JPH04369254A - Resin sealed type semiconductor device and its sealing material - Google Patents

Resin sealed type semiconductor device and its sealing material

Info

Publication number
JPH04369254A
JPH04369254A JP14592191A JP14592191A JPH04369254A JP H04369254 A JPH04369254 A JP H04369254A JP 14592191 A JP14592191 A JP 14592191A JP 14592191 A JP14592191 A JP 14592191A JP H04369254 A JPH04369254 A JP H04369254A
Authority
JP
Japan
Prior art keywords
resin
semiconductor device
epoxy resin
curing agent
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14592191A
Other languages
Japanese (ja)
Inventor
Masaji Ogata
正次 尾形
Kuniyuki Eguchi
州志 江口
Yoshihiro Kokado
小角 義博
Yasuhide Sugawara
菅原 泰英
Masanori Segawa
正則 瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14592191A priority Critical patent/JPH04369254A/en
Publication of JPH04369254A publication Critical patent/JPH04369254A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

PURPOSE:To provide sealing resin excellent in balance of adhesion, low moisture absorption, and heat resistance by combining epoxy resin with a hardener and a hardening accelerator which have specified chemical structure. CONSTITUTION:As a sealing agent for a semiconductor element, epoxy resin of o-cresol novolak type, bisphenol type, or the like is used, and as a hardener, phenol compound (R is CH3, and n is an integer not less than one)shown by the formula is used. Moreover, as a hardening accelerator, the adduct with phenol novolak resin of 1,8-diazabicyclo (5,4,0)-7-undecene or its derivative is used, and as inorganic filling, fused silica, crystalline silica, alumina, or the like is used. For the hardener, 0.75-1.25 equivalents are mixed to one equivalent of epoxy resin, and for the hardening accelerator, 0.1-1.0wt. part is mixed to 100wt. part of resin ingredients of epoxy resin and hardener. Hereby, solder resistance, moisture resistance, and heat-cycle resistance improve.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は樹脂封止型半導体装置に
係り、特に、実装時の加熱によって、パッケージクラッ
クが起りにくゝ、耐湿信頼性の優れた樹脂封止型半導体
装置および該封止材に関するものである。
[Field of Industrial Application] The present invention relates to a resin-sealed semiconductor device, and in particular to a resin-sealed semiconductor device and a resin-sealed semiconductor device that are less susceptible to package cracking due to heating during mounting and have excellent moisture resistance and reliability. This relates to retaining materials.

【0002】0002

【従来の技術】半導体素子を外部環境から保護し、プリ
ント基板への実装を容易にするためのパッケージ技術と
して、従来から樹脂封止技術が広く用いられている。し
かし、半導体素子はこれまで3年に4倍のピッチで高集
積度化が進み、それに伴って素子サイズも大型化が進ん
でいる。また、素子の高性能,多機能化に伴い、ピン数
の増加も進んでいる。
2. Description of the Related Art Resin encapsulation technology has been widely used as a packaging technology for protecting semiconductor elements from the external environment and facilitating mounting on printed circuit boards. However, the integration density of semiconductor devices has been increasing at a rate of four times every three years, and the size of the devices has also been increasing accordingly. Furthermore, the number of pins is increasing as devices become more sophisticated and multifunctional.

【0003】一方、各種エレクトロニクス機器の小型軽
量化、高性能化などのニーズから、各種半導体装置には
高密度実装の要求が強く、パッケージは小型薄型化のす
う勢にある。その結果、樹脂封止型半導体装置の封止樹
脂層は次第に薄型化する傾向にある。また、該パッケー
ジの形状は、ピンをプリント基板のスルーホールに差込
み実装するDIP(Dual Inline Plas
tic Package)、ZIP(Zigzag I
nlinePlastic Package)、SIP
(Single Inline PlasticPac
kage)等のいわゆるピン挿入型が主流であった。し
かし、ここ数年来実装の高密度化を図るために、SOP
(Small Outline Plastic Pa
ckage)、SOJ(Small Outline 
J−leadplastic package)、QF
P(Quad Flat Plastic Packa
ge)といった両面実装が可能で、しかもパッケージサ
イズが小さな面実装型のパッケージの需要が急増してい
る。
On the other hand, due to the need for smaller size, lighter weight, and higher performance of various electronic devices, there is a strong demand for high-density packaging in various semiconductor devices, and packages are becoming smaller and thinner. As a result, the sealing resin layer of resin-sealed semiconductor devices tends to become thinner and thinner. The shape of the package is DIP (Dual Inline Plasma), which is mounted by inserting pins into through holes on a printed circuit board.
tic Package), ZIP (Zigzag I
nline Plastic Package), SIP
(Single Inline PlasticPac
The so-called pin-insertion type was the mainstream. However, in recent years, in order to increase the density of implementation, SOP
(Small Outline Plastic Pa
ckage), SOJ (Small Outline)
J-lead plastic package), QF
P (Quad Flat Plastic Packa
There is a rapid increase in demand for surface-mount packages such as ge) that can be mounted on both sides and have a small package size.

【0004】このようなパッケージの厚さは、特に装置
や部品の薄型化を図る上で極めて重要となる。そのため
最近はTSOP(Thin Small Outlin
e Plastic Package)、TSOJ(T
hin Small Outline J−lead 
plastic package)、TQFP(Thi
nQuad Flat Plastic Packag
e)といった厚さが1mm以下の超薄型の面実装型のパ
ッケージの開発が行われている。
[0004] The thickness of such a package is extremely important, especially when trying to reduce the thickness of devices and components. Therefore, recently, TSOP (Thin Small Outlin
e Plastic Package), TSOJ (T
hin Small Outline J-lead
plastic package), TQFP (Th
nQuad Flat Plastic Packag
An ultra-thin surface-mount package with a thickness of 1 mm or less, such as e), is being developed.

【0005】[0005]

【発明が解決しようとする課題】しかし、このようにチ
ップの大型化、多ピン化、パッケージの小型薄肉化、面
実装化が進むにつれ、樹脂封止型半導体装置を製造する
上で重要な技術課題が発生した。すなわち、従来のピン
挿入型パッケージは、プリント基板のスルーホールに差
し込んだ状態でプリント基板ごとはんだ槽に浮かべては
んだ付けが行なわれていたゝめ、パッケージ本体が直接
高温に曝されことはなかった。
[Problems to be Solved by the Invention] However, as chips become larger and have more pins, packages become smaller and thinner, and surface mounting becomes more common, important technologies for manufacturing resin-sealed semiconductor devices become more important. An issue has arisen. In other words, with conventional pin-insertion type packages, the entire printed circuit board was inserted into a through-hole in the printed circuit board and soldered while floating in a solder bath, so the package body was not directly exposed to high temperatures. .

