JPH04371239A - Method for regenerating cation-exchanger resin in condensate desalter - Google Patents

Method for regenerating cation-exchanger resin in condensate desalter

Info

Publication number
JPH04371239A
JPH04371239A JP3174850A JP17485091A JPH04371239A JP H04371239 A JPH04371239 A JP H04371239A JP 3174850 A JP3174850 A JP 3174850A JP 17485091 A JP17485091 A JP 17485091A JP H04371239 A JPH04371239 A JP H04371239A
Authority
JP
Japan
Prior art keywords
exchange resin
cation exchange
tower
resin
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3174850A
Other languages
Japanese (ja)
Other versions
JP2898125B2 (en
Inventor
Katsumi Okugawa
奥川 克巳
Takashi Kagawa
香川 喬
Tetsuyuki Honda
本多 哲之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP3174850A priority Critical patent/JP2898125B2/en
Publication of JPH04371239A publication Critical patent/JPH04371239A/en
Application granted granted Critical
Publication of JP2898125B2 publication Critical patent/JP2898125B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the amt. of the oxidative decomposition product to be eluted in passing water through a cation-exchange resin as the source of the SO4 ion, etc., harmful to the member constituting the high-temp. and pressure line of the boiler and atomic reactor, etc., by preventing the oxidative decomposition of the resin used in a condensate desalter when the resin is scrubbed with air. CONSTITUTION:A mixed ion-exchange resin used in a desalting tower is transferred to a regeneration tower, and then immediately separated into the anion- exchange resin and cation-exchange resin by a water current without being air-scrubbed. A regenerant such as hydrochloric acid is passed through the separated cation-exchange resin to regenerate the resin, and the resin is scrubbed with air, if necessary, after the regenerant is passed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、火力発電所あるいは原
子力発電所における復水脱塩装置に使用されているイオ
ン交換樹脂の再生方法、特にカチオン交換樹脂の再生方
法の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for regenerating ion exchange resins used in condensate desalination equipment in thermal power plants or nuclear power plants, and in particular to an improvement in the method for regenerating cation exchange resins.

【0002】0002

【従来の技術】火力発電所や原子力発電所における復水
は、ボイラ,蒸気発生器,原子炉等の蒸気発生手段の腐
食障害防止や放射能低減の観点から高度に浄化する必要
があり、このため混床式の復水脱塩塔を備えた復水脱塩
装置や粉末イオン交換樹脂フィルタ,中空糸膜フィルタ
等の浄化装置が単独あるいは組み合わせて採用されてい
る。
[Prior Art] Condensate in thermal power plants and nuclear power plants needs to be highly purified from the viewpoint of preventing corrosion damage to steam generating means such as boilers, steam generators, and nuclear reactors and reducing radioactivity. Therefore, purification devices such as condensate desalination equipment equipped with a mixed-bed condensate desalination tower, powdered ion exchange resin filters, and hollow fiber membrane filters are used singly or in combination.

【0003】このうち、上記復水脱塩装置は、通常複数
の復水脱塩塔(以下脱塩塔という)からなる通水系統と
、脱塩塔にて使用したイオン交換樹脂を再生するための
再生系統とからなり、そして前記脱塩塔は塔内にH形あ
るいはNH4形の強酸性カチオン交換樹脂と、OH形の
強塩基性アニオン交換樹脂との混合イオン交換樹脂を充
填してなるものである。
[0003] Among these, the above-mentioned condensate demineralization equipment usually has a water flow system consisting of a plurality of condensate demineralization towers (hereinafter referred to as demineralization towers) and a system for regenerating the ion exchange resin used in the demineralization towers. The demineralization tower is filled with a mixed ion exchange resin consisting of a strongly acidic cation exchange resin in the H form or NH4 form and a strongly basic anion exchange resin in the OH form. It is.

【0004】当該復水脱塩装置においては以下のように
して復水の処理を行う。すなわち、複数の脱塩塔に復水
をそれぞれ並列して通水し、復水中に含まれているNa
イオン,Feイオン,Cuイオン,Clイオン,SO4
 イオン等の不純物イオンをイオン交換作用により、ま
た復水中に含まれている酸化鉄等の金属酸化物を主体と
した懸濁物質(一般にクラッドと呼ぶ)を濾過作用ある
いは物理的吸着作用により除去して浄化された処理水を
得る。
[0004] In the condensate desalination apparatus, condensate is treated as follows. In other words, condensate is passed through multiple desalination towers in parallel, and the Na contained in the condensate is removed.
ion, Fe ion, Cu ion, Cl ion, SO4
Impurity ions such as ions are removed by ion exchange, and suspended solids (generally called crud) mainly composed of metal oxides such as iron oxide contained in condensate are removed by filtration or physical adsorption. to obtain purified treated water.

【0005】このような通水を続行して、複数の脱塩塔
の中の一つが、クラッドの蓄積によって圧力損失の増加
を招いたり、あるいは定体積処理量に達した場合または
当該脱塩塔内のイオン交換樹脂が不純物イオンで飽和し
た場合等、いわゆる通水終点に達した場合には、当該脱
塩塔のみを通水系統から切り離し、脱塩塔内の使用済混
合イオン交換樹脂を再生系統内の再生塔に移送する。当
該樹脂移送終了後、既に再生済のカチオン交換樹脂及び
アニオン交換樹脂を再生系統から前記脱塩塔に移送して
混合イオン交換樹脂層を形成させ、再び復水の通水を開
始する。
[0005] If such water flow continues and one of the desalination towers causes an increase in pressure loss due to accumulation of crud, or reaches a constant volume throughput, or the demineralization tower in question When the ion exchange resin in the demineralization tower becomes saturated with impurity ions, or when the so-called water flow end point is reached, the demineralization tower is disconnected from the water flow system and the used mixed ion exchange resin in the demineralization tower is regenerated. Transfer to the regeneration tower within the system. After the resin transfer is completed, the already regenerated cation exchange resin and anion exchange resin are transferred from the regeneration system to the demineralization tower to form a mixed ion exchange resin layer, and the flow of condensate water is started again.

【0006】一方、再生塔に移送した使用済の混合イオ
ン交換樹脂に対しては、先ず当該樹脂を水に浸漬した状
態で再生塔内にその下部より空気を吹き込んで空気によ
る撹拌(これをエアスクラビング洗浄という)を行い、
これによって樹脂表面に付着している前記金属酸化物等
を物理的に剥離する操作を実施する。
On the other hand, the used mixed ion exchange resin transferred to the regeneration tower is first immersed in water, and then air is blown into the regeneration tower from the bottom to agitate it with air. (called scrubbing cleaning),
This performs an operation to physically peel off the metal oxides and the like adhering to the resin surface.

