JP2922672B2 - Semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method

Info

Publication number
JP2922672B2
JP2922672B2 JP13341691A JP13341691A JP2922672B2 JP 2922672 B2 JP2922672 B2 JP 2922672B2 JP 13341691 A JP13341691 A JP 13341691A JP 13341691 A JP13341691 A JP 13341691A JP 2922672 B2 JP2922672 B2 JP 2922672B2
Authority
JP
Japan
Prior art keywords
epoxy resin
semiconductor device
resin composition
package
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13341691A
Other languages
Japanese (ja)
Other versions
JPH0567702A (en
Inventor
一雅 五十嵐
富士夫 北村
徳 長沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15104262&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2922672(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP13341691A priority Critical patent/JP2922672B2/en
Publication of JPH0567702A publication Critical patent/JPH0567702A/en
Application granted granted Critical
Publication of JP2922672B2 publication Critical patent/JP2922672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、信頼性に優れた半導体
置の製法に関するものである。
The present invention relates to relates to preparation of good semiconductor <br/> equipment reliability.

【0002】[0002]

【従来の技術】トランジスタ,IC,LSI等の半導体
素子は、外部環境からの保護の観点および素子のハンド
リングを可能にする観点から、プラスチツクパツケージ
等により封止され半導体装置化されている。この種のパ
ツケージの代表例としては、デユアルインラインパツケ
ージ(DIP)がある。このDIPは、ピン挿入型のも
のであり、実装基板に対してピンを挿入することにより
半導体装置を取り付けるようになつている。
2. Description of the Related Art Semiconductor devices such as transistors, ICs, and LSIs are sealed with plastic packages or the like to form semiconductor devices from the viewpoint of protection from the external environment and the viewpoint of enabling handling of the devices. A representative example of this type of package is a dual in-line package (DIP). The DIP is of a pin insertion type, and attaches a semiconductor device by inserting pins into a mounting board.

【0003】最近は、LSIチツプ等の半導体装置の高
集積化と高速化が進んでおり、加えて電子装置を小形で
高機能にする要求から、実装の高密度化が進んでいる。
このような観点からDIPのようなピン挿入型のパツケ
ージに代えて、表面実装型パツケージが主流になつてき
ている。この種のパツケージを用いた半導体装置におい
ては、平面的にピンを取り出し、これを実装基板表面に
直接半田等によつて固定するようになつている。このよ
うな表面実装型半導体装置は、上記のように平面的にピ
ンが取り出せるようになつており、薄い,軽い,小さい
という利点を備えている。したがつて、実装基板に対す
る占有面積が小さくてすむという利点を備えている他、
基板に対する両面実装も可能であるという長所も有して
いる。
In recent years, the integration and speed of semiconductor devices such as LSI chips have been increasing, and the density of mounting has been increasing due to the demand for smaller and more sophisticated electronic devices.
From such a viewpoint, a surface mount type package is becoming mainstream instead of a pin insertion type package such as DIP. In a semiconductor device using a package of this type, pins are taken out in a plane, and the pins are fixed directly to the surface of a mounting board by soldering or the like. Such a surface-mount type semiconductor device can take out pins in a planar manner as described above, and has the advantages of being thin, light, and small. Therefore, in addition to the advantage that the occupied area on the mounting board is small,
It also has the advantage that double-sided mounting on a substrate is also possible.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記のよう
な表面実装用パツケージを用いた半導体装置において表
面実装前にパツケージ自体が吸湿している場合には、半
田実装時に水分の蒸気圧によつて、パツケージにクラツ
クが生じるという問題がある。すなわち、図1に示すよ
うな表面実装型半導体装置において、水分は矢印Aのよ
うに封止樹脂1を通つて、パツケージ3内に浸入し、主
としてSi−チツプ7の表面やダイボンドパツド4の裏
面に滞溜する。そして、ベーパーフエーズソルダリング
等の半田表面実装を行う際に、上記滞溜水分が、上記半
田実装における加熱により気化し、その蒸気圧により、
図2に示すようにダイボンドパツド4の裏面の樹脂部分
を下方に押しやり、そこに空隙5をつくると同時にパツ
ケージ3にクラツク6を生じさせる。図1および図2に
おいて、2はリードフレーム、8はボンデイングワイヤ
ーである。
However, in a semiconductor device using a package for surface mounting as described above, if the package itself has absorbed moisture before surface mounting, the package is subjected to the vapor pressure of water during solder mounting. There is a problem that cracks occur in the package. That is, in the surface-mount type semiconductor device as shown in FIG. 1, moisture penetrates into the package 3 through the sealing resin 1 as shown by the arrow A, and mainly the surface of the Si chip 7 and the die bond pad 4. Stagnate on the back. And, when performing solder surface mounting such as vapor phase soldering, the accumulated water is vaporized by heating in the solder mounting, and due to its vapor pressure,
As shown in FIG. 2, the resin portion on the back surface of the die bond pad 4 is pushed downward to create a gap 5 therein and at the same time to generate a crack 6 in the package 3. 1 and 2, reference numeral 2 denotes a lead frame, and reference numeral 8 denotes a bonding wire.