【0006】ところが、面実装型パッケージは一般に赤
外線リフローあるいはベーパーリフロー方式によりはん
だ付けが行われるために、パッケージ全体が直接200
数十度の高温に曝される。こうした半導体装置の樹脂封
止には通常エポキシ樹脂系の封止材が広く用いられてい
る。しかし、エポキシ樹脂系封止材は一般にかなりの透
湿性を有し、その結果パッケージ中には常に少量の水分
が存在する。また、封止材と半導体装置を構成するリー
ドフレーム、シリコンチップ、金線、パッシベーション
膜等との接着も必ずしも十分ではなく、パッケージ内部
には隙間や微小ボイド等の欠陥が存在する。そのため、
パッケージ内部の水分が所定量を超えた状態で加熱され
るとその水分が急激に蒸発し、その蒸気圧によってパッ
ケージ内部に応力が発生し、パッケージを構成する各部
材間に剥離やパッケージクラック、金ワイヤの断線等を
生じ、素子特性や実装後の信頼性を損なうと云う問題が
あった。
However, since surface-mount packages are generally soldered using infrared reflow or vapor reflow, the entire package is soldered directly to
Exposure to high temperatures of several tens of degrees. Generally, epoxy resin-based sealants are widely used for resin sealing of such semiconductor devices. However, epoxy resin-based encapsulants generally have significant moisture permeability, so that a small amount of moisture is always present in the package. Further, the adhesion between the sealing material and the lead frame, silicon chip, gold wire, passivation film, etc. that constitute the semiconductor device is not always sufficient, and defects such as gaps and microvoids exist inside the package. Therefore,
When the moisture inside the package is heated to exceed a specified amount, the moisture evaporates rapidly, and the vapor pressure generates stress inside the package, which can cause peeling, package cracks, and metallurgy between the various components that make up the package. There is a problem in that wire breakage occurs, which impairs device characteristics and reliability after mounting.

【0007】こうした水蒸気圧によって発生する熱応力
は、チップの大型化や薄肉化が進めば進むほど大きく、
また、パッケージの封止樹脂層が薄肉化すればするほど
パッケージ内部には水分が侵入し易くなり、パッケージ
は強度的に弱くなる。そのため、チップの大型化や封止
樹脂層の薄肉化が進むにつれ、こうした封止材の問題の
解決が強く望まれていた。
Thermal stress generated by water vapor pressure increases as chips become larger and thinner.
Furthermore, as the sealing resin layer of the package becomes thinner, it becomes easier for moisture to enter the inside of the package, and the strength of the package becomes weaker. Therefore, as chips become larger and sealing resin layers become thinner, there has been a strong desire to solve these problems with sealants.

【0008】半導体部品をプリント基板に実装する場合
、パッケージに発生する内部剥離やクラックを防止する
ため、実装に先立ってパッケージを乾燥する方法が採用
されている。しかし、この方法はパッケージ中の水分管
理や乾燥作業などの煩雑さを伴う。そのためパッケージ
が多少吸湿した状態で実装を行っても内部剥離やクラッ
クが発生しないものが強く望まれていることは既述した
とおりである。
When semiconductor components are mounted on a printed circuit board, a method is used in which the package is dried prior to mounting in order to prevent internal peeling and cracks occurring in the package. However, this method involves complications such as moisture management in the package and drying work. Therefore, as mentioned above, there is a strong desire for a package that will not cause internal peeling or cracking even if it is mounted in a state where the package has absorbed some moisture.

【0009】本発明者らは、これらの対策について検討
を行った結果、リードフレームやシリコンチップなどに
対する封止材の接着性を高め、パッケージ内部に水分の
溜り場所をつくらないようにすること、封止材の吸湿率
を小さくしてパッケージ内部に侵入する水分の絶対量を
減らすこと並びに封止材の高温強度を高め、熱応力によ
ってパッケージが破損しないようにすること等が重要な
ことが分かった。
[0009] As a result of studying these countermeasures, the inventors of the present invention found that the adhesiveness of the sealing material to the lead frame, silicon chip, etc. should be increased to prevent moisture from accumulating inside the package. It has been found that it is important to reduce the moisture absorption rate of the encapsulant to reduce the absolute amount of moisture that enters the inside of the package, and to increase the high-temperature strength of the encapsulant to prevent the package from being damaged by thermal stress. Ta.

【0010】従来、樹脂封止型半導体には、エポキシ樹
脂としては式〔2〕
Conventionally, for resin-sealed semiconductors, the epoxy resin has the formula [2]

【0011】[0011]

【化2】[Case 2]

【0012】(RはHまたはCH3)で表されるフェノ
ールノボラック型エポキシ樹脂またはoークレゾールノ
ボラック型エポキシ樹脂、硬化剤としては式〔3〕
Phenol novolac type epoxy resin or o-cresol novolac type epoxy resin represented by (R is H or CH3), as a curing agent, formula [3]

【0
013】
0
013]

【化3】[Chemical formula 3]

【0014】で表されるフェノールノボラック樹脂を主
成分とする封止材が広く用いられてきた。また、硬化促
進剤としてはアミン系化合物、イミダゾール系化合物、
ホスフィン系化合物、アンモニウム化合物、ホスホニウ
ム化合物等が広く用いられてきた。
Encapsulants whose main component is a phenol novolak resin represented by the following have been widely used. In addition, as curing accelerators, amine compounds, imidazole compounds,
Phosphine compounds, ammonium compounds, phosphonium compounds, etc. have been widely used.

【0015】このような封止材の諸物性は、エポキシ樹
脂や硬化剤成分の分子量、当量比、硬化促進剤の種類、
硬化条件等によって大きく変化させることができる。し
かし、一般に封止材の接着性を高め、かつ、吸湿率を小
さくしようとすると耐熱性が低下し、逆に耐熱性を高め
ようとすると接着性が低下し吸湿率が増大すると云った
ように、これらの特性のバランスをとることが極めて困
難であった。
The physical properties of such a sealing material include the molecular weight and equivalent ratio of the epoxy resin and curing agent components, the type of curing accelerator,
It can be greatly changed depending on the curing conditions and the like. However, in general, if you try to increase the adhesiveness of the sealing material and reduce the moisture absorption rate, the heat resistance will decrease, and conversely, if you try to increase the heat resistance, the adhesiveness will decrease and the moisture absorption rate will increase. , it has been extremely difficult to balance these characteristics.

【0016】本発明は上記に鑑みてなされたもので、そ
の目的とするところは、実装時の加熱によってパッケー
ジ内部の剥離、クラック、金ワイヤの断線等が起りにく
ゝ、耐湿信頼性の優れた樹脂封止型半導体装置を提供す
ることにある。
The present invention has been made in view of the above, and its purpose is to provide a package with excellent moisture resistance and reliability, which is less likely to cause peeling, cracking, or disconnection of gold wires inside the package due to heating during mounting. An object of the present invention is to provide a resin-sealed semiconductor device.

【0017】また、本発明の他の目的は、実装時の加熱
によってパッケージ内部の剥離、クラック、金ワイヤの
断線等が起りにくゝ、耐湿信頼性の優れた面実装型の樹
脂封止型半導体装置を提供することにある。
Another object of the present invention is to provide a surface-mount resin-sealed surface-mounting type resin-sealed type that is less likely to cause peeling inside the package, cracks, or breakage of gold wires due to heating during mounting, and has excellent moisture resistance and reliability. The purpose of the present invention is to provide semiconductor devices.

【0018】さらにまた、本発明の他の目的は、前記封
止材を提供することにある。
Still another object of the present invention is to provide the above-mentioned sealing material.

【0019】[0019]

【課題を解決するための手段】本発明者らは各種のエポ
キシ樹脂や硬化剤の化学構造と、硬化物の諸物性の関係
について種々検討を行った結果、特定の化学構造を有す
る硬化剤並びに硬化促進剤を組合せることによって、前
記の接着性、低吸湿性、耐熱性の各特性をバランスさせ
ることができること見出した。本発明の要旨は次のとお
りである。
[Means for Solving the Problems] The present inventors have conducted various studies on the relationship between the chemical structures of various epoxy resins and curing agents and the various physical properties of the cured products. It has been found that by combining a curing accelerator, the above-mentioned properties of adhesiveness, low moisture absorption, and heat resistance can be balanced. The gist of the present invention is as follows.

【0020】(1)半導体素子を(a)エポキシ樹脂、
(b)硬化剤、(c)硬化促進剤、(d)無機質充填剤
を含む封止材で封止された樹脂封止型半導体装置であっ
て、前記封止材の(b)硬化剤成分が一般式〔1〕
(1) The semiconductor element is made of (a) epoxy resin,
A resin-encapsulated semiconductor device encapsulated with an encapsulating material containing (b) a curing agent, (c) a curing accelerator, and (d) an inorganic filler, wherein the (b) curing agent component of the encapsulating material is the general formula [1]

【0
021】
0
021]

【化4】[C4]

【0022】(RはHまたはCH3、nは1以上の整数
を示す。)で表されるフェノール化合物、前記(c)硬
化促進剤が1,8−ジアザビシクロ(5,4,0)−7
−ウンデセンまたはその誘導体のフェノールノボラック
樹脂との付加反応物を含むことを特徴とする樹脂封止型
半導体装置およびその封止材。
(R is H or CH3, n is an integer of 1 or more), the curing accelerator (c) is 1,8-diazabicyclo(5,4,0)-7
- A resin-encapsulated semiconductor device and its encapsulating material, characterized by containing an addition reaction product of undecene or its derivative with a phenol novolak resin.

【0023】(2)半導体素子を(a)エポキシ樹脂、
(b)硬化剤、(c)硬化促進剤、(d)無機質充填剤
を含む封止材で封止された樹脂封止型半導体装置であっ
て、前記封止材の前記(b)硬化剤成分が前記一般式〔
1〕(RはHまたはCH3、nは1以上の整数を示す。 )で表されるフェノール化合物と、前記(c)硬化促進
剤が1,8−ジアザビシクロ(5,4,0)−7−ウン
デセンまたはその誘導体のフェノールノボラック樹脂と
の付加反応物を含み、ガラス転移温度150℃以上、厚
さ30μmのアルミニウム箔に対する接着強度(ピール
強度)600g/cm以上および85℃/98%RH下
における飽和吸湿率が2重量%以下であることを特徴と
する樹脂封止型半導体装置およびその封止材。
(2) The semiconductor element is made of (a) epoxy resin,
(b) a curing agent, (c) a curing accelerator, and (d) a resin-sealed semiconductor device encapsulated with an encapsulant containing an inorganic filler, wherein the (b) curing agent of the encapsulant The components have the above general formula [
1] (R is H or CH3, n is an integer of 1 or more) and the curing accelerator (c) is 1,8-diazabicyclo(5,4,0)-7- Contains an addition reaction product of undecene or its derivative with a phenol novolac resin, has a glass transition temperature of 150°C or higher, an adhesive strength (peel strength) of 600g/cm or higher to aluminum foil with a thickness of 30 μm, and saturation at 85°C/98% RH. A resin-sealed semiconductor device and its sealing material, characterized in that its moisture absorption rate is 2% by weight or less.

【0024】前記エポキシ樹脂は、o−クレゾールノボ
ラック型エポキシ樹脂、ビスフェノールAを原料にした
2官能あるいは多官能型エポキシ樹脂、ナフタレンまた
はビフェニル骨格を有する2官能あるいは多官能型エポ
キシ樹脂等が望ましい。
The epoxy resin is preferably an o-cresol novolak type epoxy resin, a bifunctional or polyfunctional epoxy resin made from bisphenol A, or a difunctional or polyfunctional epoxy resin having a naphthalene or biphenyl skeleton.

【0025】前記(b)硬化剤および前記(c)硬化促
進剤には、本発明の目的を損なわない範囲で通常用いら
れている硬化剤または硬化促進剤を併用してもよい。
As the curing agent (b) and the curing accelerator (c), commonly used curing agents or curing accelerators may be used in combination as long as the object of the present invention is not impaired.

【0026】前記一般式〔1〕で示される(b)硬化剤
は、前記(a)エポキシ樹脂1当量に対して0.75〜
1.25当量配合する。また、前記(c)硬化促進剤は
、上記エポキシ樹脂と硬化剤との樹脂成分100重量部
に対し0.1〜10重量部配合する。
The curing agent (b) represented by the above general formula [1] is used in an amount of 0.75 to 1 equivalent per equivalent of the epoxy resin (a).
1.25 equivalents are blended. Further, the curing accelerator (c) is blended in an amount of 0.1 to 10 parts by weight per 100 parts by weight of the resin components of the epoxy resin and curing agent.

【0027】(d)無機充填剤としては溶融シリカ、結
晶性シリカ、アルミナ等が用いられ、また、必要に応じ
てカップリング剤、離型剤、着色剤、難燃化剤、可撓性
付与剤等を配合してもよい。
(d) As the inorganic filler, fused silica, crystalline silica, alumina, etc. are used, and if necessary, a coupling agent, a mold release agent, a coloring agent, a flame retardant, and a flexibility imparting agent are used. Agents etc. may be added.

【0028】これらの各成分中で、大型チップを小型薄
肉の面実装型のパッケージに封止した場合に、実装時の
加熱によってパッケージクラックや耐湿信頼性の低下を
起りにくくするためには、無機充填剤の選択も重要であ
る。特に、熱応力を小さくするためには無機充填剤を多
量に配合して封止材の熱膨張係数を小さくするのがよい
。こうした目的に対してはそれ自体の熱膨張係数が小さ
い溶融シリカの使用が有効である。また、無機充填剤を
多量に配合することは封止材中の樹脂成分量を少なくす
ることであり、結果的にパッケージ内部に侵入する水分
量を少なくする効果がある。さらに、無機充填剤の増量
は硬化物の機械強度を向上させる効果があり、特に、平
均粒径が1〜20μm、望ましくは3〜10μmの無機
充填剤を用いると硬化物の高温強度が大幅に改善され、
実装時の加熱によってパッケージクラックや耐湿信頼性
の低下の防止に有効である。
[0028] Among these components, when a large chip is sealed in a small, thin surface-mount type package, inorganic components are used to prevent package cracking and deterioration of moisture resistance reliability due to heating during mounting. The choice of filler is also important. In particular, in order to reduce thermal stress, it is preferable to mix a large amount of inorganic filler to reduce the coefficient of thermal expansion of the sealing material. For these purposes, it is effective to use fused silica, which itself has a small coefficient of thermal expansion. In addition, blending a large amount of inorganic filler reduces the amount of resin component in the sealing material, which has the effect of reducing the amount of moisture that enters the inside of the package. Furthermore, increasing the amount of inorganic filler has the effect of improving the mechanical strength of the cured product, and in particular, using an inorganic filler with an average particle size of 1 to 20 μm, preferably 3 to 10 μm, significantly increases the high temperature strength of the cured product. improved,
This is effective in preventing package cracks and deterioration of moisture resistance reliability due to heating during mounting.

【0029】また、カップリング剤は樹脂成分と無機充
填剤との濡れ性や接着性を高め、硬化物の内部欠陥を少
なくして硬化物の機械特性の向上や吸湿率の低減に効果
がある。なお、カップリング剤の添加効果を最大限引き
出すためには、カップリング剤は予め無機充填剤の表面
に単分子層が形成されるように被覆し、これを樹脂成分
や他の素材と混練することが望ましい。一方、可撓性付
与剤はその種類によっては封止材の弾性率や熱膨張係数
を小さくし、破断時の伸び率を大きくする作用があり、
小型薄型パッケージの耐クラック性の向上に効果がある
。この様な目的には末端または側鎖にエポキシ基、アミ
ノ基、カルボキシル基、水酸基等の官能基を有するシリ
コーン系化合物またはポリブタジエン、ポリアクリロニ
トリル系化合物などが有効である。これらの可撓性付与
剤はその目的によって封止材の全重量に対し0.1〜5
重量%、好ましくは0.5〜2重量%用いるとよい。
[0029] Furthermore, the coupling agent increases the wettability and adhesion between the resin component and the inorganic filler, reduces internal defects in the cured product, and is effective in improving the mechanical properties of the cured product and reducing moisture absorption. . In order to maximize the effect of adding a coupling agent, it is necessary to coat the surface of the inorganic filler with the coupling agent in advance so that a monomolecular layer is formed, and then knead this with the resin component and other materials. This is desirable. On the other hand, depending on the type of flexibility imparting agent, it has the effect of reducing the elastic modulus and thermal expansion coefficient of the sealing material and increasing the elongation rate at break.
It is effective in improving the crack resistance of small and thin packages. For this purpose, silicone compounds, polybutadiene, polyacrylonitrile compounds, and the like having functional groups such as epoxy groups, amino groups, carboxyl groups, and hydroxyl groups at terminals or side chains are effective. Depending on the purpose, these flexibility imparting agents may be added in an amount of 0.1 to 5 based on the total weight of the sealing material.
It may be used in an amount of 0.5 to 2% by weight, preferably 0.5 to 2% by weight.

【0030】本発明の封止材は、160〜200℃,1
〜10時間、好ましくは180℃前後で5〜6時間加熱
することによって硬化できる。
[0030] The sealing material of the present invention is heated at 160 to 200°C, 1
It can be cured by heating for ~10 hours, preferably at around 180°C for 5 to 6 hours.

【0031】[0031]

【作用】本発明の樹脂組成物が、優れた接着性と耐熱性
、低吸湿性を示す理由は次のように考えられる。
[Operation] The reason why the resin composition of the present invention exhibits excellent adhesiveness, heat resistance, and low moisture absorption is considered to be as follows.

【0032】一般に樹脂組成物の接着性の善し悪しは、
■  樹脂の被接着体に対する濡れ易さ、■  樹脂と
被接着体との間の化学的あるいは物理的結合の形成のし
易さ、■  樹脂の内部応力(硬化収縮率、弾性率、熱
膨張係数およびガラス転移温度)の大きさ、■  硬化
樹脂の強靱性、などが強く影響すると云われている。
In general, the adhesion of a resin composition is determined by
■ The ease with which the resin wets the object to be adhered, ■ The ease with which chemical or physical bonds are formed between the resin and the object to be adhered, ■ The internal stress of the resin (curing shrinkage rate, modulus of elasticity, coefficient of thermal expansion) It is said that the toughness of the cured resin, etc. have a strong influence.

【0033】また、硬化樹脂の耐熱性は樹脂分子鎖の網
目濃度(橋かけ密度)や分子鎖間の凝集エネルギー密度
、分子鎖の剛直性などが関係し、吸湿性には硬化樹脂中
の自由体積分率、残存または反応によって生成する極性
基の種類や濃度等が関係すると云われている。このよう
な観点から前記樹脂組成物の諸物性を検討した結果、意
外にも本発明の樹脂組成物は、図1に示すように従来の
樹脂組成物に比べて橋かけ密度が同じでもガラス転移温
度(Tg)が高い。換言すると低い橋かけ密度でも同じ
Tgを示すことが明らかになった。本発明の樹脂組成物
がこのような挙動を示すのは、分子間の凝集エネルギー
や分子鎖の剛直性が従来のものとは異なるためと考えら
れる。
Furthermore, the heat resistance of the cured resin is related to the network concentration (crosslinking density) of the resin molecular chains, the cohesive energy density between the molecular chains, the rigidity of the molecular chains, etc., and the hygroscopicity is related to the free concentration in the cured resin. It is said that the volume fraction, the type and concentration of polar groups remaining or generated by reaction, etc. are related. As a result of examining various physical properties of the resin composition from such a viewpoint, it was surprisingly found that the resin composition of the present invention has a lower glass transition than the conventional resin composition even though the crosslinking density is the same, as shown in Figure 1. Temperature (Tg) is high. In other words, it has become clear that the same Tg is exhibited even with a lower crosslinking density. The reason why the resin composition of the present invention exhibits such behavior is considered to be because the cohesive energy between molecules and the rigidity of molecular chains are different from those of conventional compositions.

【0034】通常、半導体封止材には150℃以上のT
gが要求される。本発明の樹脂組成物を用いてTgが1
50℃の封止材を作製しようとする場合、樹脂の橋かけ
密度はかなり低くてよいことになる。橋かけ密度が低い
樹脂は、高温における弾性が低いため緩和が起り易く内
部応力の発生が少ない。また、橋かけが緩やかなため靱
性がある。これが優れた接着性を示す理由と考える。
[0034] Normally, a semiconductor encapsulating material has a T temperature of 150°C or higher.
g is required. Tg is 1 using the resin composition of the present invention.
When attempting to produce a sealing material at 50° C., the crosslinking density of the resin may be quite low. A resin with a low crosslinking density has low elasticity at high temperatures, so relaxation occurs easily and little internal stress is generated. It also has toughness because the bridging is gradual. This is considered to be the reason why it exhibits excellent adhesion.

【0035】さらにまた、本発明の封止材が低吸湿性を
示すのは、吸湿性に著しい影響を及ぼす硬化樹脂中の自
由体積が、橋かけ密度に依存して小さいためと考えられ
る。
Furthermore, the reason why the sealing material of the present invention exhibits low hygroscopicity is considered to be that the free volume in the cured resin, which has a significant effect on hygroscopicity, is small depending on the crosslinking density.

【0036】なお、本発明の封止材は、各特性のバラン
スや耐熱性,経済性等を考慮すると、Tgは150〜2
15℃、ピール強度600〜2000g/cm、飽和吸
湿率0.5〜2%の範囲となるように調製するのが好ま
しい。
Note that the sealing material of the present invention has a Tg of 150 to 2 when considering the balance of each property, heat resistance, economic efficiency, etc.
It is preferable to adjust the temperature to 15°C, a peel strength of 600 to 2000 g/cm, and a saturated moisture absorption rate of 0.5 to 2%.

【0037】[0037]

【実施例】次に、本発明を実施例により詳細に説明する
。なお、以下の実施例および比較例では式(A)〜(F
)で示すエポキシ樹脂および式(G)〜(I)で示すフ
ェノ−ル系硬化剤を用いた。
EXAMPLES Next, the present invention will be explained in detail with reference to examples. In addition, in the following examples and comparative examples, formulas (A) to (F
) and phenolic curing agents represented by formulas (G) to (I) were used.

【0038】[0038]

【化5】[C5]

【0039】[0039]

【化6】[C6]

【0040】[0040]

【化7】[C7]

【0041】[0041]

【表1】[Table 1]

【0042】〔実施例  1〜4〕前記表1のエポキシ
樹脂および硬化剤、硬化促進剤:1,8−ジアザビシク
ロ(5,4,0)−7−ウンデセン(DBU)、DBU
とフェノールノボラック樹脂との付加反応物:DBU−
Ad(重量比1/3の混合物を150℃で1時間加熱)
からなる樹脂成分を、表2に示す割合(重量部)で計量
し、130〜140℃で素速く混合し、減圧脱気を行な
った後、これを厚さ30μmのアルミニウム製容器(長
さ63.5mm×幅12.7mm×深さ6.35mm)
に流し込み、180℃,6時間加熱硬化した。冷却後、
試料を容器ごと幅10mmに切断、硬化樹脂とアルミニ
ウム箔との接着強度を引張り速度1mm/分で90度折
り曲げピール試験によって測定した。さらに、ピール試
験後の試料から1mm×4mm×30mmの試験変を切
出し、周波数10Hzで動的粘弾性の温度依存性を測定
し、tanδのピーク温度からガラス転移温度(Tg)
を求めた。また、ゴム領域の弾性率から次式を用いて橋
かけ密度を求めた。
[Examples 1 to 4] Epoxy resin, curing agent, and curing accelerator shown in Table 1: 1,8-diazabicyclo(5,4,0)-7-undecene (DBU), DBU
Addition reaction product between and phenol novolac resin: DBU-
Ad (1/3 weight ratio mixture heated at 150°C for 1 hour)
The resin components consisting of were weighed in the proportions (parts by weight) shown in Table 2, quickly mixed at 130 to 140°C, and degassed under reduced pressure. .5mm x width 12.7mm x depth 6.35mm)
The mixture was poured into a container and heat-cured at 180° C. for 6 hours. After cooling,
The sample was cut into a width of 10 mm along with the container, and the adhesive strength between the cured resin and the aluminum foil was measured by a 90 degree bending peel test at a pulling speed of 1 mm/min. Furthermore, a test specimen of 1 mm x 4 mm x 30 mm was cut out from the sample after the peel test, and the temperature dependence of dynamic viscoelasticity was measured at a frequency of 10 Hz, and the glass transition temperature (Tg) was determined from the peak temperature of tan δ.
I asked for In addition, the crosslinking density was determined from the elastic modulus of the rubber region using the following equation.

【0043】[0043]

【数1】ρ=E/3φRT (ρ:橋かけ密度、E:ゴム領域(tanδのピーク温
度+40℃)の弾性率、φ:フロント係数、R:気体定
数、T:絶対温度を示す。)同様に、前記ピール試験後
の試料から切出した試験片を用い、80℃/80%RH
下に340時間放置したときの吸湿率を飽和吸湿率とし
て測定した。これらの結果を表1および図1,2に示す
[Equation 1] ρ=E/3φRT (ρ: cross-linking density, E: elastic modulus of the rubber region (tan δ peak temperature + 40°C), φ: front coefficient, R: gas constant, T: absolute temperature.) Similarly, using a test piece cut from the sample after the peel test, 80°C/80%RH
The moisture absorption rate when the sample was left for 340 hours was measured as the saturated moisture absorption rate. These results are shown in Table 1 and Figures 1 and 2.

【0044】〔比較例  1〜12〕前記エポキシ樹脂
,硬化剤および硬化促進剤:DUB,DUB−Adまた
はトリフェニルホスフィン(TPP)を用い、これらを
表1に示す割合で配合した樹脂成分について、前記実施
例1と同様にして硬化樹脂の接着性、動的粘弾性の温度
依存性(Tgおよび橋かけ密度)並びに飽和吸湿率を測
定した。
[Comparative Examples 1 to 12] Using the epoxy resin, curing agent, and curing accelerator: DUB, DUB-Ad, or triphenylphosphine (TPP), the resin components were blended in the proportions shown in Table 1. The adhesiveness of the cured resin, the temperature dependence of dynamic viscoelasticity (Tg and crosslinking density), and the saturated moisture absorption rate were measured in the same manner as in Example 1 above.

【0045】これらの結果を表1および図1,2に示す
These results are shown in Table 1 and FIGS. 1 and 2.

【0046】表1、図2から明らかなように、本発明の
樹脂組成物は接着強度,ガラス転移温度が高く、飽和吸
湿率が小さいことが分かる。
As is clear from Table 1 and FIG. 2, the resin composition of the present invention has high adhesive strength and glass transition temperature, and low saturated moisture absorption.

【0047】次に、上記実施例並びに比較例で用いた樹
脂組成物を用いて、表2に示す組成の半導体用封止材を
作製した。
Next, semiconductor encapsulants having the compositions shown in Table 2 were prepared using the resin compositions used in the above examples and comparative examples.

【0048】[0048]

【表2】[Table 2]

【0049】各素材の混練には二軸ロールを用い、ロー
ル表面温度80℃で約10分間混練を行った。また、表
面にアルミのジグザグ配線を施したシリコンチップ(6
.4mm×16.6mm角×厚さ0.4mm)を42ア
ロイ製のリードフレーム(厚さ250μm)上にエポキ
シ樹脂系の導電性接着剤で接着し、インナーリードとチ
ップ表面に形成された電極間を直径28μmの金ワイヤ
でワイヤボンデイングした半導体装置を作製した。該半
導体装置の断面模式図を図3に示す。
[0049] A twin-screw roll was used for kneading each material, and kneading was carried out for about 10 minutes at a roll surface temperature of 80°C. In addition, a silicon chip (6
.. 4 mm x 16.6 mm square x 0.4 mm thick) on a 42 alloy lead frame (250 μm thick) using an epoxy resin conductive adhesive, and between the inner leads and the electrodes formed on the chip surface. A semiconductor device was fabricated by wire bonding with a gold wire having a diameter of 28 μm. A schematic cross-sectional view of the semiconductor device is shown in FIG.

【0050】次いで、この半導体装置をトランスファー
プレスを用いて前記各封止材を用いて封止した。封止は
金型温度180℃、トランスファ圧力70kgf/mm
2、成形時間1.5分で行った。封止品は金型から取り
出した後、180℃で6時間の後硬化を行った。その後
リードの加工を行い、縦7.1mm×横22.2mm×
厚さ1.0mmのTSOP(Thin  Small 
 Outline  Plastic  Packag
e)と称される面実装型パッケージを作製した。
Next, this semiconductor device was sealed using each of the above-mentioned sealing materials using a transfer press. Sealing is performed at a mold temperature of 180℃ and a transfer pressure of 70kgf/mm.
2. The molding time was 1.5 minutes. After the sealed product was removed from the mold, it was post-cured at 180° C. for 6 hours. After that, we processed the lead and made it 7.1mm long x 22.2mm wide x
TSOP (Thin Small) with a thickness of 1.0 mm
Outline Plastic Packag
A surface-mounted package called e) was fabricated.

【0051】こうして得た各パッケージの耐はんだリフ
ロー性を評価するため、各パッケージを予め120℃の
減圧下で48時間乾燥した後85℃/85%RH中に放
置して所定時間経過後毎に取出したパッケージを、21
5℃のベーパーリフロー槽に入れ90秒間加熱した。そ
の後、冷却したパッケージの内部を超音波探査映像装置
で観察し、パッケージ内部の剥離、クラックの有無を調
べた。また、85℃/85%RH下で168時間加熱後
215℃のベーパーリフロー槽で90秒間加熱したパッ
ケージを65℃/85%RH下に放置し、耐湿信頼性(
チップ表面のアルミニウム配線の耐食性)を評価した。 同様に85℃/85%RH下で168時間加熱後215
℃のベーパーリフロー槽で90秒間加熱したパッケージ
の温度サイクル試験(−50℃/10分⇔+150℃/
10分)を行い、パッケージの耐クラック性を評価した
。これらの結果を表3に示す。
[0051] In order to evaluate the solder reflow resistance of each package obtained in this way, each package was dried in advance under reduced pressure at 120°C for 48 hours, and then left at 85°C/85% RH. The package you took out, 21
It was placed in a vapor reflow tank at 5°C and heated for 90 seconds. Thereafter, the inside of the cooled package was observed using an ultrasonic imaging device to check for peeling and cracks inside the package. In addition, after heating for 168 hours at 85°C/85% RH, the package was heated for 90 seconds in a vapor reflow tank at 215°C and left at 65°C/85% RH.
The corrosion resistance of the aluminum wiring on the chip surface was evaluated. Similarly, after heating for 168 hours at 85℃/85%RH, 215
Temperature cycle test of package heated for 90 seconds in a vapor reflow tank at ℃ (-50℃/10 minutes ⇔ +150℃/
10 minutes) to evaluate the crack resistance of the package. These results are shown in Table 3.

【0052】[0052]

【表3】[Table 3]

【0053】表3から、本発明の封止材で封止した半導
体装置は実装時の加熱によってパッケージ内部に剥離、
クラック等の不良発生率が極めて少なく、また、耐湿信
頼性や耐温度サイクル性にも優れていることが分かる。
Table 3 shows that the semiconductor device sealed with the sealing material of the present invention peels off inside the package due to heating during mounting.
It can be seen that the incidence of defects such as cracks is extremely low, and that it also has excellent moisture resistance reliability and temperature cycle resistance.

【0054】[0054]

【発明の効果】本発明の封止材で封止した半導体装置は
、近年需要が急増している面実装型パッケージに要求さ
れている耐はんだリフロー性を始め、耐湿性、耐温度サ
イクル性などの各種信頼性が優れており、各種電子装置
、電気機器の小型軽量化、高性能化に有効である。
[Effects of the Invention] Semiconductor devices encapsulated with the encapsulating material of the present invention have excellent resistance to solder reflow, moisture resistance, and temperature cycle resistance, which are required for surface-mount packages, the demand for which has been rapidly increasing in recent years. It has excellent reliability and is effective in reducing the size and weight of various electronic devices and electrical equipment and improving their performance.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】各種エポキシ樹脂組成物の橋かけ密度とガラス
転移温度(Tg)の関係を示すグラフである。
FIG. 1 is a graph showing the relationship between crosslinking density and glass transition temperature (Tg) of various epoxy resin compositions.

【図2】各種エポキシ樹脂組成物のガラス転移温度(T
g)とアルミニウム箔に対する接着性(ピール強度)お
よび飽和吸湿率との関係を示すグラフである。
[Figure 2] Glass transition temperature (T
It is a graph which shows the relationship between g), adhesiveness (peel strength) to aluminum foil, and saturated moisture absorption rate.

【図3】本発明のTSOPの模式断面図である。FIG. 3 is a schematic cross-sectional view of the TSOP of the present invention.

【符号の説明】[Explanation of symbols]

1…シリコンチップ、2…金ワイヤ、3…リードフレー
ム、4…封止材、5…接着剤。
DESCRIPTION OF SYMBOLS 1... Silicon chip, 2... Gold wire, 3... Lead frame, 4... Sealing material, 5... Adhesive.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】半導体素子を(a)エポキシ樹脂、(b)
硬化剤、(c)硬化促進剤、(d)無機質充填剤を含む
封止材で封止された樹脂封止型半導体装置であって、前
記封止材の(b)硬化剤成分が一般式〔1〕【化1】 (RはHまたはCH3、nは1以上の整数を示す。)で
表されるフェノール化合物と、前記(c)硬化促進剤が
1,8−ジアザビシクロ(5,4,0)−7−ウンデセ
ンまたはその誘導体のフェノールノボラック樹脂との付
加反応物を含むことを特徴とする樹脂封止型半導体装置
Claim 1: A semiconductor element is made of (a) an epoxy resin, (b)
A resin-encapsulated semiconductor device encapsulated with an encapsulant containing a curing agent, (c) a curing accelerator, and (d) an inorganic filler, wherein the (b) curing agent component of the encapsulant has the general formula [1] [Chemical formula 1] (R is H or CH3, n is an integer of 1 or more) and the curing accelerator (c) is 1,8-diazabicyclo(5,4, 0) A resin-sealed semiconductor device comprising an addition reaction product of -7-undecene or its derivative with a phenol novolac resin.
【請求項2】半導体素子を(a)エポキシ樹脂、(b)
硬化剤、(c)硬化促進剤、(d)無機質充填剤を含む
封止材で封止された樹脂封止型半導体装置であって、前
記封止材の前記(b)硬化剤成分が前記一般式〔1〕(
RはHまたはCH3、nは1以上の整数を示す。)で表
されるフェノール化合物と、前記(c)硬化促進剤が1
,8−ジアザビシクロ(5,4,0)−7−ウンデセン
またはその誘導体のフェノールノボラック樹脂との付加
反応物を含み、ガラス転移温度150℃以上、厚さ30
μmのアルミニウム箔に対する接着強度(ピール強度)
600g/cm以上および85℃/98%RH下におけ
る飽和吸湿率が2重量%以下であることを特徴とする樹
脂封止型半導体装置。
[Claim 2] The semiconductor element is made of (a) an epoxy resin, (b)
A resin-encapsulated semiconductor device encapsulated with an encapsulant containing a curing agent, (c) a curing accelerator, and (d) an inorganic filler, wherein the (b) curing agent component of the encapsulant is General formula [1] (
R represents H or CH3, and n represents an integer of 1 or more. ) and the curing accelerator (c) are 1
, 8-diazabicyclo(5,4,0)-7-undecene or its derivatives with a phenol novolac resin, glass transition temperature 150°C or higher, thickness 30°C.
Adhesion strength (peel strength) to μm aluminum foil
A resin-sealed semiconductor device having a saturated moisture absorption rate of 2% by weight or less at 600 g/cm or more and 85° C./98% RH.
【請求項3】前記一般式〔1〕で示される(b)硬化剤
が、前記(a)エポキシ樹脂1当量に対して0.75〜
1.25当量配合されていることを特徴とする請求項1
〜2に記載の樹脂封止型半導体装置。
3. The curing agent (b) represented by the general formula [1] has a content of 0.75 to 100% per equivalent of the epoxy resin (a).
Claim 1 characterized in that 1.25 equivalents are blended.
2. The resin-sealed semiconductor device according to item 2.
【請求項4】前記(c)硬化促進剤が1,8−ジアザビ
シクロ(5,4,0)−7−ウンデセンまたはその誘導
体のフェノールノボラック樹脂との付加反応物が、前記
(a)エポキシ樹脂および前記(b)硬化剤からなる樹
脂成分100重量部に対して、0.1〜10重量部配合
されていることを特徴とする請求項1、2または3に記
載の樹脂封止型半導体装置。
4. The curing accelerator (c) is an addition reaction product of 1,8-diazabicyclo(5,4,0)-7-undecene or a derivative thereof with a phenol novolac resin, which is the epoxy resin and 4. The resin-sealed semiconductor device according to claim 1, wherein the amount is 0.1 to 10 parts by weight based on 100 parts by weight of the resin component comprising the curing agent (b).
【請求項5】前記(d)無機質充填剤が平均粒径1〜2
0μmの溶融シリカであり、封止材中に60〜85重量
%含むことを特徴とする請求項1〜4のいずれかに記載
の樹脂封止型半導体装置。
5. The inorganic filler (d) has an average particle size of 1 to 2.
5. The resin-sealed semiconductor device according to claim 1, wherein the resin-sealed semiconductor device is 0 μm fused silica and is contained in the sealing material in an amount of 60 to 85% by weight.
【請求項6】前記封止材はシリコーン系またはポリブタ
ジエン系化合物からなるゴム成分を0.1〜5重量%含
むことを特徴とする請求項1〜5のいずれかに記載の樹
脂封止型半導体装置。
6. The resin-encapsulated semiconductor according to claim 1, wherein the encapsulating material contains 0.1 to 5% by weight of a rubber component made of a silicone-based or polybutadiene-based compound. Device.
【請求項7】前記該半導体装置は表面実装型のパッケー
ジ構造を有することを特徴とする請求項1〜6のいずれ
かに記載の樹脂封止型半導体装置。
7. The resin-sealed semiconductor device according to claim 1, wherein the semiconductor device has a surface-mounted package structure.
【請求項8】(a)エポキシ樹脂、(b)硬化剤、(c
)硬化促進剤、(d)無機質充填剤を含む半導体封止用
の封止材において、前記(b)硬化剤成分が前記一般式
〔1〕(RはHまたはCH3、nは1以上の整数を示す
。)で表されるフェノール化合物と、前記(c)硬化促
進剤が1,8−ジアザビシクロ(5,4,0)−7−ウ
ンデセンまたはその誘導体のフェノールノボラック樹脂
との付加反応物を含むことを特徴とする封止材。
Claim 8: (a) epoxy resin, (b) curing agent, (c
) A curing accelerator, (d) An encapsulating material for semiconductor encapsulation containing an inorganic filler, wherein the curing agent component (b) has the general formula [1] (R is H or CH3, and n is an integer of 1 or more). ) and the curing accelerator (c) contains an addition reaction product of 1,8-diazabicyclo(5,4,0)-7-undecene or a derivative thereof with a phenol novolac resin. A sealing material characterized by:
【請求項9】前記一般式〔1〕で示される(b)硬化剤
が、前記(a)エポキシ樹脂1当量に対して0.75〜
1.25当量配合されていることを特徴とする請求項8
に記載の封止材。
9. The curing agent (b) represented by the general formula [1] has a content of 0.75 to 100% per equivalent of the epoxy resin (a).
Claim 8 characterized in that 1.25 equivalents are blended.
Encapsulant described in .
【請求項10】前記(c)硬化促進剤が1,8−ジアザ
ビシクロ(5,4,0)−7−ウンデセンまたはその誘
導体のフェノールノボラック樹脂との付加反応物が、前
記(a)エポキシ樹脂および前記(b)硬化剤からなる
樹脂成分100重量部に対して、0.1〜10重量部配
合されていることを特徴とする請求項8または9に記載
の樹脂封止型半導体装置。
10. The curing accelerator (c) is an addition reaction product of 1,8-diazabicyclo(5,4,0)-7-undecene or a derivative thereof with a phenol novolac resin, which is the epoxy resin and 10. The resin-sealed semiconductor device according to claim 8, wherein the amount is 0.1 to 10 parts by weight based on 100 parts by weight of the resin component comprising the curing agent (b).
【請求項11】前記(d)無機質充填剤が平均粒径1〜
20μmの溶融シリカであり、封止材中に60〜85重
量%含むことを特徴とする請求項8、9または10に記
載の封止材。
11. The inorganic filler (d) has an average particle size of 1 to 1.
The encapsulant according to claim 8, 9 or 10, characterized in that it is 20 μm fused silica and is contained in the encapsulant in an amount of 60 to 85% by weight.
【請求項12】シリコーン系またはポリブタジエン系化
合物からなるゴム成分を0.1〜5重量%含むことを特
徴とする請求項8〜11のいずれかに記載の封止材。
12. The sealing material according to claim 8, which contains 0.1 to 5% by weight of a rubber component consisting of a silicone-based or polybutadiene-based compound.
JP14592191A 1991-06-18 1991-06-18 Resin sealed type semiconductor device and its sealing material Pending JPH04369254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14592191A JPH04369254A (en) 1991-06-18 1991-06-18 Resin sealed type semiconductor device and its sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14592191A JPH04369254A (en) 1991-06-18 1991-06-18 Resin sealed type semiconductor device and its sealing material

Publications (1)

Publication Number Publication Date
JPH04369254A true JPH04369254A (en) 1992-12-22

Family

ID=15396165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14592191A Pending JPH04369254A (en) 1991-06-18 1991-06-18 Resin sealed type semiconductor device and its sealing material

Country Status (1)

Country Link
JP (1) JPH04369254A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377928B2 (en) * 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10377928B2 (en) * 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
US11674062B2 (en) 2015-12-10 2023-06-13 Ppg Industries Ohio, Inc. Structural adhesive compositions

Similar Documents

Publication Publication Date Title
JP2825332B2 (en) Resin-sealed semiconductor device, method for manufacturing the device, and resin composition for semiconductor encapsulation
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3397176B2 (en) Liquid epoxy resin composition and semiconductor device
JPH04275325A (en) Resin composition for sealing semiconductor
JP2827115B2 (en) Resin-sealed semiconductor device
JPH04369254A (en) Resin sealed type semiconductor device and its sealing material
JPH1171444A (en) Epoxy resin composition and semiconductor device sealed therewith
JP2660631B2 (en) Resin-sealed semiconductor device
JP2001270932A (en) Epoxy resin composition and semiconductor device
JP2000239355A (en) Epoxy resin composition and semiconductor device
JP3259968B2 (en) Semiconductor device manufacturing method
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JP2002212393A (en) Epoxy resin composition and semi-conductor device
JPH05148410A (en) Thermosetting resin composition and semiconductor device
JP2922672B2 (en) Semiconductor device manufacturing method
JPH08153831A (en) Semiconductor device
JP3844098B2 (en) Epoxy resin composition and semiconductor device
KR19990036775A (en) Encapsulation material and lead-on-chip structure semiconductor device using the same
JP4765159B2 (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JPH11106612A (en) Epoxy resin composition and semiconductor device
JPH11130937A (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JP3533976B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JPH11130938A (en) Epoxy resin composition and semiconductor device