【0007】次に、再生塔の下部より洗浄水を流入(こ
れを逆洗という)して上記エアスクラビング洗浄(以下
、単にエアスクラビングという)によって剥離した金属
酸化物等の懸濁物質を塔外に排出し、その後常法により
逆洗,沈静して下層のカチオン交換樹脂層と上層のアニ
オン交換樹脂層とに分離する。当該分離後、カチオン交
換樹脂層には塩酸,硫酸等の酸再生剤を、アニオン交換
樹脂層には水酸化ナトリウム溶液等のアルカリ再生剤を
通薬し、それぞれ不純物イオンを脱着して両イオン交換
樹脂を再生する。
Next, cleaning water is introduced from the lower part of the regeneration tower (this is called backwashing) to remove suspended solids such as metal oxides that have been removed by the air scrubbing (hereinafter simply referred to as air scrubbing) to the outside of the tower. After that, it is backwashed and settled by a conventional method, and separated into a lower cation exchange resin layer and an upper anion exchange resin layer. After the separation, an acid regenerant such as hydrochloric acid or sulfuric acid is passed through the cation exchange resin layer, and an alkaline regenerant such as sodium hydroxide solution is passed through the anion exchange resin layer to desorb impurity ions and perform both ion exchange. Regenerate resin.

【0008】なお、この場合の再生系統には、両イオン
交換樹脂を分離して下層にカチオン交換樹脂層、上層に
アニオン交換樹脂層を形成させ、当該分離層を保持させ
たままカチオン交換樹脂層には酸再生剤を、アニオン交
換樹脂層にはアルカリ再生剤を通薬する一塔再生方式と
、両イオン交換樹脂を分離した後、上層のアニオン交換
樹脂を別の再生塔に移送して両イオン交換樹脂を別々の
塔で再生する別塔再生方式とがある。再生を終了した両
イオン交換樹脂は、次の脱塩塔が通水終点に達するまで
の間、待機させておく。
In addition, in the regeneration system in this case, both ion exchange resins are separated to form a cation exchange resin layer in the lower layer and an anion exchange resin layer in the upper layer, and the cation exchange resin layer is formed while maintaining the separated layer. One method is a one-tower regeneration method in which an acid regenerant is passed through the anion exchange resin layer and an alkali regenerant is passed through the anion exchange resin layer, and the other is a one-tower regeneration method in which both ion exchange resins are separated and the anion exchange resin in the upper layer is transferred to another regeneration tower. There is a separate tower regeneration method in which ion exchange resin is regenerated in separate towers. Both ion exchange resins that have been regenerated are kept on standby until the next desalination tower reaches the end point of water flow.

【0009】このように復水の浄化に用いられている復
水脱塩装置は複数ある脱塩塔の通水時間を互いにずらし
、ほぼ一定時間毎に各脱塩塔が通水終点に達するように
調整しておき、ほぼ均等の通水間隔で各脱塩塔の使用済
混合イオン交換樹脂を順に前記再生系統で再生するもの
である。
[0009] In this way, the condensate desalination equipment used for condensate purification staggers the water flow times of the plurality of desalination towers so that each desalination tower reaches the end point of water flow at approximately regular intervals. The used mixed ion exchange resin of each demineralization tower is sequentially regenerated in the regeneration system at approximately equal water flow intervals.

【0010】上述のような復水脱塩装置に要求される処
理水の水質は、蒸気発生器,原子炉,ボイラー等の腐食
障害防止やスケール障害防止の観点から近年益々高純度
化する傾向にあり、例えばNaイオン,Clイオンにつ
いてはそれぞれ0.01μg/L(0.01ppb)以
下が目標とされている。そして、復水脱塩装置において
はこのような高純度の処理水を得るために従来より種々
の改善がなされており、その結果、現在は上記目標を充
分に達成することができる段階にある。
[0010] The quality of treated water required for the above-mentioned condensate desalination equipment has tended to be increasingly purified in recent years from the viewpoint of preventing corrosion damage and scaling damage to steam generators, nuclear reactors, boilers, etc. For example, the target for Na ions and Cl ions is 0.01 μg/L (0.01 ppb) or less. Various improvements have been made to condensate desalination equipment in order to obtain treated water of such high purity, and as a result, we are currently at a stage where the above goals can be fully achieved.

【0011】[0011]

【発明が解決しようとする問題点】しかしながら、Na
イオンやCl− イオン等の無機イオンの除去に関して
は目標を充分に達成することのできる復水脱塩装置にも
、以下のような問題点がある。すなわち、使用済のイオ
ン交換樹脂を脱塩塔から再生系統に移送するとともに既
に再生済のイオン交換樹脂を再生系統から上記脱塩塔に
移送し、再び復水の通水を開始した際に、特にその通水
初期において処理水中に極く微量の有機物が漏出すると
いう問題である。
[Problem to be solved by the invention] However, Na
Even with condensate desalination equipment that can sufficiently achieve the target of removing inorganic ions such as ions and Cl- ions, there are problems as described below. That is, when the used ion exchange resin is transferred from the demineralization tower to the regeneration system, the already regenerated ion exchange resin is transferred from the regeneration system to the demineralization tower, and the flow of condensate water is started again. Particularly in the early stages of water flow, a very small amount of organic matter leaks into the treated water.

【0012】最近の研究によれば、当該有機物の中には
スチレンスルホン酸のオリゴマーや比較的低分子のポリ
マーが含まれていることがわかっており、そしてこれら
は復水脱塩装置に通常使用されている、スチレンとジビ
ニルベンゼンとの共重合体をスルホン化した強酸性カチ
オン交換樹脂から溶出するものであることが判明してい
る。
[0012] According to recent research, it has been found that the organic substances include styrene sulfonic acid oligomers and relatively low-molecular polymers, and these are commonly used in condensate desalination equipment. It has been found that this substance is eluted from a strongly acidic cation exchange resin made by sulfonating a copolymer of styrene and divinylbenzene.

【0013】復水脱塩装置の処理水は前述のごとく蒸気
発生器,原子炉,ボイラー等の蒸気発生手段へ供給され
るが、当該処理水中に上述のようなスチレンスルホン酸
のオリゴマーや低分子ポリマーが含まれている場合は、
蒸気発生手段の内部で高温,高圧下に分解されて結果的
にSO4 イオン等が生成され、これが蒸気発生手段等
に腐食等の悪影響をもたらすことになる。
As mentioned above, the treated water of the condensate desalination equipment is supplied to a steam generating means such as a steam generator, a nuclear reactor, or a boiler. If it contains polymers,
It is decomposed under high temperature and high pressure inside the steam generation means, and as a result, SO4 ions and the like are generated, which causes adverse effects such as corrosion on the steam generation means and the like.