【0005】このような問題に対する解決策として、半
導体素子をパツケージで封止した後、得られる半導体装
置全体を密封し、表面実装の直前に開封して使用する方
法や、表面実装の直前に上記半導体装置を100℃で2
4時間乾燥させ、その後半田実装を行うという方法が提
案され、すでに実施されている。しかしながら、このよ
うな前処理方法によれば、製造工程が長くなる上、手間
がかかるという問題がある。
As a solution to such a problem, a method of sealing a semiconductor element with a package and then sealing the whole obtained semiconductor device and opening the semiconductor device immediately before surface mounting, or the method described above immediately before surface mounting. Semiconductor device at 100 ° C
A method of drying for 4 hours and then performing solder mounting has been proposed and has already been implemented. However, according to such a pretreatment method, there is a problem that the manufacturing process becomes longer and more labor is required.

【0006】本発明は、このような事情に鑑みなされた
もので、電子機器への実装に際して前処理を要すること
なく、しかも半田実装時の加熱に耐えうる低応力性に優
れた半導体装置を効率良く製造することのできる半導体
装置の製法の提供をその目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a semiconductor device which does not require pre-processing when mounted on an electronic device and which has a low stress property capable of withstanding heating during solder mounting. It is an object of the present invention to provide a method for manufacturing a semiconductor device which can be manufactured well .

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、エポキシ樹脂組成物を用い半導体素子を
トランスフアー成形により樹脂封止して半導体装置を製
造する方法であつて、上記エポキシ樹脂組成物として下
記の(A)〜(C)成分を含み、下記の(C)成分の含
有量がエポキシ樹脂組成物全体の70〜85重量%に設
定されているエポキシ樹脂組成物を用い、かつエポキシ
樹脂組成物による樹脂封止時に、後硬化工程を省略する
半導体装置の製法を要旨とする。(A)下記の一般式
(1)で表される結晶性エポキシ樹脂。
To achieve the above object, according to an aspect of the present invention, shall apply in the method of manufacturing a semiconductor device sealed with resin by transfection fir molding a semiconductor device using the d epoxy resin composition, An epoxy resin composition containing the following components (A) to (C) as the epoxy resin composition, wherein the content of the following component (C) is set to 70 to 85% by weight of the entire epoxy resin composition. used, and when the resin sealing by the epoxy resin composition, a production method of a semiconductor device is omitted post-cure process and Abstract. (A) A crystalline epoxy resin represented by the following general formula (1).

【化3】 (B)下記の一般式(2)で表されるフエノールアラル
キル樹脂。
Embedded image (B) A phenol aralkyl resin represented by the following general formula (2).

【化4】 (C)無機質充填剤。Embedded image (C) an inorganic filler.

【0008】[0008]

【作用】エポキシ樹脂を主成分とする熱硬化型樹脂組成
物を用いトランスフアー成形により樹脂封止された半導
体パツケージは、印刷配線回路基板(PCB)に半田浸
漬して表面実装されるが、この際に発生するパツケージ
クラツクを防止する方法としては、封止樹脂に対する
吸湿を抑制する、ダイボンドパツドの裏面および半導
体素子の表面と封止樹脂との間の接着力を高める、封
止樹脂自体の強度を高めるという3つの方法が考えられ
る。本発明者らは、上記の封止樹脂に対する吸湿を抑
制するという方法に注目し、これを中心に研究を重ねた
結果、疎水性エポキシ樹脂骨格を有するトランスフアー
成形用エポキシ樹脂組成物を用いると、封止樹脂に対す
る吸湿が抑制され、耐半田パツケージクラツク性が大幅
に改善向上するということを突き止めた。そして、この
疎水性エポキシ樹脂骨格からなるトランスフアー成形用
封止樹脂組成物について、それが低吸湿性であるための
最良成形条件および最良硬化条件等について一連の研究
を重ねた結果、本発明に係る特殊なエポキシ樹脂組成物
を用いると、後硬化(アフターキユア)工程を経由させ
ることなく樹脂封止が可能になり、このように後硬化工
程を経由させないことにより、封止樹脂の吸水率が低く
なり、半導体装置の信頼性の低下も生じなくなることを
突き止め本発明に到達した。
The semiconductor package resin-sealed by the transfer molding using a thermosetting resin composition containing an epoxy resin as a main component is solder-immersed on a printed circuit board (PCB) and surface-mounted. As a method of preventing the package cracks generated at the time, the moisture absorption to the sealing resin is suppressed, the adhesive strength between the back surface of the die bond pad and the surface of the semiconductor element and the sealing resin is increased, and the sealing resin itself is used. There are three possible ways to increase the strength of the paper. The present inventors have paid attention to the method of suppressing moisture absorption for the sealing resin, and as a result of repeated research centered on this method, when using an epoxy resin composition for transfer molding having a hydrophobic epoxy resin skeleton. It has also been found that the absorption of moisture into the sealing resin is suppressed, and the solder package crack resistance is greatly improved. As a result of repeating a series of studies on the best molding conditions and the best curing conditions for the transfer molding sealing resin composition comprising this hydrophobic epoxy resin skeleton because of its low hygroscopicity, the present invention was achieved. When such a special epoxy resin composition is used, resin sealing can be performed without passing through a post-curing (after-curing) step. By not passing through the post-curing step, the water absorption of the sealing resin is low. As a result, the present inventor has found that the reliability of the semiconductor device is not reduced.

【0009】つぎに、本発明を詳しく説明する。Next, the present invention will be described in detail.

【0010】本発明に用いられるエポキシ樹脂組成物
は、特殊なエポキシ樹脂(A成分)と、フエノールアラ
ルキル樹脂(B成分)と、無機質充填剤(C成分)とを
用いて得られるものであつて、通常、粉末状もしくはそ
れを打錠したタブレツト状になつている。
The epoxy resin composition used in the present invention is obtained by using a special epoxy resin (component A), a phenol aralkyl resin (component B), and an inorganic filler (component C). It is usually in the form of a powder or a tablet obtained by compressing it.

【0011】上記特殊なエポキシ樹脂(A成分)は、ビ
フエニル型エポキシ樹脂で、下記の一般式(1)で表さ
れる結晶性エポキシ樹脂である。
The special epoxy resin (component A) is a biphenyl type epoxy resin, and is a crystalline epoxy resin represented by the following general formula (1).

【0012】[0012]

【化5】 Embedded image

【0013】このように、グリシジル基を有するフエニ
ル環に低級アルキル基を付加することにより撥水性を有
するようになる。そして、上記一般式(1)で表される
結晶性エポキシ樹脂のみでエポキシ樹脂成分を構成して
もよいし、半田パツケージクラツク性の劣化を招かない
範囲でそれ以外の通常用いられるエポキシ樹脂と併用し
てもよい。後者の場合には、エポキシ樹脂成分の一部が
上記一般式(1)で表される結晶性エポキシ樹脂で構成
されることとなる。上記通常用いられるエポキシ樹脂と
しては、クレゾールノボラツク型エポキシ樹脂,フエノ
ールノボラツク型エポキシ樹脂,ノボラツクビスA型や
ビスフエノールA型エポキシ樹脂等各種のエポキシ樹脂
があげられる。このように両者を併用する場合には、上
記一般式(1)で表されるエポキシ樹脂(A成分)をエ
ポキシ樹脂成分全体の50重量%(以下「%」と略す)
以上に設定するのが好ましく、特に好ましくは80%以
上である。
As described above, by adding a lower alkyl group to the phenyl ring having a glycidyl group, the phenyl ring has water repellency. The epoxy resin component may be composed only of the crystalline epoxy resin represented by the general formula (1), or may be combined with any other commonly used epoxy resin as long as the solder package cracking property is not deteriorated. You may use together. In the latter case, a part of the epoxy resin component is composed of the crystalline epoxy resin represented by the general formula (1). Examples of the commonly used epoxy resin include various epoxy resins such as a cresol novolak type epoxy resin, a phenol novolak type epoxy resin, a novolak bis A type and a bisphenol A type epoxy resin. When both are used in this manner, the epoxy resin (A component) represented by the general formula (1) is 50% by weight of the entire epoxy resin component (hereinafter abbreviated as “%”).
It is preferable to set the above value, particularly preferably 80% or more.

【0014】上記フエノールアラルキル樹脂(B成分)
は、下記の一般式(2)で表される。
The above phenol aralkyl resin (component B)
Is represented by the following general formula (2).

【0015】[0015]

【化5】 Embedded image

【0016】上記一般式(2)で表されるフエノールア
ラルキル樹脂は、上記特殊なエポキシ樹脂(A成分)の
硬化剤として作用するものであり、アラルキルエーテル
とフエノールとをフリーデルクラフツ触媒で反応させる
ことにより得られる。一般に、α,α’−ジメトキシ−
p−キシレンとフエノールモノマーの縮合重合化合物が
知られている。そして、上記フエノールアラルキル樹脂
としては、軟化点50〜110℃,水酸基当量150〜
220を有するものを用いるのが好ましい。
The phenol aralkyl resin represented by the general formula (2) serves as a curing agent for the special epoxy resin (component (A)), and causes aralkyl ether and phenol to react with a Friedel-Crafts catalyst. It can be obtained by: Generally, α, α'-dimethoxy-
A condensation polymerization compound of p-xylene and a phenol monomer is known. And as said phenol aralkyl resin, softening point 50-110 degreeC, hydroxyl equivalent 150-
Preferably, one having 220 is used.

