との
位置関係の説明図である。
FIG. 2 is an explanatory diagram of a positional relationship between a cross-sectional shape of a broken portion and radiation X-rays of the embodiment.

【図3】同実施形態の画像処理装置の構成図である。FIG. 3 is a configuration diagram of the image processing apparatus according to the embodiment;

【図4】同実施形態における破断部断面近傍の画像濃度
を示すグラフである。
FIG. 4 is a graph showing an image density in the vicinity of a cross section of a broken part in the embodiment.

【図5】対象物の厚みと画像濃度の関係を示すグラフで
ある。
FIG. 5 is a graph showing a relationship between a thickness of an object and an image density.

【図6】本発明の他の実施形態における破断部検査方法
の概略構成図である。
FIG. 6 is a schematic configuration diagram of a fracture portion inspection method according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 X線放射線源 2 放射X線 3 対象物 4 X線撮像管 5 画像処理装置 7 破断部 8、9 参照物 13 エッジ検出手段 14 厚み・係数演算手段 DESCRIPTION OF SYMBOLS 1 X-ray radiation source 2 Radiation X-ray 3 Target object 4 X-ray imaging tube 5 Image processing device 7 Break part 8, 9 Reference object 13 Edge detection means 14 Thickness / coefficient calculation means

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F067 AA12 AA27 BB06 EE04 EE10 HH04 JJ03 KK06 LL02 LL16 PP11 RR12 RR24 RR30 RR36 2G001 AA01 BA11 CA01 DA09 FA02 FA06 FA09 FA10 GA01 GA13 HA01 HA13 JA11 JA13 KA03 KA11 LA02 SA12 SA17  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F067 AA12 AA27 BB06 EE04 EE10 HH04 JJ03 KK06 LL02 LL16 PP11 RR12 RR24 RR30 RR36 2G001 AA01 BA11 CA01 DA09 FA02 FA06 FA09 FA10 GA01 GA13 HA01 HA13 JA11 JA13 KA03 SA17

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 X線源より放射したX線を対象物に透過
させ、X線撮像管で撮像する工程と、撮像画像より対象
物中の破断部の位置及び厚みを検出する工程とから成る
ことを特徴とする破断部検査方法。
1. A method comprising: transmitting X-rays emitted from an X-ray source through an object; capturing the image with an X-ray imaging tube; and detecting a position and a thickness of a broken portion in the object from the captured image. A method for inspecting a broken part, characterized in that:
【請求項2】 破断部の位置を検出する工程において、
X線源の焦点と撮像管面中央とを結ぶ軸と破断部の壁面
を略平行にして透過画像上に破断部位のコントラストを
明瞭にし、明瞭なコントラストにて破断部位置を検出す
ることを特徴とする請求項1記載の破断部検査方法。
2. In the step of detecting the position of the broken part,
With the axis connecting the focal point of the X-ray source and the center of the imaging tube surface and the wall surface of the rupture part almost parallel, the contrast of the rupture part is clarified on the transmission image, and the position of the rupture part is detected with clear contrast. The method for inspecting a broken part according to claim 1, wherein
【請求項3】 破断部の厚みを検出する工程において、
対象物の材料によって決まる画像濃度の減衰係数を求
め、求めた減衰係数と撮像画像中の破断部の画像濃度か
ら厚みを演算することを特徴とする請求項1記載の破断
部検査方法。
3. The step of detecting the thickness of the broken part,
2. A method according to claim 1, wherein an attenuation coefficient of the image density determined by the material of the object is obtained, and the thickness is calculated from the obtained attenuation coefficient and the image density of the broken part in the captured image.
【請求項4】 破断部の厚みを検出する工程において、
対象物を撮像するのと同時に厚みが既知の参照物を撮像
し、破断部及び参照物の画像濃度と参照物の厚みから破
断部厚みを演算することを特徴とする請求項1記載の破
断部検査方法。
4. The step of detecting a thickness of a broken portion,
2. The fractured part according to claim 1, wherein the reference part having a known thickness is imaged simultaneously with the imaging of the target object, and the fractured part thickness is calculated from the image density of the fractured part and the reference substance and the thickness of the reference substance. Inspection methods.
【請求項5】 対象物にX線を透過させるためのX線源
と、透過したX線を撮像するX線撮像管と、撮像画像よ
り対象物中の破断部の位置を検出する手段と、対象物中
の破断部の厚みを検出する手段とを備えたことを特徴と
する破断部検査装置。
5. An X-ray source for transmitting X-rays through an object, an X-ray imaging tube for imaging the transmitted X-rays, means for detecting a position of a break in the object from the captured image, A means for detecting a thickness of a broken portion in the object.
【請求項6】 破断部の位置を検出する手段は、X線源
の焦点と撮像管面中央とを結ぶ軸と破断部の壁面が略平
行となるように対象物を配置する手段と、透過画像上に
破断部位のコントラストから破断部位置を検出する手段
とから成ることを特徴とする請求項5記載の破断部検査
装置。
6. A means for detecting a position of a break portion includes: a means for arranging an object such that an axis connecting a focal point of an X-ray source and the center of an imaging tube surface and a wall surface of the break portion are substantially parallel; 6. The apparatus according to claim 5, further comprising means for detecting a position of the broken portion from a contrast of the broken portion on the image.
【請求項7】 破断部の厚みを検出する手段は、対象物
の材料によって決まる画像濃度の減衰係数を求める手段
と、求めた減衰係数と撮像画像中の破断部の画像濃度か
ら厚みを演算する手段とから成ることを特徴とする請求
項5記載の破断部検査装置。
7. The means for detecting the thickness of the broken portion includes means for calculating an attenuation coefficient of the image density determined by the material of the object, and calculating the thickness from the obtained attenuation coefficient and the image density of the broken portion in the captured image. 6. An apparatus for inspecting a broken part according to claim 5, comprising:
【請求項8】 破断部の厚みを検出する手段は、対象物
を撮像するのと同時に厚みが既知の参照物を撮像する手
段と、破断部及び参照物の画像濃度と参照物の厚みから
破断部厚みを演算する手段とから成ることを特徴とする
請求項5記載の破断部検査装置。
8. A means for detecting the thickness of the broken portion includes: a means for imaging a reference object having a known thickness at the same time as imaging the object; and a means for detecting the thickness of the broken portion and the reference material and the thickness of the reference material. 6. A broken part inspection apparatus according to claim 5, further comprising means for calculating a part thickness.
JP2001071666A 2001-03-14 2001-03-14 Fracture inspection method and apparatus Expired - Fee Related JP4588907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071666A JP4588907B2 (en) 2001-03-14 2001-03-14 Fracture inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071666A JP4588907B2 (en) 2001-03-14 2001-03-14 Fracture inspection method and apparatus