【0014】本発明者等は上述のようなカチオン交換樹
脂からの有機物の溶出原因について種々検討を重ねた結
果、以下のような推定をなすに至った。すなわち、復水
脱塩装置においては、脱塩塔から再生塔へ移送された混
合イオン交換樹脂を比重差によってカチオン交換樹脂と
アニオン交換樹脂とに分離する前に、各樹脂の表面に付
着している酸化鉄等の金属酸化物を剥離するために空気
吹き込みによるエアスクラビングを実施する。
The inventors of the present invention have conducted various studies regarding the causes of elution of organic substances from cation exchange resins as described above, and have come to the following conclusion. That is, in the condensate desalination equipment, before the mixed ion exchange resin transferred from the desalination tower to the regeneration tower is separated into a cation exchange resin and an anion exchange resin based on the difference in specific gravity, the resins adhere to the surface of each resin. Air scrubbing is performed by blowing air to remove metal oxides such as iron oxide.

【0015】一方、再生塔へ移送された使用済のカチオ
ン交換樹脂はNaイオン以外にも復水中に含まれている
FeイオンやCuイオンを比較的多量に吸着している。 これらのFeイオンやCuイオンは衆知のごとく優れた
酸化触媒であり、これらの重金属イオンが比較的多量に
吸着されたカチオン交換樹脂は、当該重金属イオンの触
媒作用により、水中の溶存酸素や空気中の酸素との接触
によって極く僅かではあるが酸化分解を受ける。その結
果として、カチオン交換樹脂の母体構造の一部であるス
チレンスルホン酸のオリゴマーや低分子ポリマーからな
る分解物が生成され、これらの分解物が再生後の通水工
程において、特にその初期に漏出するのであろうと推定
したのである。
On the other hand, the used cation exchange resin transferred to the regeneration tower adsorbs relatively large amounts of Fe ions and Cu ions contained in the condensate in addition to Na ions. As is well known, these Fe ions and Cu ions are excellent oxidation catalysts, and cation exchange resins that have relatively large amounts of these heavy metal ions adsorbed can absorb dissolved oxygen in water and air due to the catalytic action of the heavy metal ions. When it comes into contact with oxygen, it undergoes oxidative decomposition, albeit to a very small extent. As a result, decomposition products consisting of oligomers and low-molecular polymers of styrene sulfonic acid, which are part of the base structure of the cation exchange resin, are generated, and these decomposition products leak out during the water passage process after regeneration, especially in the initial stage. I assumed that it would.

【0016】したがって、FeイオンやCuイオンが比
較的多量に吸着されているカチオン交換樹脂に対して、
上述のようなエアスクラビングを実施するのは、まさに
カチオン交換樹脂の酸化分解を促進させるようなもので
あり、分解生成物の溶出の点でも、またカチオン交換樹
脂の劣化の点でも好ましくない。
Therefore, for cation exchange resins in which relatively large amounts of Fe ions and Cu ions are adsorbed,
Carrying out air scrubbing as described above is exactly the kind that promotes the oxidative decomposition of the cation exchange resin, and is not preferable in terms of elution of decomposition products and deterioration of the cation exchange resin.

【0017】なお、従来は上述した有機物の漏出を極力
低減するために、再生系統において再生後のカチオン交
換樹脂の洗浄を充分に行い、しかる後に脱塩塔に移送し
て復水の通水を開始するというような方法も実施されて
いたが、当該洗浄には多量の洗浄用純水が必要であると
ともに、長時間を要するという問題点があった。
[0017] Conventionally, in order to reduce the above-mentioned leakage of organic matter as much as possible, the cation exchange resin after regeneration is sufficiently washed in the regeneration system, and then transferred to the demineralization tower and the condensate water is passed therethrough. A method of starting the cleaning process has also been implemented, but this method requires a large amount of purified water for cleaning and also takes a long time.

【0018】本発明は上述のような推定のもとになされ
たものであり、再生系統における前述のようなカチオン
交換樹脂の酸化分解を防止し得る復水脱塩装置における
カチオン交換樹脂の再生方法を提供することを目的とす
るものである。
The present invention has been made based on the above-mentioned assumption, and provides a method for regenerating a cation exchange resin in a condensate desalination apparatus that can prevent the above-mentioned oxidative decomposition of the cation exchange resin in the regeneration system. The purpose is to provide the following.

【0019】[0019]

【問題点を解決するための手段】上記目的を達成するた
めになされた本発明の再生方法は、復水脱塩塔にて使用
されたカチオン交換樹脂を酸で再生するにあたり、当該
カチオン交換樹脂にエアスクラビング洗浄を施すことな
く酸再生剤を通薬することを特徴とするカチオン交換樹
脂の再生方法である。
[Means for Solving the Problems] The regeneration method of the present invention, which has been made to achieve the above object, is a method for regenerating a cation exchange resin used in a condensate demineralization tower with an acid. This is a method for regenerating a cation exchange resin, which is characterized by passing an acid regenerant through the resin without performing air scrubbing.

【0020】[0020]

【作用】以下に本発明の再生方法を詳細に説明する。復
水の通水を行って通水終点に達した脱塩塔内の使用済混
合イオン交換樹脂を、再生系統内の再生塔に移送する。
[Operation] The regeneration method of the present invention will be explained in detail below. The used mixed ion exchange resin in the demineralization tower, which has reached the end point of the water flow through the condensate, is transferred to the regeneration tower in the regeneration system.

【0021】従来は、前述したごとく当該樹脂移送後直
ちに再生塔内に空気を吹き込み、エアスクラビングを実
施していたので、当該空気中の酸素によってカチオン交
換樹脂の酸化分解が促進されるという問題があったが、
本発明においてはこのような酸化分解を防止するために
この段階でのエアスクラビングをなくし、先ず再生塔の
下部より水(純水)を上昇流で流入させて混合イオン交
換樹脂を水流によってアニオン交換樹脂とカチオン交換
樹脂とに分離する操作を行う。
Conventionally, as mentioned above, air was blown into the regeneration tower immediately after transferring the resin to perform air scrubbing, which caused the problem that the oxygen in the air accelerated the oxidative decomposition of the cation exchange resin. There was, but
In the present invention, in order to prevent such oxidative decomposition, air scrubbing at this stage is eliminated, and water (pure water) is first introduced from the lower part of the regeneration tower in an upward flow, and the mixed ion exchange resin is anion exchanged by the water flow. An operation is performed to separate the resin and cation exchange resin.

【0022】その後水の流入を停止して両イオン交換樹
脂を沈静させ、上層にアニオン交換樹脂層を、下層にカ
チオン交換樹脂層をそれぞれ形成させる。なお、上述の
分離操作の間に、混合イオン交換樹脂層中に滞積してい
た、あるいは樹脂表面に付着していた金属酸化物等の懸
濁物質が一部塔外に排出される。
[0022] Thereafter, the inflow of water is stopped to allow both ion exchange resins to settle down, thereby forming an anion exchange resin layer in the upper layer and a cation exchange resin layer in the lower layer. During the above-described separation operation, suspended substances such as metal oxides accumulated in the mixed ion exchange resin layer or attached to the resin surface are partially discharged to the outside of the column.

【0023】次いで、両イオン交換樹脂に再生剤を通薬
する工程に移行する。ここで、復水脱塩装置の再生系統
には前述したごとく一塔再生方式と別塔再生方式がある
が、先ず再生塔内にカチオン交換樹脂層とアニオン交換
樹脂層との分離層を保ったままそれぞれの再生剤を通薬
する一塔再生方式の場合は、最初に下層のカチオン交換
樹脂層に塩酸や硫酸等の酸再生剤を通薬し、当該カチオ
ン交換樹脂に吸着されているNaイオンやFeイオン,
Cuイオン等の重金属イオンを脱着させて当該カチオン
交換樹脂を再生する。
Next, the process moves to the step of passing a regenerant through both ion exchange resins. Here, the regeneration system of the condensate desalination equipment includes the one-column regeneration system and the separate-column regeneration system as described above, but first, the separation layer between the cation exchange resin layer and the anion exchange resin layer is maintained in the regeneration tower. In the case of a one-tower regeneration method in which each regenerant is passed through the cation exchange resin layer, an acid regenerant such as hydrochloric acid or sulfuric acid is first passed through the lower cation exchange resin layer, and the Na ions adsorbed on the cation exchange resin are removed. and Fe ions,
The cation exchange resin is regenerated by desorbing heavy metal ions such as Cu ions.

【0024】なお、上記使用済のカチオン交換樹脂には
、NaイオンやFeイオン等の重金属イオンとともに、
微粒子状の酸化鉄を主体とする金属酸化物が物理的に吸
着もしくは付着しているが、上記酸再生剤の通薬により
これらの金属酸化物も大部分溶解し、除去される。 酸再生剤通薬後、引続き純水による押し出し工程および
洗浄工程を常法通り実施し、カチオン交換樹脂の再生工
程を終了する。
[0024] The used cation exchange resin contains heavy metal ions such as Na ions and Fe ions, as well as
Metal oxides mainly composed of fine particles of iron oxide are physically adsorbed or attached, but most of these metal oxides are dissolved and removed by the passage of the acid regenerant. After passing the acid regenerant, an extrusion step using pure water and a washing step are performed in a conventional manner to complete the cation exchange resin regeneration step.

【0025】上述のようなカチオン交換樹脂の再生が終
了した後、今度はアニオン交換樹脂の再生を行うが、当
該アニオン交換樹脂の表面には前記カチオン交換樹脂の
場合と同様に金属酸化物等が付着しているので、再生を
行う前に再生塔内に空気を吹き込んでエアスクラビング
洗浄を行うとよい。
After the above-mentioned regeneration of the cation exchange resin is completed, the anion exchange resin is regenerated, but the surface of the anion exchange resin contains metal oxides etc. as in the case of the cation exchange resin. Since the particles are attached, it is recommended to perform air scrubbing by blowing air into the regeneration tower before regeneration.

【0026】当該エアスクラビング洗浄によりアニオン
交換樹脂の表面に付着していた金属酸化物が剥離される
とともに、カチオン交換樹脂も同時にエアスクラビング
を受けるため、酸再生剤の通薬によって溶解しきれなか
った金属酸化物がカチオン交換樹脂の表面に残留してい
る場合には、この金属酸化物をも剥離することができる
。なお、当該スクラビング洗浄は、カチオン交換樹脂に
吸着されていたFeイオンやCuイオンをほぼ完全に脱
着した後の段階で行うものであるから、前述したような
カチオン交換樹脂の酸化分解はほとんど起こらない。 また、アニオン交換樹脂の場合は、もともとFeイオン
やCuイオンが吸着されていないのでエアスクラビング
を実施しても酸化分解の心配はほとんどない。
[0026] The air scrubbing cleaning removes the metal oxides adhering to the surface of the anion exchange resin, and since the cation exchange resin is also subjected to air scrubbing at the same time, it was not completely dissolved by the passage of the acid regenerant. If metal oxide remains on the surface of the cation exchange resin, this metal oxide can also be peeled off. Note that the scrubbing cleaning is performed after almost completely desorbing Fe ions and Cu ions adsorbed on the cation exchange resin, so the oxidative decomposition of the cation exchange resin as described above hardly occurs. . In addition, in the case of anion exchange resin, since Fe ions and Cu ions are not adsorbed to begin with, there is almost no fear of oxidative decomposition even if air scrubbing is performed.

【0027】上述のようなエアスクラビング洗浄を行っ
た後、再生塔下部より純水を上昇流で流入させ、エアス
クラビング洗浄によって剥離した金属酸化物を塔外に排
出する。その後、前述した分離操作を行ってカチオン交
換樹脂とアニオン交換樹脂とに再び分離し、しかる後に
アニオン交換樹脂層にアルカリ再生剤を通薬し、アニオ
ン交換樹脂を常法によって再生する。再生済の両イオン
交換樹脂は樹脂貯槽等に移送して貯留し、次の脱塩塔が
通水終点に達するまで待機させておく。
After performing the air scrubbing cleaning as described above, pure water is flowed upward from the lower part of the regeneration tower, and the metal oxides separated by the air scrubbing cleaning are discharged to the outside of the tower. Thereafter, the above-described separation operation is performed to separate the cation exchange resin and anion exchange resin again, and then an alkali regenerant is passed through the anion exchange resin layer, and the anion exchange resin is regenerated by a conventional method. The regenerated both ion exchange resins are transferred to a resin storage tank or the like and stored, and are kept on standby until the next desalination tower reaches the end point of water flow.

【0028】次に、両イオン交換樹脂を別々の塔で再生
する別塔再生方式の場合は、前述した両イオン交換樹脂
の分離操作を終了した後、上層のアニオン交換樹脂を別
の再生塔に移送し、カチオン交換樹脂が残留している再
生塔には酸再生剤を直ちに通薬してカチオン交換樹脂の
再生を行う。一方、移送したアニオン交換樹脂に対して
は、先ずエアスクラビング洗浄、次いで水洗浄を実施し
て当該アニオン交換樹脂の表面に付着している金属酸化
物を剥離,除去し、その後アルカリ再生剤を通薬して再
生を行う。
Next, in the case of a separate column regeneration method in which both ion exchange resins are regenerated in separate columns, after the above-mentioned separation operation of both ion exchange resins is completed, the upper layer anion exchange resin is transferred to another regeneration column. After the cation exchange resin is transferred, an acid regenerant is immediately passed through the regeneration tower where the cation exchange resin remains to regenerate the cation exchange resin. On the other hand, the transferred anion exchange resin is first subjected to air scrubbing cleaning and then water cleaning to peel off and remove metal oxides adhering to the surface of the anion exchange resin, and then passed through an alkali regenerant. Medicine and regeneration.

【0029】なお、前記カチオン交換樹脂の再生におい
て、酸再生剤の通薬によるカチオン交換樹脂表面に付着
している金属酸化物の溶解,除去が不充分であった場合
は、当該酸再生剤通薬後にエアスクラビングを実施して
残留金属酸化物を除去するとよく、この場合は前述の場
合と同じく、カチオン交換樹脂に吸着されていたFeイ
オン,Cuイオン等を脱着した後であるからカチオン交
換樹脂の酸化分解はほとんど促進されない。
[0029] In the regeneration of the cation exchange resin, if the metal oxide adhering to the surface of the cation exchange resin is insufficiently dissolved and removed by passing the acid regenerant, It is best to perform air scrubbing after the treatment to remove residual metal oxides. In this case, as in the case described above, since Fe ions, Cu ions, etc. adsorbed on the cation exchange resin have been desorbed, the cation exchange resin The oxidative decomposition of is hardly promoted.

【0030】本発明における酸再生剤としては、復水脱
塩装置のカチオン交換樹脂の再生に通常使用されている
塩酸あるいは硝酸等の酸を使用することができるが、カ
チオン交換樹脂に物理的に吸着されている酸化鉄等の金
属酸化物を溶解させる能力に優れている点で特に塩酸を
使用するのが好ましい。塩酸を使用する場合は、酸再生
剤通薬後のエアスクラビングは多くの場合不要となる。
As the acid regenerating agent in the present invention, acids such as hydrochloric acid or nitric acid, which are commonly used for regenerating the cation exchange resin of condensate desalination equipment, can be used. It is particularly preferable to use hydrochloric acid because it has an excellent ability to dissolve adsorbed metal oxides such as iron oxide. When using hydrochloric acid, air scrubbing after passing the acid regenerant is often unnecessary.

【0031】これに対して、酸再生剤として例えば硫酸
を使用する場合は、塩酸に比べて金属酸化物の溶解能力
がやや劣るため、当該金属酸化物の溶解,除去が十分に
なされないケースもままある。したがって、このような
場合は酸再生剤を通薬後、カチオン交換樹脂にエアスク
ラビング洗浄を実施して残留金属酸化物を物理的に除去
することが必要となる。
On the other hand, when sulfuric acid, for example, is used as an acid regenerating agent, its ability to dissolve metal oxides is slightly inferior to that of hydrochloric acid, so there are cases where the metal oxides are not sufficiently dissolved or removed. There is still. Therefore, in such a case, after passing the acid regenerant, it is necessary to perform air scrubbing on the cation exchange resin to physically remove residual metal oxides.

【0032】[0032]

【実施例】以下に本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0033】(参考例)(カチオン交換樹脂のスクラビ
ング試験) スチレンとジビニルベンゼンとの共重合物をスルホン化
してなる強酸性カチオン交換樹脂アンバーライト(登録
商標、以下同じ)200CPをカラムに充填し、当該カ
ラムに市販の硫酸第一鉄および硫酸銅の各試薬を溶解し
た合成水を通水してFe2+イオン約600mg/L−
R、Cu2+イオン約300mg/L−Rの割合で吸着
してなるカチオン交換樹脂(これを金属イオン吸着樹脂
とする)を調整した。
(Reference example) (Cation exchange resin scrubbing test) A column was packed with Amberlite (registered trademark, the same applies hereinafter) 200CP, a strongly acidic cation exchange resin made by sulfonating a copolymer of styrene and divinylbenzene. Synthetic water in which commercially available ferrous sulfate and copper sulfate reagents were dissolved was passed through the column to collect approximately 600 mg/L of Fe2+ ions.
A cation exchange resin (this is referred to as a metal ion adsorption resin) in which R and Cu2+ ions are adsorbed at a ratio of about 300 mg/LR was prepared.

【0034】別に、内部に300mLの純水を入れたガ
ラス容器2個を用意し、それぞれの容器に前記金属イオ
ン吸着樹脂100mLと、市販のFe2 O3 粉末を
濃度1,000mg/Lとなるように投入し、これらの
容器を50℃の恒温震盪器の中に入れ、常時撹拌を行い
ながら一方の容器の水中に空気を、もう一方の容器の水
中にN2 ガスをそれぞれ10mL/secの流量で連
続的に吹き込んだ。
Separately, two glass containers containing 300 mL of pure water were prepared, and 100 mL of the metal ion adsorption resin and commercially available Fe2 O3 powder were added to each container at a concentration of 1,000 mg/L. These containers were placed in a constant temperature shaker at 50°C, and while stirring constantly, air was continuously introduced into the water in one container, and N2 gas was continuously introduced into the water in the other container at a flow rate of 10 mL/sec. I blew it.

【0035】上述のような実験において、一定時間毎に
各容器内の水を採取してそのT.O.C濃度を測定し、
カチオン交換樹脂からの有機物の溶出状況を見た。また
、上記と同様の実験をFe2+およびCu2+が吸着さ
れていないアンバーライト200CP(これを金属イオ
ン未吸着樹脂という)についても行った。
In the experiment described above, the water in each container was sampled at regular intervals and its T. O. Measure the C concentration,
We looked at the elution of organic matter from the cation exchange resin. Further, an experiment similar to the above was also conducted on Amberlite 200CP to which Fe2+ and Cu2+ were not adsorbed (this is referred to as metal ion non-adsorbed resin).

【0036】経過時間(hr)と容器内の水のT.O.
C濃度(mgC/L)との関係を図1に示す。なお、図
1においてRUN1〜RUN4はそれぞれ表1に示した
ような実験条件に対応するものである。
Elapsed time (hr) and T. of water in the container. O.
The relationship with C concentration (mgC/L) is shown in FIG. Note that RUN1 to RUN4 in FIG. 1 correspond to the experimental conditions shown in Table 1, respectively.

【0037】[0037]

【表1】                          
       実験条件          ────
──────────────────────   
         RUN1      金属イオン吸
着樹脂に空気吹き込み            RUN
2                〃       
 N2 吹き込み            RUN3 
     金属イオン未吸着樹脂に空気吹き込み   
         RUN4            
    〃          N2 吹き込み   
       ──────────────────
────────
[Table 1]
Experimental conditions ────
──────────────────────
RUN1 Blow air into metal ion adsorption resin RUN
2 〃
N2 blowing RUN3
Air is blown into the resin that has not adsorbed metal ions.
RUN4
〃 N2 blowing
────────────────────
────────

【0038】上記実験において、RU
N2およびRUN4はカチオン交換樹脂を、実質的に酸
素が含まれていないN2 ガスを用いてスクラビングし
た場合に相当し、この場合、カチオン交換樹脂の酸化分
解は起こらない。したがって、RUN2およびRUN4
において検出されたT.O.Cは、カチオン交換樹脂中
に最初から存在した有機物の漏出によるものであり、R
UN2とRUN4で多少の違いはあるがこれらはいわゆ
るブランク値とみなして良い。
In the above experiment, R.U.
N2 and RUN4 correspond to scrubbing the cation exchange resin with substantially oxygen-free N2 gas, in which case no oxidative decomposition of the cation exchange resin occurs. Therefore, RUN2 and RUN4
T. O. C is due to the leakage of organic matter originally present in the cation exchange resin, and R
Although there are some differences between UN2 and RUN4, these can be regarded as so-called blank values.

【0039】これに対して、金属イオン吸着樹脂に空気
を吹き込んだRUN1の場合は上記ブランクに比べては
るかに高いT.O.C濃度を示しており、よってこの場
合は空気吹き込みによってカチオン交換樹脂の酸化分解
が促進され、分解生成物としての有機物が水中に溶出し
たと考えられる。
On the other hand, in the case of RUN1 in which air was blown into the metal ion adsorption resin, the T.V. was much higher than that of the blank. O. Therefore, in this case, it is considered that the oxidative decomposition of the cation exchange resin was promoted by air blowing, and organic substances as decomposition products were eluted into the water.

【0040】なお、金属イオン未吸着樹脂とFe2 O
3 粉末とを投入した容器に空気を吹き込んだRUN3
の場合は、空気を吹き込んだにもかかわらずブランクで
あるRUN2あるいはRUN4とほぼ同程度のT.O.
C濃度を示しており、したがって懸濁状の金属酸化物(
Fe2 O3 粉末)はカチオン交換樹脂の酸化反応を
ほとんど促進しないことがわかる。以上の結果から、カ
チオン交換樹脂の酸化反応を促進する要因は、当該カチ
オン交換樹脂に吸着されているFeイオンやCuイオン
等の金属イオンであることがわかる。
[0040] Note that the metal ion-unadsorbed resin and Fe2O
3 RUN3 in which air was blown into the container containing the powder.
In this case, even though air was blown, the T. O.
C concentration and therefore suspended metal oxide (
It can be seen that Fe2O3 powder) hardly promotes the oxidation reaction of the cation exchange resin. From the above results, it can be seen that the factor that promotes the oxidation reaction of the cation exchange resin is metal ions such as Fe ions and Cu ions adsorbed on the cation exchange resin.

【0041】(実施例)別塔再生方式の復水脱塩装置に
おいて、本発明の再生方法を実際に適用し、従来法との
比較を行った。なお、使用したカチオン交換樹脂はアン
バーライト200CP、アニオン交換樹脂はアンバーラ
イトIRA900CPである。
(Example) The regeneration method of the present invention was actually applied to a condensate desalination apparatus using a separate column regeneration method, and a comparison was made with a conventional method. The cation exchange resin used was Amberlite 200CP, and the anion exchange resin used was Amberlite IRA900CP.

【0042】本発明の再生方法は図2に示したような手
順で行った。先ず、通水終点に達した脱塩塔から、使用
済の混合イオン交換樹脂を再生塔(これをK再生塔とす
る)に移送し、その後エアスクラビングを実施すること
なく直ちに水流によってアニオン交換樹脂(上層)とカ
チオン交換樹脂(下層)とに分離した。次いで、上層の
アニオン交換樹脂を別の再生塔(これをA再生塔とする
)に移送した。
The regeneration method of the present invention was carried out according to the procedure shown in FIG. First, the used mixed ion exchange resin is transferred from the demineralization tower that has reached the water flow end point to the regeneration tower (this is referred to as the K regeneration tower), and then the anion exchange resin is immediately recycled by water flow without air scrubbing. (upper layer) and cation exchange resin (lower layer). Next, the anion exchange resin in the upper layer was transferred to another regeneration tower (this is referred to as regeneration tower A).

【0043】K再生塔に残されたカチオン交換樹脂に対
しては、5%塩酸(HCL)溶液を規定量通薬し、次い
で純水を用いて洗浄を行い、当該カチオン交換樹脂を再
生した。洗浄終了後、K再生塔内に空気を吹き込んでカ
チオン交換樹脂のエアスクラビング洗浄を行い、次に純
水を流入して逆洗洗浄を行った。なお、このようなエア
スクラビングと逆洗洗浄とを計5回繰り返した。
A prescribed amount of 5% hydrochloric acid (HCL) solution was passed through the cation exchange resin left in the K regeneration tower, followed by washing with pure water to regenerate the cation exchange resin. After the cleaning was completed, air was blown into the K regeneration tower to perform air scrubbing of the cation exchange resin, and then pure water was introduced to perform backwashing. Note that such air scrubbing and backwashing were repeated five times in total.

【0044】一方、A再生塔に移送したアニオン交換樹
脂に対しては、先ず上述のようなエアスクラビングと逆
洗洗浄とを計5回行ってアニオン交換樹脂の表面に付着
している金属酸化物等の懸濁物質を剥離,除去し、しか
る後に4%水酸化ナトリウム(NaOH)溶液を規定量
通薬し、更に純水による洗浄を行ってアニオン交換樹脂
を再生した。
On the other hand, the anion exchange resin transferred to the A regeneration tower is first subjected to the above-mentioned air scrubbing and backwashing five times in total to remove metal oxides attached to the surface of the anion exchange resin. After peeling off and removing suspended substances such as, a specified amount of 4% sodium hydroxide (NaOH) solution was passed through the resin, and the anion exchange resin was further washed with pure water to regenerate the anion exchange resin.

【0045】次いで、当該再生済アニオン交換樹脂をK
再生塔に移送し、更に当該K再生塔内にて、K再生塔に
もともと収容されている再生済のカチオン交換樹脂と、
移送された再生済のアニオン交換樹脂とを充分に混合し
た。混合終了後、純水を用いて混合イオン交換樹脂の最
終的な洗浄を行い、しかる後当該混合イオン交換樹脂を
K再生塔から前記脱塩塔へ移送して復水の通水を開始し
た。
[0045] Next, the regenerated anion exchange resin is
Transferred to the regeneration tower, and further within the K regeneration tower, the regenerated cation exchange resin originally contained in the K regeneration tower,
The transported recycled anion exchange resin was thoroughly mixed. After the mixing was completed, the mixed ion exchange resin was finally washed with pure water, and then the mixed ion exchange resin was transferred from the K regeneration tower to the demineralization tower, and the flow of condensate water was started.

【0046】通水開始後、3時間経過した時点で当該脱
塩塔の処理水をサンプリングし、このサンプルの導電率
およびT.O.C濃度を測定するとともに、当該サンプ
ルに紫外線を照射することによってサンプル中に含まれ
ている有機物を分解し、分解液中のSO4 イオン濃度
を測定した。測定結果を表2に示す。
[0046] Three hours after the start of water flow, the treated water of the demineralization tower was sampled, and the conductivity and T. O. In addition to measuring the C concentration, the organic matter contained in the sample was decomposed by irradiating the sample with ultraviolet rays, and the SO4 ion concentration in the decomposed solution was measured. The measurement results are shown in Table 2.

【0047】次に、前述した本発明方法により再生した
カチオン交換樹脂が充填されている前記脱塩塔に、規定
量の復水を通水して通水終点に達せしめた後、当該脱塩
塔内の使用済混合イオン交換樹脂を再びK再生塔に移送
した。K再生塔に移送した混合イオン交換樹脂に対して
、今度は最初にエアスクラビング洗浄を行う従来法によ
る再生を実施した。なお、エアスクラビング−逆洗洗浄
からなる一連の操作を計5回繰り返した。また、使用し
た酸およびアルカリ再生剤の種類,濃度,量等は前記本
発明方法の場合と同じとした。
Next, a specified amount of condensate is passed through the desalination tower filled with the cation exchange resin regenerated by the method of the present invention described above to reach the water flow end point, and then the desalination The used mixed ion exchange resin in the tower was transferred again to the K regeneration tower. The mixed ion exchange resin transferred to the K regeneration tower was then regenerated using the conventional method of first performing air scrubbing. The series of operations consisting of air scrubbing and backwashing was repeated five times in total. Furthermore, the type, concentration, amount, etc. of the acid and alkali regenerant used were the same as in the method of the present invention.

【0048】再生終了後、カチオン交換樹脂とアニオン
交換樹脂を充分に混合し、純水で最終的に洗浄した後、
混合イオン交換樹脂を前記脱塩塔に移送して復水の通水
を開始した。通水開始後、3時間経過した時点で脱塩塔
の処理水をサンプリングし、このサンプルについて導電
率,T.O.C濃度および紫外線分解後のSO4 イオ
ン濃度を測定した。測定結果を前記本発明の結果と対比
して表2に示す。
After the regeneration is completed, the cation exchange resin and anion exchange resin are thoroughly mixed, and after a final washing with pure water,
The mixed ion exchange resin was transferred to the demineralization tower, and the flow of condensate water was started. Three hours after the start of water flow, the treated water from the desalination tower was sampled, and the conductivity, T. O. C concentration and SO4 ion concentration after ultraviolet decomposition were measured. The measurement results are shown in Table 2 in comparison with the results of the present invention.

【0048】[0048]

【表2】                          
       測定結果    ──────────
───────────────────────  
      項    目             
       本発明方法            従
来法    ───────────────────
──────────────      導電率(μ
s/cm)          0.058     
       0.058      T.O.C(p
pb)        14            
      22      SO4 イオン(ppb
)        0.8             
   1.5      (紫外線分解後)   ───────────────────────
───────────
[Table 2]
Measurement results ──────────
────────────────────────
Item
Method of the present invention Conventional method ────────────────────
────────────── Conductivity (μ
s/cm) 0.058
0.058 T. O. C(p
pb) 14
22 SO4 ion (ppb
) 0.8
1.5 (after ultraviolet decomposition) ────────────────────────
────────────

【0050】表2から明らかな
ように、本発明方法の場合は、T.O,C濃度および紫
外線分解後のSO4 イオン濃度とともに従来法の場合
の1/1.5〜1/2に低減しており、本発明方法がカ
チオン交換樹脂の酸化分解防止および有機性溶出物の低
減に極めて効果的であることがわかる。
As is clear from Table 2, in the case of the method of the present invention, T. The O, C concentration and the SO4 ion concentration after ultraviolet decomposition are reduced to 1/1.5 to 1/2 of those in the conventional method. It can be seen that it is extremely effective in reducing

【0051】[0051]

【効果】以上説明したごとく、本発明によれば復水脱塩
装置に使用されているカチオン交換樹脂のエアスクラビ
ング時における酸化分解を防止することができ、したが
ってカチオン交換樹脂の劣化防止,長寿命化を図ること
ができるとともに、火力発電所におけるボイラー、沸騰
水型(BWR型)原子力発電所における原子炉、更には
加圧水型(PWR型)原子力発電所における蒸気発生器
(SG)等の高温高圧系を構成する部材にとって有害な
SO4 イオン等の発生源となるカチオン交換樹脂から
の酸化分解生成物の溶出、更には通水時における脱塩塔
からの当該酸化分解生成物の漏出を従来より著しく低減
することができる。
[Effect] As explained above, according to the present invention, it is possible to prevent oxidative decomposition of the cation exchange resin used in condensate desalination equipment during air scrubbing, thereby preventing deterioration of the cation exchange resin and extending its life. In addition, high-temperature, high-pressure applications such as boilers in thermal power plants, nuclear reactors in boiling water (BWR) nuclear power plants, and steam generators (SG) in pressurized water (PWR) nuclear power plants, etc. The elution of oxidative decomposition products from the cation exchange resin, which is a source of SO4 ions, etc. that are harmful to the components of the system, and the leakage of the oxidative decomposition products from the demineralization tower during water flow are significantly reduced compared to conventional methods. can be reduced.