【0017】上記特殊なエポキシ樹脂(A成分)とフエ
ノールアラルキル樹脂(B成分)の配合割合は、化学量
論的当量比で、特殊なエポキシ樹脂(A成分)中のエポ
キシ基1当量に対してフエノールアラルキル樹脂(B成
分)中の水酸基が0.9〜1.3となるように配合する
ことが好適である。
The mixing ratio of the special epoxy resin (component A) and the phenol aralkyl resin (component B) is a stoichiometric equivalent ratio, based on 1 equivalent of epoxy group in the special epoxy resin (component A). It is preferable to mix the phenol aralkyl resin (component B) so that the hydroxyl group in the phenol aralkyl resin is 0.9 to 1.3.

【0018】上記特殊なエポキシ樹脂(A成分)および
フエノールアラルキル樹脂(B成分)とともに用いられ
る無機質充填剤(C成分)としては、結晶性および溶融
性シリカが用いられ、なかでも平均粒子径が3〜20μ
mで最大粒子径が100μm未満の不定形破砕溶融シリ
カを用いるのが好ましい。そして、この無機質充填剤
(C成分)の含有量は、エポキシ樹脂組成物全体の70
〜85%の範囲に設定する必要がある。すなわち、無機
質充填剤の含有量が70%未満では一般に封止樹脂組成
物の硬化物の吸湿量が増加し、85%を超えると一般に
トランスフアー成形時の熔融粘度が高くなり、成形物の
ボイドの残存,キヤビテイ充填不良,ワイヤーフローお
よびステージシフトの増大等と成形物の品質が低下する
からである。
As the inorganic filler (component C) used together with the above-mentioned special epoxy resin (component A) and phenol aralkyl resin (component B), crystalline and fusible silica is used. ~ 20μ
It is preferable to use amorphous crushed fused silica having a maximum particle diameter of less than 100 μm. The content of the inorganic filler (component C) is 70% of the entire epoxy resin composition.
It is necessary to set in the range of ~ 85%. That is, when the content of the inorganic filler is less than 70%, the moisture absorption of the cured product of the encapsulating resin composition generally increases, and when it exceeds 85%, the melt viscosity during transfer molding generally increases, and the void of the molded product increases. This is because the quality of the molded product is deteriorated due to the remaining of steel, defective filling of the cavity, an increase in the wire flow and the stage shift, and the like.

【0019】なお、本発明に用いられるエポキシ樹脂組
成物には、上記A〜C成分以外にも、必要に応じて従来
から用いられているその他の添加剤が含有される。
The epoxy resin composition used in the present invention contains, if necessary, other additives conventionally used in addition to the above-mentioned components A to C.

【0020】上記その他の添加剤としては、硬化促進
剤,難燃剤,難燃助剤,内部離型剤,着色剤,接着助
剤,低応力化付与剤,ハイドロタルサイト等の各種イオ
ントラツプ剤等があげられる。
Other additives include a curing accelerator, a flame retardant, a flame retardant aid, an internal mold release agent, a colorant, an adhesion aid, a stress reducing agent, and various ion trapping agents such as hydrotalcite. Is raised.

【0021】上記硬化促進剤としては、アミン系,アミ
ン系−ホウ素系混合物,リン系,リン系−ホウ素系混合
物等の硬化促進剤等があげられ、単独でもしくは併せて
用いられる。
Examples of the curing accelerator include curing accelerators such as amine-based, amine-based-boron-based mixtures, phosphorus-based, and phosphorus-based-boron-based mixtures, and are used alone or in combination.

【0022】上記難燃剤および難燃助剤としては、ノボ
ラツク型ブロム化エポキシ樹脂,ビスA型ブロム化エポ
キシ樹脂,三酸化アンチモンもしくは五酸化アンチモン
等の化合物等が用いられ、これらは単独でもしくは併せ
て用いられる。
As the flame retardant and the flame retardant auxiliary, a compound such as a novolak-type brominated epoxy resin, a bis-A-type brominated epoxy resin, antimony trioxide or antimony pentoxide, etc. are used alone or in combination. Used.

【0023】上記内部離型剤としては、高級脂肪酸,高
級脂肪酸エステル,高級脂肪酸カルシウム,高級脂肪酸
アミド,ポリエチレン等の公知のワツクス化合物等があ
げられ、単独でもしくは併せて用いられる。
Examples of the internal mold release agent include known wax compounds such as higher fatty acids, higher fatty acid esters, higher fatty acid calcium, higher fatty acid amides, polyethylene and the like, and these are used alone or in combination.

【0024】上記着色剤としては、各種カーボンブラツ
ク,酸化チタンおよびその他必要に応じて公知の各種顔
料や染料等があげられ、これらは単独でもしくは併せて
用いられる。
Examples of the colorant include various carbon blacks, titanium oxide, and other various known pigments and dyes, if necessary. These may be used alone or in combination.

【0025】上記接着助剤としては、従来公知の各種シ
ラン系カツプリング剤,各種チタン系カツプリング剤等
があげられる。上記シラン系カツプリング剤としては、
グリシジルエーテルタイプ,アミンタイプ,チオシアン
タイプ,ウレアタイプ等のメトキシないしはエトキシシ
ラン等があげられ、単独でもしくは併せて用いられる。
そして、上記接着助剤は、場合により、例えば前記フエ
ノールアラルキル樹脂(B成分)を用いて撹拌装置付き
の反応容器を120〜180℃、特に好ましくは130
〜150℃に昇温させて反応させるように用いることが
できる。
Examples of the above-mentioned adhesion aid include various conventionally known silane coupling agents and various titanium coupling agents. As the silane coupling agent,
Glycidyl ether type, amine type, thiocyan type, urea type and other methoxy or ethoxy silanes are used, and they are used alone or in combination.
In some cases, for example, the above-mentioned adhesion aid is used in a reaction vessel equipped with a stirrer at 120 to 180 ° C., particularly preferably 130 ° C. using the phenol aralkyl resin (component B).
It can be used to raise the temperature to ~ 150 ° C to react.

【0026】本発明に用いられるエポキシ樹脂組成物
は、上記各成分を用いて、例えばつぎのようにして製造
することができる。すなわち、上記各成分を適宜配合し
予備混合した後、ミキシングロール機等の混練機にかけ
加熱状態で混練して溶融混合する。そして、これを室温
に冷却した後、公知の手段によつて粉砕し、必要に応じ
て打錠するという一連の工程により製造することができ
る。
The epoxy resin composition used in the present invention can be produced by using the above-mentioned components, for example, as follows. That is, after the above components are appropriately mixed and preliminarily mixed, the mixture is kneaded in a kneading machine such as a mixing roll machine in a heated state and melted and mixed. After cooling to room temperature, it can be manufactured by a series of steps of pulverizing by a known means and tableting as required.

【0027】このようなエポキシ樹脂組成物を用いての
半導体素子の封止は、例えば、金線等で電気的接続のな
された半導体素子を搭載したリードフレームを成形金型
を用いてトランスフアー成形によりモールド成形するこ
とができる。このようなトランスフアー成形としては、
一般に、多数のキヤビテイーを同時にレジンモールドす
るタイプや1ポツト1キヤビテイーから1ポツト数個ど
り1キヤビテイまでの小ポツト径でトランスフアー成形
するマルチプランジヤーシステムまでの各種トランスフ
アーモールド方式等があげられる。そして、上記トラン
スフアー成形では、150〜200℃までの温度範囲に
おいて数10秒から数100秒の成形時間をかけてモー
ルドを行う。このモールド過程では、エポキシ樹脂組成
物を加熱し、溶融状態で成形機のプランジヤーによつて
キヤビテイー内に移送し、ゲル化して硬化した形状で成
形を終了し、金型から離型して半導体装置としてのプラ
スチツク封止が完了する。
The sealing of a semiconductor device using such an epoxy resin composition is performed, for example, by molding a lead frame on which a semiconductor device electrically connected by a gold wire or the like is mounted using a molding die. Can be molded. As such transfer molding,
In general, there are various types of transfer molding methods, such as a resin molding method for a large number of cavities at the same time, and a multi-plunger system for performing a transfer molding with a small pot diameter from one pot and one cavity to one pot several cavities. In the transfer molding, the molding is performed in a temperature range of 150 to 200 ° C. with a molding time of several tens seconds to several hundred seconds. In this molding process, the epoxy resin composition is heated, transferred in a molten state into the cavity by a plunger of a molding machine, and the molding is completed in a gelled and cured shape. Plastic sealing is completed.

【0028】そして、上記工程の後、通常、150〜2
00℃の温度で数10分から数時間、具体的には175
℃で3〜20時間の後硬化(アフターキユア)工程で封
止樹脂の架橋反応を促進させるのが一般的である。しか
し、本発明のエポキシ樹脂組成物は、上記後硬化工程を
行うことなく硬化可能であり、このように後硬化工程を
経由させない方がパツケージに対する吸湿抑制効果が一
層発揮される。すなわち、本発明の半導体装置の製造工
程において、例えば、トランスフアー成形温度でのエポ
キシ樹脂組成物のゲル化時間を、好適には10〜40
秒、特に好適には10〜25秒に設定することにより、
成形金型からの離型の際に全く不具合を生じず、しかも
パツケージは、後硬化工程を経由した場合に比べて低吸
湿性に優れるようになる。すなわち、上記のようにして
樹脂封止を行うことにより、半田実装工程時において、
パツケージクラツクの発生が抑制され、半田耐熱性に優
れた高い信頼性を有する半導体装置が得られるようにな
る。
Then, after the above steps, usually 150 to 2
Tens of minutes to several hours at a temperature of 00 ° C., specifically 175
In general, the crosslinking reaction of the sealing resin is promoted in a post-curing (after-curing) step at 3 ° C. for 3 to 20 hours. However, the epoxy resin composition of the present invention can be cured without performing the above-mentioned post-curing step, and the effect of suppressing moisture absorption in the package is more exerted without passing through the post-curing step. That is, in the manufacturing process of the semiconductor device of the present invention, for example, the gelation time of the epoxy resin composition at the transfer molding temperature is preferably 10 to 40.
By setting the time to seconds, particularly preferably 10 to 25 seconds,
There is no problem at the time of release from the molding die, and the package is excellent in low hygroscopicity as compared with the case where the package has passed through a post-curing step. That is, by performing resin sealing as described above, during the solder mounting process,
The occurrence of package cracks is suppressed, and a highly reliable semiconductor device having excellent solder heat resistance can be obtained.

【0029】[0029]

【発明の効果】以上のように、本発明の製法にて得られ
半導体装置は、前記特殊なエポキシ樹脂(A成分)
と、フエノールアラルキル樹脂(B成分)と、特定範囲
に配合された無機質充填剤(C成分)とを含む特殊なエ
ポキシ樹脂組成物を用いて半導体素子を樹脂封止して構
成されており、上記各成分の相互作用により、封止樹脂
の吸湿が抑制され、半田実装におけるような過酷な条件
下においてもパツケージクラツクが生ずることがなく、
優れた耐湿信頼性を備えている。しかも、本発明の方法
は、上記耐湿信頼性に富んだ半導体装置を、封止樹脂の
後硬化工程を省略して製造するのであつて、従来のよう
に封止樹脂の後硬化工程という長時間の工程が省略され
ていることから封止作業性の高効率化を実現できる。
As described above, it is possible to obtain by the production method of the present invention.
That the semiconductor device, the special epoxy resin (A component)
And a special epoxy resin composition containing a phenol aralkyl resin (component (B)) and an inorganic filler (component (C)) mixed in a specific range. Due to the interaction of each component, moisture absorption of the sealing resin is suppressed, and even under severe conditions such as solder mounting, package crack does not occur,
Has excellent moisture resistance reliability. In addition, the method of the present invention manufactures the above-described semiconductor device having high moisture resistance reliability by omitting the post-curing step of the encapsulating resin. Since the step is omitted, high efficiency of the sealing work can be realized.

【0030】つぎに、実施例について比較例と併せて説
明する。
Next, examples will be described together with comparative examples.

【0031】先ず、エポキシ樹脂組成物の作製に際し
て、下記に示す化合物を準備した。
First, the following compounds were prepared for preparing the epoxy resin composition.

【0032】 《エポキシ樹脂A》 4,4’−ビス(2,3−エポキシプロポキシ)−3,
3’,5,5’−テトラメチルビフエニル:エポキシ当
量195 《エポキシ樹脂B》 o−クレゾールノボラツク型エポキシ樹脂:エポキシ当
量195
<< Epoxy Resin A >> 4,4′-bis (2,3-epoxypropoxy) -3,
3 ', 5,5'-tetramethylbiphenyl: epoxy equivalent 195 << Epoxy resin B >> o-cresol novolak type epoxy resin: epoxy equivalent 195

【0033】 《硬化剤A》 前記一般式(2)で表される繰り返し数n=1〜100
のフエノールアラルキル樹脂:軟化点76℃,水酸基当
量175 《無機質充填剤》 破砕溶融シリカ:平均粒子径7μm,最大粒子径90μ
m 《硬化促進剤A》 トリフエニルホスフイン 《硬化促進剤B》 1,8−ジアザビシクロ(4,3,0)ノネン−5 《難燃剤A》 ノボラツク型ブロム化エポキシ樹脂:エポキシ当量27
5 《難燃剤B》 三酸化アンチモン 《着色剤》 カーボンブラツク 《内部離型剤》 高級脂肪酸エステルワツクス 《接着助剤》 3−グリシドキシプロピルトリメトキシシラン
<< Curing Agent A >> The repeating number n = 1 to 100 represented by the general formula (2)
Phenol aralkyl resin: softening point 76 ° C., hydroxyl equivalent 175 << inorganic filler >> crushed fused silica: average particle diameter 7 μm, maximum particle diameter 90 μ
m << Curing accelerator A >> Trifenylphosphine << Curing accelerator B >> 1,8-diazabicyclo (4,3,0) nonene-5 << Flame retardant A >> Novolak-type brominated epoxy resin: Epoxy equivalent 27
5 << Flame retardant B >> Antimony trioxide << Colorant >> Carbon black << Internal release agent >> Higher fatty acid ester wax << Adhesive aid >> 3-glycidoxypropyltrimethoxysilane

【0034】[0034]

【実施例1〜5】下記の表1に示す各成分を用い同表に
示す割合で配合し、ミキシングロール機にかけて100
℃で5分間混練してシート状樹脂組成物を作製した。つ
いで、このシート状樹脂組成物を粉砕し、目的とするト
ランスフアー成形用エポキシ樹脂組成物を得た。
Examples 1 to 5 The components shown in Table 1 below were blended in the proportions shown in the same table, and mixed with a mixing roll machine.
The mixture was kneaded at 5 ° C. for 5 minutes to prepare a sheet-shaped resin composition. Then, the sheet-shaped resin composition was pulverized to obtain a desired epoxy resin composition for transfer molding.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【比較例1〜5】後硬化工程を行つた場合の硬化物特性
および半導体装置の特性を測定するため、上記実施例に
より得られたトランスフアー成形用エポキシ樹脂組成物
比較例として準備した。
Comparative Examples 1 to 5 The epoxy resin compositions for transfer molding obtained in the above Examples were prepared as Comparative Examples in order to measure the properties of the cured product and the properties of the semiconductor device when the post-curing step was performed.

【0037】[0037]

【比較例6〜9】下記の表2に示す各成分を用い、同表
に示す割合で配合した。それ以外は実施例1と同様にし
て目的とするトランスフアー成形用エポキシ樹脂組成物
を得た。
Comparative Examples 6 to 9 The components shown in Table 2 below were used and blended in the proportions shown in the same table. Otherwise in the same manner as in Example 1, the desired epoxy resin composition for transfer molding was obtained.

【0038】[0038]

【表2】 [Table 2]

【0039】上記実施例および比較例で得られたトラン
スフアー成形用エポキシ樹脂組成物の175℃ゲル化時
間(熱盤法)、硬化物特性(ガラス転移温度、線膨張係
数、25℃および260℃における曲げ弾性率,曲げ強
度、85℃/85%RH×168hrにおける吸水率)
を測定した。なお、比較例の硬化物は175℃の恒温槽
中にて5時間の後硬化工程を行つた。
The 175 ° C. The gel time of Example Contact and trans fir molding epoxy resin composition obtained in Comparative Example (heating plate method), the cured product properties (glass transition temperature, coefficient of linear expansion, 25 ° C. and 260 Flexural modulus at ℃, bending strength, water absorption at 85 ° C / 85% RH × 168hr)
Was measured. The ratio cured product of the Comparative Examples are KoTsuta a curing step after 5 hours in a constant temperature bath at 175 ° C..

【0040】また、上記トランスフアー成形用エポキシ
樹脂組成物を用いて、公知のトランスフアー成形法によ
り、175±5℃に加熱された成形用金型を用いて半導
体素子をモールド(成形時間120秒)して半導体装置
を得た。この半導体装置は、80pin四方向フラツト
パツケージ(QFP:20mm×14mm×厚み2.0mm)
で、サイズ8mm×8mmのダイボンドプレート上に熱硬化
エポキシ銀ペーストを用いて7.5mm×7.5mmの半導
体素子が接合されており、42アロイリードフレームの
インナーリードと20μm金線により電気的に接続され
ている。さらに、比較例品は、175℃の恒温槽中にて
5時間の後硬化工程を行つた。このようにして作製した
半導体装置を、85℃で85%RH恒温恒湿槽に96時
間放置した後、260℃の半田浴中に10秒間浸漬し、
パツケージクラツクの発生を観察した。その結果を後記
の表3,表4および表5に示した。
Further, using the epoxy resin composition for transfer molding, a semiconductor device is molded by a known transfer molding method using a molding die heated to 175 ± 5 ° C. (molding time: 120 seconds). ) To obtain a semiconductor device. This semiconductor device is an 80-pin four-way flat package (QFP: 20 mm × 14 mm × 2.0 mm thick)
A 7.5 mm × 7.5 mm semiconductor element is bonded on a die bond plate having a size of 8 mm × 8 mm using a thermosetting epoxy silver paste, and is electrically connected to the inner lead of a 42 alloy lead frame and a 20 μm gold wire. It is connected. Further, the ratio Comparative Examples products, KoTsuta a curing step after 5 hours in a constant temperature bath at 175 ° C.. After leaving the semiconductor device thus manufactured in a constant temperature and humidity bath at 85 ° C. and 85% RH for 96 hours, it was immersed in a solder bath at 260 ° C. for 10 seconds.
The occurrence of package cracks was observed. The results are shown in Tables 3, 4 and 5 below.

【0041】[0041]

【表3】 [Table 3]

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】*:比較例では熔融粘度が極めて高くな
り、トランスフアー成形に用いる試験片が作製できなか
つた。
*: In Comparative Example 8 , the melt viscosity was extremely high, and a test piece used for transfer molding could not be produced.

【0045】上記表3,表4および表5の結果から、比
較例6〜9の硬化物は強度が低く吸水率が高い。また、
半田クラツク試験でのクラツク発生数も多い。そして、
比較例1〜5の硬化物は比較例6〜9に比べて若干特性
に優れている。また、半田クラツク試験でのクラツク発
生数も比較例6〜9と比較して良好である。しかし、実
施例と比べた場合、比較例1〜5は全ての特性において
劣つている。これに対して、実施例の硬化物は強度が高
く吸水率も比較例に比べて低い。しかも、半田クラツク
試験でのクラツク発生数も少ない。
From the results of Tables 3, 4 and 5, the cured products of Comparative Examples 6 to 9 have low strength and high water absorption. Also,
Many cracks are generated in solder crack test. And
The cured products of Comparative Examples 1 to 5 are slightly better in characteristics than Comparative Examples 6 to 9 . Also, the number of cracks generated in the solder crack test is better than those of Comparative Examples 6 to 9 . But the real
When compared with the examples, Comparative Examples 1 to 5 are all characteristics.
Inferior. On the other hand, the cured product of the example has a high strength and a lower water absorption than the comparative example. Moreover, the number of cracks generated in the solder crack test is small.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の半導体装置のパツケージクラツク発生状
況を説明する縦断面図である。
FIG. 1 is a longitudinal sectional view illustrating a state of occurrence of a package crack in a conventional semiconductor device.