Publications (3)

Publication Number Publication Date
JP2002267433A true JP2002267433A (en) 2002-09-18
JP2002267433A5 JP2002267433A5 (en) 2008-01-24
JP4588907B2 JP4588907B2 (en) 2010-12-01

Family

ID=18929356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071666A Expired - Fee Related JP4588907B2 (en) 2001-03-14 2001-03-14 Fracture inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP4588907B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471032B1 (en) * 2009-03-27 2010-06-02 システム・プロダクト株式会社 X-ray image composition apparatus, method and program
JP2020118552A (en) * 2019-01-24 2020-08-06 札幌施設管理株式会社 Thickness detection method and piping inspection method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988610A (en) * 1982-11-12 1984-05-22 Fuji Electric Co Ltd Thickness gauge
JPH01312405A (en) * 1988-06-13 1989-12-18 Rigaku Corp Measurement of burying depth
JPH03257309A (en) * 1990-03-07 1991-11-15 Nippon Denshi Raiosonitsuku Kk Non-destructive inspecting apparatus of can lid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988610A (en) * 1982-11-12 1984-05-22 Fuji Electric Co Ltd Thickness gauge
JPH01312405A (en) * 1988-06-13 1989-12-18 Rigaku Corp Measurement of burying depth
JPH03257309A (en) * 1990-03-07 1991-11-15 Nippon Denshi Raiosonitsuku Kk Non-destructive inspecting apparatus of can lid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471032B1 (en) * 2009-03-27 2010-06-02 システム・プロダクト株式会社 X-ray image composition apparatus, method and program
JP2010230532A (en) * 2009-03-27 2010-10-14 System Product Co Ltd X-ray image synthesizer, method and program
JP2020118552A (en) * 2019-01-24 2020-08-06 札幌施設管理株式会社 Thickness detection method and piping inspection method

Also Published As

Publication number Publication date
JP4588907B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
US10712285B2 (en) Three-dimensional object inspecting device
US7290930B2 (en) Method for monitoring an x-ray apparatus and x-ray apparatus
US10481106B2 (en) Measurement processing device, X-ray inspection device, measurement processing method, measurement processing program, and structure manufacturing method
JPH05209839A (en) Method of detecting non-standard cigarette and apparatus using the same
EP3816616A1 (en) Radiation transmission inspection method and device, and method for manufacturing microporous film
KR20100126398A (en) Microstructure inspection method, microstructure inspection apparatus, and microstructure inspection program
KR20080105989A (en) Alien substance inspection method in end of wafer periphery and alien substance inspection apparatus
CN105717513A (en) Low-cost laser distance measurement apparatus and method based on common pick-up head chip
JP2008153119A (en) Battery inspection system, and battery inspection method
JP2014009976A (en) Three-dimensional shape measurement x-ray ct device and three-dimensional shape measurement method by x-ray ct device
JP6150496B2 (en) Subject information acquisition apparatus and control method thereof
JP2005091288A (en) Discrimination method for casting defect
JP2002267433A (en) Method and apparatus for inspecting rupture section
JPH08285541A (en) Method and device for distance measurement and method and device for medical support
KR20140148067A (en) Method for discriminating defect of optical films
JP4908283B2 (en) Radiation image capturing apparatus and pixel defect information acquisition method
US11936985B2 (en) Appearance inspection device and defect inspection method
CN115802907A (en) Oriented tobacco product
JP2004156975A (en) Lead position detecting method and detector
JP2008241452A (en) Rack for x-ray photography
JP4123816B2 (en) Method for measuring the thickness of an object to be inspected
CN219737773U (en) Height measuring device and height measuring system
JP2009103662A (en) Laser welding evaluation method
JP2002005854A (en) Position measuring method and apparatus for object
TWI467129B (en) Method for detecting flatness of nozzle

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090526

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees