JPH04369844A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04369844A
JPH04369844A JP14637691A JP14637691A JPH04369844A JP H04369844 A JPH04369844 A JP H04369844A JP 14637691 A JP14637691 A JP 14637691A JP 14637691 A JP14637691 A JP 14637691A JP H04369844 A JPH04369844 A JP H04369844A
Authority
JP
Japan
Prior art keywords
layer
impurities
epitaxial
gate
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14637691A
Other languages
Japanese (ja)
Inventor
Hiroshi Mizutani
浩 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP14637691A priority Critical patent/JPH04369844A/en
Publication of JPH04369844A publication Critical patent/JPH04369844A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To increase a gate breakdown strength by a method wherein an impurity is ion-implanted in an ohmic junction region and in the vicinity of the ohmic junction region and an annealing for activating the introduced impurity, such as an RTA, is performed as the profile in the depth direction of the introduced impurity is kept. CONSTITUTION:An intentionally impurity non-doping GaAs epitaxial layer 3 is formed. After the I-type layer 3 in the vicinity of a gate is selectively removed with a sulfuric acid solution in a desired thickness, an inter-element isolation is performed, Si ions are selectively ion-implanted in an ohmic junction formation region and in the vicinity of the ohmic junction formation region, an RTA is performed and the impurity is electrically activated. After that, the layer 3 at a gate formation region is selectively removed with a sulfuric acid solution in a desired thickness. After that, a WSi film is deposited as a gate metal film 5, AuGe-Au metals are alloyed at 400 deg.C to form an electrode metal film 6 and a GaAs MESFET is formed. Thereby, as a gate breakdown strength can be increased, the MESFET can be actuated at a high voltage.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置に関し、とく
にMESFET(Metal−Semiconduct
orField Effect Transister
,ショットキーゲート電界効果トランジスタ)に関する
[Field of Industrial Application] The present invention relates to semiconductor devices, and particularly to MESFET (Metal-Semiconductor) devices.
orField Effect Transister
, Schottky gate field effect transistor).

【0002】0002

【従来の技術】従来のGaAs  MESFETではチ
ャネルの上にSiO2膜やSi3 N4 膜を直接成長
させてパッシベーション膜として使用しているが、これ
らの膜はGaAsと結晶構造が異なるためGaAs/パ
ッシベーション膜界面に高密度の表面欠陥順位を生じる
。この界面順位はゲートバイアスの変化に伴い電子の捕
獲や放出を繰り返す。しかし、電子の放出に関する時定
数は数ミリ秒程度あるため、マイクロ波など高周波領域
の大振幅動作時には電子の放出が追随できなくなり、結
果としてゲート周辺の界面に電子を捕獲したまま動作す
ることになる。そのため界面のポテンシャルが上がり、
チャネル狭窄を引き起こし出力電力、効率共に制限する
[Prior Art] In conventional GaAs MESFETs, a SiO2 film or a Si3 N4 film is grown directly on the channel and used as a passivation film, but since these films have a different crystal structure from GaAs, the GaAs/passivation film interface This results in a high density of surface defects. This interface repeatedly captures and releases electrons as the gate bias changes. However, since the time constant for electron emission is on the order of several milliseconds, during large-amplitude operation in the high-frequency range such as microwaves, the electron emission cannot be followed, and as a result, the operation continues with electrons captured at the interface around the gate. Become. Therefore, the potential of the interface increases,
This causes channel narrowing and limits both output power and efficiency.

【0003】パッシベーション膜とGaAs界面に局在
する界面準位に起因する前記問題の解決には、従来主に
2つの試みがなされている。界面準位を低減する積極的
な方法と、界面準位を回避する消極的な方法の2つであ
る。前者は、硫黄を含む溶媒での表面の処理を施すなど
で、後者は多段リセス構造やチャネル上に意図的にキャ
リアをドープしていない層(以下i層)を配した構造な
どがある。特に、i層を配した構造ではS.Srira
m et al. IEEE Cornell Con
f. 218 IV−5(1989) やM.Taki
kawa et al“Semi−Insulatin
g III−V Materials ”Ohmsha
 Ltd.603(1986)という報告がある。前者
はi層として2000オングストロームの厚さのGaA
sを用いている。 後者はi層として1000オングストロームのAlGa
Asを再成長して用いている。
[0003] In order to solve the above-mentioned problem caused by the interface states localized at the interface between the passivation film and GaAs, two main attempts have been made in the past. There are two methods: an active method of reducing interface states and a passive method of avoiding interface states. The former involves surface treatment with a solvent containing sulfur, and the latter includes a multi-stage recess structure and a structure in which a layer (hereinafter referred to as an i-layer) not intentionally doped with carriers is placed on a channel. In particular, in a structure with an i-layer, S. Srira
m et al. IEEE Cornell Con
f. 218 IV-5 (1989) and M. Taki
Kawa et al “Semi-Insulatin
g III-V Materials “Ohmsha
Ltd. There is a report called 603 (1986). The former is GaA with a thickness of 2000 angstroms as the i-layer.
s is used. The latter is made of 1000 angstrom AlGa as the i-layer.
As is regrown and used.

【0004】0004

【発明が解決しようとする課題】上述の従来のi層を配
したGaAs  MESFET構造は、図2に示すよう
に、半絶縁性GaAs基板1上にn型GaAsエピタキ
シャル層2を有し、このn型GaAsエピタキシャル層
2にゲート金属5がショットキー接合している。n型G
aAsエピタキシャル層2の他の表面には意図的に不純
物をドープしないGaAsエピタキシャル層(i層)3
を有し、その上にn型GaAsコンタクト層4と電極金
属6とを有している。この図2のようにn型GaAsコ
ンタクト層4の下に厚さが500オングストローム〜1
000オングストロームのi−GaAs層3を配したエ
ピ構造で、深さ方向に濃度が一定であるプロファイルを
持つチャネルのとき、チャネル表面の変化に対し鈍感に
なり、入出力特性の線形領域が広くなりかつ飽和出力が
高くなるなど特性は向上するが、一方ゲート耐圧は約1
4Vしかなく、10V以上の高電圧でFETを動作させ
るためには低過ぎるという問題点があった。また、i層
3の厚さが増大すると、ソース抵抗Rs,ドレイン抵抗
Rdが増大して特性に悪影響を与えるという問題点もあ
った。
[Problems to be Solved by the Invention] The above-mentioned conventional GaAs MESFET structure with an i-layer has an n-type GaAs epitaxial layer 2 on a semi-insulating GaAs substrate 1, as shown in FIG. A gate metal 5 is connected to the GaAs epitaxial layer 2 in a Schottky junction. n-type G
The other surface of the aAs epitaxial layer 2 is a GaAs epitaxial layer (i-layer) 3 that is not intentionally doped with impurities.
It has an n-type GaAs contact layer 4 and an electrode metal 6 thereon. As shown in FIG. 2, the thickness of the layer under the n-type GaAs contact layer 4 is 500 Å to 1.
When the channel has an epitaxial structure with an i-GaAs layer 3 of 000 angstroms and has a profile where the concentration is constant in the depth direction, it becomes insensitive to changes in the channel surface and the linear region of the input/output characteristics becomes wide. Although characteristics such as higher saturation output are improved, on the other hand, the gate breakdown voltage is approximately 1
There was a problem that the voltage was only 4V, which was too low to operate the FET at a high voltage of 10V or higher. Further, when the thickness of the i-layer 3 increases, the source resistance Rs and the drain resistance Rd increase, which has a negative effect on the characteristics.

【0005】[0005]

【課題を解決するための手段】本発明は、チャネルの上
にi−GaAs層を配したエピ構造において、オーミッ
ク接合形成領域とその近傍にイオン注入によって選択的
に不純物を導入する工程と、導入した不純物の深さ方向
のプロファイルを保ったまま活性化する為のアニールた
とえばRTA(Rapid Thermal Anne
al)を施す工程を含むことを特徴とする。
[Means for Solving the Problems] The present invention provides a step of selectively introducing impurities into an ohmic junction forming region and its vicinity by ion implantation in an epitaxial structure in which an i-GaAs layer is disposed on a channel; An annealing process, such as RTA (Rapid Thermal Annealing), is used to activate the impurities while maintaining their depth profile.
al).

【0006】オーミック接合形成領域とその近傍への不
純物のイオン注入および不純物活性化アニールの作用に
ついて以下に示す。図3にゲート耐圧とゲートバイアス
Vg=0Vのときのドレイン電流Idssの関係を示し
た。グループAは図2に示した従来のi層3を配した構
造、グループBは従来例でi層のない構造、グループC
は図1eあるいは図4eに示した本発明による構造であ
る。図から明らかなように同じIdssに対して本発明
のグループCが最も大きなゲート耐圧を示している。こ
のことから、従来のi層3を配した構造の利点を保った
ままゲート耐圧を高くする事が可能になるため、高電圧
で動作させることができるようになる。また、ソース抵
抗Rs,ドレイン抵抗Rdの増大も抑制することができ
る。
The effects of impurity ion implantation into the ohmic junction forming region and its vicinity and impurity activation annealing will be described below. FIG. 3 shows the relationship between gate breakdown voltage and drain current Idss when gate bias Vg=0V. Group A is the conventional structure with the i-layer 3 shown in FIG. 2, group B is the conventional structure without the i-layer, and group C is the conventional structure without the i-layer.
is the structure according to the invention shown in FIG. 1e or FIG. 4e. As is clear from the figure, group C of the present invention exhibits the highest gate breakdown voltage for the same Idss. From this, it becomes possible to increase the gate breakdown voltage while maintaining the advantages of the conventional structure in which the i-layer 3 is arranged, and it becomes possible to operate at a high voltage. Furthermore, increases in source resistance Rs and drain resistance Rd can also be suppressed.

【0007】[0007]

【実施例】次に本発明について図面を参照して説明する
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings.

【0008】図1は本発明の一実施例の断面図である。 この実施例では、図1aに示すエピ構造の場合を取り上
げる。図1a,b,c,d図は本実施例の製造方法の主
な断面図である。図1aに示した通り、半絶縁性GaA
s基板1上にMBEなどの結晶成長装置を用いて、不純
物濃度3.5×1017cm−3のn型GaAsエピタ
キシャル層2を1200オングストローム原子層を一層
ずつ重ねる技術で形成する。続いて同装置により、意図
的に不純物をドープしないGaAsエピタキシャル層(
i層)3を4000オングストローム形成する。図1b
に示した通り、硫酸系溶液でゲート近傍のi層3を選択
的に所望の厚さ3000オングストローム除去した後、
素子間分離を施し、図1cの通りオーミック接合形成領
域とその近傍に選択的に28Si+ を300keV,
8×1013cm−2,120keV,2×1013c
m−2,50keV,2×1013cm−2の条件でイ
オン注入、RTAを施し、不純物を電気的に活性化した
。その後図1dの通り硫酸系溶液でゲート形成領域のi
層3を選択的に所望の厚さ(ここでは1000オングス
トローム)除去する。その後、ゲート金属5としてWS
iを堆積し、AuGe−Au系メタルを400℃で合金
化して電極金属6を形成し、図1eに示す本発明のGa
As  MESFETを形成した。
FIG. 1 is a sectional view of one embodiment of the present invention. In this example, we consider the case of the epi structure shown in FIG. 1a. Figures 1a, b, c, and d are main cross-sectional views of the manufacturing method of this embodiment. As shown in Figure 1a, semi-insulating GaA
An n-type GaAs epitaxial layer 2 with an impurity concentration of 3.5×10 17 cm −3 is formed on an s-substrate 1 using a crystal growth apparatus such as MBE using a technique of stacking atomic layers of 1200 angstroms layer by layer. Next, using the same equipment, a GaAs epitaxial layer (
Form i-layer) 3 with a thickness of 4000 angstroms. Figure 1b
As shown in , after selectively removing the i-layer 3 near the gate to a desired thickness of 3000 angstroms using a sulfuric acid solution,
After separating the elements, 28Si+ was selectively applied to the ohmic junction formation region and its vicinity at 300 keV as shown in Figure 1c.
8×1013cm-2,120keV, 2×1013c
Ion implantation and RTA were performed under the conditions of m-2, 50 keV, and 2 x 1013 cm-2 to electrically activate the impurities. After that, as shown in Fig. 1d, the gate formation area i is coated with a sulfuric acid solution.
Layer 3 is selectively removed to the desired thickness (here 1000 angstroms). After that, WS is used as gate metal 5.
The electrode metal 6 was formed by depositing AuGe-Au metal at 400°C, and forming the Ga of the present invention as shown in FIG.
As MESFET was formed.

【0009】本実施例によるGaAs  MESFTE
のゲート耐圧は26.3Vと飛躍的に向上し、Vds=
15Vの高電圧動作が可能になった。RF特性は1チッ
プ,Idss=1.9A,12.575GHz,Vds
=15Vにおいて2dB圧縮点で36.3dBmの高出
力を得た。
GaAs MESFTE according to this embodiment
The gate withstand voltage has been dramatically improved to 26.3V, and Vds=
High voltage operation of 15V is now possible. RF characteristics are 1 chip, Idss=1.9A, 12.575GHz, Vds
= 15V, a high output of 36.3 dBm was obtained at the 2 dB compression point.

【0010】次に本発明の他の実施例を説明する。この
実施例では図4aに示すようにi層の上にコンタクト層
1000オングストロームを成長したエピ構造の場合を
取り上げる。図4bに示した通り、i層厚さ1000オ
ングストロームを含むエピタキシャル基板1,2,3,
4を用い、硫酸系溶液でゲート形成領域とその近傍のコ
ンタクト層4を選択的に除去した後、素子間分離を施し
、図4cの通りオーミック形成領域とその近傍に選択的
に28Si+ を250keV,8×1013cm−2
,120keV,2×1013cm−2,50keV,
2×1013cm−2の条件でイオン注入、RTAを施
し、不純物を電気的に活性化した。その後図4dの通り
硫酸系溶液でゲート形成部分のi層を1000オングス
トローム選択的に除去して、第1実施例と同様にゲート
メタル5を堆積し、電極金属6を形成して、図4eに示
す本発明のGaAs  MESFETを形成した。本発
明によるGaAs  MESFETのゲート耐圧は26
.8Vで、RF特性は1チップ,Idss=2.8A,
12.575GHz,Vds=15Vにおいて2dBの
圧縮点で37.6dBmを得た。
Next, another embodiment of the present invention will be explained. This example deals with the case of an epitaxial structure in which a 1000 angstrom contact layer is grown on the i-layer as shown in FIG. 4a. As shown in FIG. 4b, epitaxial substrates 1, 2, 3, including an i-layer thickness of 1000 angstroms,
After selectively removing the contact layer 4 in the gate formation region and its vicinity with a sulfuric acid-based solution using a sulfuric acid-based solution, device isolation was performed, and as shown in FIG. 8×1013cm-2
,120keV, 2×1013cm-2,50keV,
Ion implantation and RTA were performed under conditions of 2×10 13 cm −2 to electrically activate impurities. Thereafter, as shown in FIG. 4d, 1000 angstroms of the i-layer in the gate forming area was selectively removed using a sulfuric acid-based solution, and a gate metal 5 was deposited in the same manner as in the first embodiment, and an electrode metal 6 was formed, as shown in FIG. 4e. A GaAs MESFET of the present invention shown in FIG. The gate breakdown voltage of the GaAs MESFET according to the present invention is 26
.. At 8V, RF characteristics are 1 chip, Idss=2.8A,
At 12.575 GHz and Vds=15V, 37.6 dBm was obtained at the 2 dB compression point.

【0011】[0011]

【発明の効果】以上説明したように本発明は、意図的に
不純物をドープしていないかまたは非常に少量ドープし
た化合物半導体のエピタキシャル層を含んだエピタキシ
ャル基板のオーミック接合形成領域とその近傍に選択的
に不純物をイオン注入する工程と導入した不純物の深さ
方向のプロファイルを保ったまま活性化する為のアニー
ルたとえばRTAを施す工程を適用することにより、ゲ
ート耐圧が約14Vから約27Vに向上し、12.57
5GHz,Vds=15Vという高電位において、1チ
ップ当り2dB圧縮点で出力電力約37dBmという高
水準の特性を得ることができた。
Effects of the Invention As explained above, the present invention provides an ohmic junction formation region and the vicinity thereof of an epitaxial substrate containing an epitaxial layer of a compound semiconductor that is not intentionally doped with impurities or doped with a very small amount of impurities. The gate breakdown voltage can be improved from about 14V to about 27V by applying a process of ion-implanting impurities and applying an annealing process such as RTA to activate the introduced impurities while maintaining their depth profile. , 12.57
At a high potential of 5 GHz and Vds = 15 V, we were able to obtain high-level characteristics of approximately 37 dBm of output power at the point of 2 dB compression per chip.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】a〜d図は本発明の一実施例の製造方法を工程
順に示す断面図、e図は本発明の一実施例によるFET
の断面図
FIG. 1: Figures a to d are cross-sectional views showing the manufacturing method according to an embodiment of the present invention in order of steps, and Figure e is a cross-sectional view of a FET according to an embodiment of the present invention.
cross-sectional view of

【図2】従来のFETの断面図[Figure 2] Cross-sectional view of a conventional FET

【図3】ゲート耐圧とゲートバイアスVg=0Vのとき
のドレイン電流Idssの関係を示したグラフ
[Figure 3] Graph showing the relationship between gate breakdown voltage and drain current Idss when gate bias Vg = 0V

【図4】
a〜d図は本発明の他の実施例の製造方法を工程順に示
す断面図、e図は本発明の第2実施例によるFETの断
面図
[Figure 4]
Figures a to d are cross-sectional views showing the manufacturing method of other embodiments of the present invention in order of steps, and figure e is a cross-sectional view of an FET according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1    半絶縁性GaAs基板 2    n型GaAsエピタキシャル層3    意
図的に不純物をドープしないGaAsエピタキシャル層 4    n型GaAsコンタクト層(領域)5   
 ゲート金属 6    電極金属
1 Semi-insulating GaAs substrate 2 N-type GaAs epitaxial layer 3 GaAs epitaxial layer not intentionally doped with impurities 4 N-type GaAs contact layer (region) 5
Gate metal 6 Electrode metal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  (a)原子レベルで制御する結晶成長
技術により、半絶縁性化合物半導体基板上にチャネル層
を含むエピタキシャル層を形成する工程と、(b)前記
結晶成長技術を用い、前記チャネル層のエピタキシャル
成長の後連続して、全面に意図的に不純物をドープして
いないかまたは非常に少量ドープした化合物半導体のエ
ピタキシャル層を成長する工程と、(c)前記エピタキ
シャル層成長の後、オーミック接合形成領域とその近傍
にイオン注入によって選択的に不純物を導入する工程と
、(d)導入した不純物の深さ方向のプロファイルを保
ったまま前記イオン注入した不純物を活性化する工程と
、(e)前記エピタキシャル基板のゲート電極を形成す
る部分に選択的に等方性あるいは異方性のエッチングを
施し、前記意図的に不純物をドープしていないかまたは
非常に少量ドープした化合物半導体のエピタキシャル層
全部あるいは一部を除去した後、前記ゲート電極を形成
する部分に選択的に金属を堆積する工程とを備えること
を特徴とする半導体装置の製造方法。
1. (a) forming an epitaxial layer including a channel layer on a semi-insulating compound semiconductor substrate using a crystal growth technique controlled at the atomic level, and (b) forming an epitaxial layer including a channel layer using the crystal growth technique; (c) successively after the epitaxial growth of the layer, growing an epitaxial layer of a compound semiconductor which is intentionally undoped or very lightly doped with impurities over the entire surface; and (c) after the epitaxial layer growth, an ohmic junction is formed. selectively introducing impurities into the formation region and its vicinity by ion implantation; (d) activating the ion-implanted impurities while maintaining the depth profile of the introduced impurities; (e) Selectively isotropic or anisotropic etching is performed on the portion of the epitaxial substrate where the gate electrode is to be formed, and the entire epitaxial layer of the compound semiconductor which is not intentionally doped with impurities or doped with a very small amount of impurities is etched. A method of manufacturing a semiconductor device, comprising the step of selectively depositing metal on a portion where the gate electrode is to be formed after removing a portion of the gate electrode.
【請求項2】  前記結晶成長技術を用い、前記エピタ
キシャル層成長の後連続して全面にチャネル層と同程度
かまたは高濃度のコンタクト層を成長する工程を含む特
許請求の範囲第1項記載の半導体の製造方法。
2. The method according to claim 1, further comprising the step of using the crystal growth technique to continuously grow a contact layer on the entire surface after the epitaxial layer growth, with a concentration equal to or as high as that of the channel layer. Semiconductor manufacturing method.
【請求項3】  前記ゲート電極堆積前にソース・ドレ
イン間のある領域でコンタクト層を含むエピタキシャル
基板に選択的に等方性あるいは異方性のエッチングを施
し、または領域を変えて前記選択的エッチングを繰り返
す工程を含む特許請求の範囲第1項記載の半導体の製造
方法。
3. Before depositing the gate electrode, selectively isotropic or anisotropic etching is performed on the epitaxial substrate including the contact layer in a certain region between the source and drain, or the selective etching is performed in different regions. 2. A method for manufacturing a semiconductor according to claim 1, which includes the step of repeating the steps.
JP14637691A 1991-06-19 1991-06-19 Manufacture of semiconductor device Pending JPH04369844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14637691A JPH04369844A (en) 1991-06-19 1991-06-19 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14637691A JPH04369844A (en) 1991-06-19 1991-06-19 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04369844A true JPH04369844A (en) 1992-12-22

Family

ID=15406318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14637691A Pending JPH04369844A (en) 1991-06-19 1991-06-19 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04369844A (en)

Similar Documents

Publication Publication Date Title
US5041393A (en) Fabrication of GaAs integrated circuits
KR920003799B1 (en) Semiconductor device
US6025613A (en) Semiconductor device capable of reducing leak current and having excellent pinch-off characteristic and method of manufacturing the same
JP2001185717A (en) Semiconductor device and method of manufacturing it
EP0063139A1 (en) Method of making a planar iii-v bipolar transistor by selective ion implantation and a device made therewith
US5824575A (en) Semiconductor device and method of manufacturing the same
US5837570A (en) Heterostructure semiconductor device and method of fabricating same
GB2225898A (en) Gaas fet manufacturing process
US5514606A (en) Method of fabricating high breakdown voltage FETs
JPH04369844A (en) Manufacture of semiconductor device
JP2611342B2 (en) Method for manufacturing semiconductor device
JP3018885B2 (en) Method for manufacturing semiconductor device
JPH10173036A (en) Semiconductor device and method of realizing high-resistance semiconductor
JPS59222966A (en) Semiconductor device
JPS62115781A (en) Field-effect transistor
JPH0249012B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPH0969611A (en) Semiconductor device and its manufacturing method
KR100313908B1 (en) Method for fabricating Electric device with GaN
EP0684633A2 (en) Method for manufacturing a semiconductor device
JPH06232168A (en) Field effect transistor and its manufacture
JPS6332273B2 (en)
JP3055244B2 (en) Semiconductor device and manufacturing method thereof
JPH0434821B2 (en)
JP2616032B2 (en) Method for manufacturing field effect transistor
JPS6223175A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20000801