【0052】また、カチオン交換樹脂の酸化による劣化
が進行した場合は、分子量100,000以上の比較的
高分子量の分解生成物がカチオン交換樹脂から溶出する
こともあるが、このような高分子量の溶出物が脱塩装置
に使用されているアニオン交換樹脂に吸着されるとこれ
を脱着することが極めて困難であり、かつ吸着量があま
り多くなるとアニオン交換樹脂のイオン交換能力の低下
を引き起こす。その結果、CLイオン,SO4 イオン
等の不純物イオンの除去性能が低下し、前述したような
厳しい水質要求を満足させることができなくなるといっ
た不具合を生じることがあるが、カチオン交換樹脂の酸
化分解を防止できる本発明方法によれば、このような不
具合を確実に防止することができるという効果もある。
[0052] Furthermore, when the deterioration of the cation exchange resin due to oxidation progresses, relatively high molecular weight decomposition products with a molecular weight of 100,000 or more may be eluted from the cation exchange resin; When the eluate is adsorbed on the anion exchange resin used in the desalting device, it is extremely difficult to desorb it, and if the amount of adsorption is too large, the ion exchange ability of the anion exchange resin will be reduced. As a result, the removal performance of impurity ions such as CL ions and SO4 ions may deteriorate, resulting in problems such as the inability to meet the strict water quality requirements mentioned above. The method of the present invention has the effect of reliably preventing such problems.

【0053】なお、前述した参考例からわかるように、
従来法における空気によるスクラビングを、N2 ガス
やH2 ガス等の不活性ガスを用いたスクラビングに置
き換えることによってもカチオン交換樹脂の酸化分解を
防止することができるが、このような方法は不活性ガス
の費用や当該ガスを回収する場合の設備等の点を考える
と好ましい方法とは言い難い。
[0053] As can be seen from the reference examples mentioned above,
Oxidative decomposition of the cation exchange resin can also be prevented by replacing the air scrubbing in the conventional method with scrubbing using an inert gas such as N2 gas or H2 gas. Considering the cost and the equipment required to recover the gas, this method cannot be called a preferable method.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】参考例におけるカチオン交換樹脂からのT.O
.C(有機物)の溶出状況を示したグラフである。
FIG. 1: T.I. from a cation exchange resin in a reference example. O
.. It is a graph showing the elution status of C (organic substance).

【図2】実施例における再生方法の手順を示したブロッ
ク図である。
FIG. 2 is a block diagram showing the procedure of a reproduction method in the embodiment.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】復水脱塩塔にて使用されたカチオン交換樹
脂を酸で再生するにあたり、当該カチオン交換樹脂にエ
アスクラビング洗浄を施すことなく酸再生剤を通薬する
ことを特徴とする復水脱塩装置におけるカチオン交換樹
脂の再生方法。
Claim 1: A regeneration method characterized in that, when regenerating a cation exchange resin used in a condensate demineralization tower with an acid, an acid regenerating agent is passed through the cation exchange resin without performing air scrubbing. A method for regenerating cation exchange resin in water desalination equipment.
【請求項2】使用する酸が塩酸である請求項1に記載の
復水脱塩装置におけるカチオン交換樹脂の再生方法。
2. The method for regenerating a cation exchange resin in a condensate desalination apparatus according to claim 1, wherein the acid used is hydrochloric acid.
【請求項3】酸再生剤の通薬後にカチオン交換樹脂のエ
アスクラビング洗浄を実施する請求項1または2に記載
の復水脱塩装置におけるカチオン交換樹脂の再生方法。
3. The method for regenerating a cation exchange resin in a condensate desalination apparatus according to claim 1 or 2, wherein the cation exchange resin is cleaned by air scrubbing after passing the acid regenerant.
JP3174850A 1991-06-20 1991-06-20 Regeneration method of cation exchange resin in condensate desalination equipment Expired - Lifetime JP2898125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3174850A JP2898125B2 (en) 1991-06-20 1991-06-20 Regeneration method of cation exchange resin in condensate desalination equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3174850A JP2898125B2 (en) 1991-06-20 1991-06-20 Regeneration method of cation exchange resin in condensate desalination equipment

Publications (2)

Publication Number Publication Date
JPH04371239A true JPH04371239A (en) 1992-12-24
JP2898125B2 JP2898125B2 (en) 1999-05-31

Family

ID=15985746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3174850A Expired - Lifetime JP2898125B2 (en) 1991-06-20 1991-06-20 Regeneration method of cation exchange resin in condensate desalination equipment

Country Status (1)

Country Link
JP (1) JP2898125B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776131A (en) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 Zero-discharge system and process for regenerated wastewater of condensate fine treatment system of coal-fired power plant

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110776131A (en) * 2019-10-15 2020-02-11 华电电力科学研究院有限公司 Zero-discharge system and process for regenerated wastewater of condensate fine treatment system of coal-fired power plant

Also Published As

Publication number Publication date
JP2898125B2 (en) 1999-05-31

Similar Documents

Publication Publication Date Title
US2470500A (en) Demineralizing
US4401591A (en) Treatment of organic ion exchange material containing radioactive waste products
JPH0125818B2 (en)
JP3724247B2 (en) Method for purifying hydrogen peroxide water
JP4292366B2 (en) Anion exchanger regeneration method and anion exchanger regeneration agent
US3956115A (en) Process for the regeneration of ion-exchange resins and applications thereof
JPH04371239A (en) Method for regenerating cation-exchanger resin in condensate desalter
JP2002361245A (en) Method and device for regenerating ion exchange resin in condensate demineralizer
JPH11216372A (en) Treatment method for preventing oxidative deterioration of cation exchange resin by oxidizing agent
JP2891790B2 (en) Regeneration method of anion exchange resin
US5428074A (en) Method for separating ion exchange resins and for removing metallic foulants from the resins
JPH09262486A (en) Regenerating method of ion exchange resin in desalting device for condensate
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JPH09206605A (en) Regeneration of anion exchange resin
JP3570066B2 (en) Ion exchange equipment
JP4023834B2 (en) Storage method and operation preparation method of ion exchange resin in hotbed desalination equipment
JPH10216536A (en) Regeneration or anion exchange resin
JP2654053B2 (en) Condensate desalination equipment
JP3638624B2 (en) Regeneration method of mixed bed type sucrose solution purification equipment
JP3598798B2 (en) Regeneration method of mixed bed type desalination equipment
JPS59136141A (en) Regenerating method of ion exchange resin for condensate desalting device
JPH03154642A (en) Regeneration method of ion-exchange resin
JPS621307B2 (en)
EP0002342B1 (en) Water purification process
JPH1147744A (en) Condensed water treatment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080312

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090312

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110312

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13