【図2】従来の半導体装置のパツケージクラツク発生状
況を説明する縦断面図である。
FIG. 2 is a vertical cross-sectional view illustrating a state of occurrence of a package crack in a conventional semiconductor device.

フロントページの続き (56)参考文献 特開 平4−325517(JP,A) 特開 昭63−186724(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 23/28 H01L 23/30 H01L 21/56 Continuation of the front page (56) References JP-A-4-325517 (JP, A) JP-A-63-186724 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 23 / 28 H01L 23/30 H01L 21/56

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 エポキシ樹脂組成物を用い半導体素子を
トランスフアー成形により樹脂封止して半導体装置を製
造する方法であつて、上記エポキシ樹脂組成物として下
記の(A)〜(C)成分を含み、下記の(C)成分の含
有量がエポキシ樹脂組成物全体の70〜85重量%に設
定されているエポキシ樹脂組成物を用い、かつエポキシ
樹脂組成物による樹脂封止時に、後硬化工程を省略する
ことを特徴とする半導体装置の製法。(A)下記の一般
式(1)で表される結晶性エポキシ樹脂。 【化1】 (B)下記の一般式(2)で表されるフェノールアラル
キル樹脂。 【化2】 (C)無機質充填剤。
1. A method of manufacturing a semiconductor device by sealing a semiconductor element with a resin by transfer molding using an epoxy resin composition, wherein the epoxy resin composition comprises the following components (A) to (C): A post-curing step is carried out using an epoxy resin composition containing the following component (C) in a content of 70 to 85% by weight of the entire epoxy resin composition and sealing the resin with the epoxy resin composition. A method for manufacturing a semiconductor device, which is omitted. (A) A crystalline epoxy resin represented by the following general formula (1). Embedded image (B) A phenol aralkyl resin represented by the following general formula (2). Embedded image (C) an inorganic filler.
【請求項2】 エポキシ樹脂組成物が、トランスフアー
成形温度におけるゲル化時間が10〜40秒である請求
記載の半導体装置の製法。
Wherein the epoxy resin composition, production method of a semiconductor device according to claim 1, wherein the gelling time in transfected fir molding temperature is 10 to 40 seconds.
JP13341691A 1991-05-08 1991-05-08 Semiconductor device manufacturing method Expired - Lifetime JP2922672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13341691A JP2922672B2 (en) 1991-05-08 1991-05-08 Semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13341691A JP2922672B2 (en) 1991-05-08 1991-05-08 Semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JPH0567702A JPH0567702A (en) 1993-03-19
JP2922672B2 true JP2922672B2 (en) 1999-07-26

Family

ID=15104262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13341691A Expired - Lifetime JP2922672B2 (en) 1991-05-08 1991-05-08 Semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP2922672B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996027900A1 (en) * 1995-03-07 1996-09-12 Nitto Denko Corporation Method of production of semiconductor device and sealing pellet used for the method
JPH10204257A (en) * 1997-01-24 1998-08-04 Shin Etsu Chem Co Ltd Epoxy resin composition and semiconductor device
JP3349963B2 (en) 1998-10-21 2002-11-25 日本電気株式会社 Flame-retardant epoxy resin composition and semiconductor device using the same

Also Published As

Publication number Publication date
JPH0567702A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
JP3259968B2 (en) Semiconductor device manufacturing method
JP2922672B2 (en) Semiconductor device manufacturing method
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JPH0597969A (en) Thermosetting resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP2519280B2 (en) Semiconductor device
JP2519278B2 (en) Semiconductor device
JPH07118366A (en) Epoxy resin composition
JP3014857B2 (en) Semiconductor device
JPH09143345A (en) Epoxy resin composition
JPH1135797A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JPH08258077A (en) Semiconductor device
JPH03116952A (en) Semiconductor device
JP2872828B2 (en) Semiconductor device
JPH11172075A (en) Epoxy resin composition and semiconductor device
JP3259958B2 (en) Semiconductor device mounting method
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP2824026B2 (en) Semiconductor device
JPH10130469A (en) Epoxy resin composition
JPH07113078B2 (en) Molding phenol resin composition, method for producing the same, and semiconductor device sealed with the composition
JP3005328B2 (en) Epoxy resin composition for sealing
JPH08311169A (en) Epoxy resin composition for sealing semiconductor and resin-sealed type semiconductor device
JP3239970B2 (en) Semiconductor device
JPH09129786A (en) Semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120430

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 13