JPH11130938A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JPH11130938A
JPH11130938A JP29697697A JP29697697A JPH11130938A JP H11130938 A JPH11130938 A JP H11130938A JP 29697697 A JP29697697 A JP 29697697A JP 29697697 A JP29697697 A JP 29697697A JP H11130938 A JPH11130938 A JP H11130938A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
red phosphorus
flame retardant
embedded image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29697697A
Other languages
Japanese (ja)
Other versions
JP3390335B2 (en
Inventor
Kenji Samejima
賢至 鮫島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP29697697A priority Critical patent/JP3390335B2/en
Publication of JPH11130938A publication Critical patent/JPH11130938A/en
Application granted granted Critical
Publication of JP3390335B2 publication Critical patent/JP3390335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor sealing composition excellent in moldability, reliability and high-temperature storability by mixing a polyfunctional epoxy resin and/or a crystalline epoxy resin having a specified melting point with a phenolic resin curing agent, a cure accelerator, a fused silica powder and a specified amount of red phosphorus flame retardant. SOLUTION: This composition is obtained by compounding at least one polyfunctional epoxy resin of formula I or II and/or at least one epoxy resin being a crystalline epoxy resin having a melting point of 50-150 deg.C and represented by any one of formula IV to VIII, a phenolic resin curing agent of formula III and 0.3-5.0 wt.%, based on the composition, red phosphorus flame retardant. In the formulas, R is a 1-12C alkyl; 1 is 1-10; m is 0-3; n is 0-4; and k is 1-6. The red phosphorus flame retardant is desirably one prepared by precoating the surface of red phosphorus with aluminum hydroxide and further coating the resulting surface with a phenolic resin and having a mean particle diameter of 10-70 μm, a maximum particle diameter of 150 μm or below and a red phosphorus content of 60-95 wt.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は成形性、信頼性、高
温保管性に優れた樹脂封止型半導体装置に関し、更に詳
述すればプリント配線板や金属リードフレームの片面に
半導体素子を搭載し、その搭載面側の実質的に片面のみ
を樹脂封止されたいわゆるエリア実装型半導体装置にお
いて、樹脂封止後の反りや基板実装時の半田付け工程で
の反りが小さく、又温度サイクル試験での耐パッケージ
クラック性や半田付け工程での耐パッケージクラック性
や耐剥離性に優れ、かつ高温保管性に優れる半導体封止
用エポキシ樹脂組成物及び該半導体封止用エポキシ樹脂
組成物で封止された半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device having excellent moldability, reliability, and high-temperature storage properties. More specifically, a semiconductor device is mounted on one side of a printed wiring board or a metal lead frame. In a so-called area mounting type semiconductor device in which substantially only one surface on the mounting surface side is resin-sealed, the warpage after resin sealing and the warping in the soldering process at the time of board mounting are small, and the temperature cycle test It is excellent in package cracking resistance and exfoliation resistance in package soldering and soldering processes, and is also excellent in high-temperature storage property. The epoxy resin composition for semiconductor encapsulation and the epoxy resin composition for semiconductor encapsulation. And a semiconductor device.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又半導体パッケージの表面実装化が促進されるなか
で、新規にエリア実装のパッケージが開発され、従来構
造のパッケージから移行し始めている。エリア実装パッ
ケージとしてはBGA(ボールグリッドアレイ)あるい
は更に小型化を追求したCSP(チップサイズパッケー
ジ)が代表的であるが、これらは従来QFP、SOPに
代表される表面実装パッケージでは限界に近づいている
多ピン化・小型化・高速化への要求に対応するために開
発されたものである。構造としては、BT樹脂/銅箔回
路基板(ビスマレイミド・トリアジン/ガラスクロス基
板)に代表される硬質回路基板、あるいはポリイミド樹
脂フィルム/銅箔回路基板に代表されるフレキシブル回
路基板の片面上に半導体素子を搭載し、その素子搭載面
のみがエポキシ樹脂組成物などで成形・封止されてい
る。又基板の素子搭載面の反対面には半田ボールを2次
元的に並列して形成し、パッケージを実装する回路基板
との接合を行う特徴を有している。更に、素子を搭載す
る基板としては、上記有機回路基板以外にもリードフレ
ーム等の金属基板を用いる構造も考案されている。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductors has been progressing year by year, and surface mounting of semiconductor packages has been promoted. Packaging packages have been developed and are beginning to move away from packages with traditional structures. Typical area mounting packages are BGA (ball grid array) or CSP (chip size package) pursuing further miniaturization, but these are approaching the limit in conventional surface mounting packages such as QFP and SOP. It was developed to meet the demands for more pins, smaller size, and higher speed. The structure is as follows: a rigid circuit board represented by a BT resin / copper foil circuit board (bismaleimide / triazine / glass cloth board) or a flexible circuit board represented by a polyimide resin film / copper foil circuit board; An element is mounted, and only the element mounting surface is molded and sealed with an epoxy resin composition or the like. Also, on the surface opposite to the element mounting surface of the substrate, solder balls are formed two-dimensionally in parallel so as to be joined to a circuit board on which a package is mounted. Further, a structure using a metal substrate such as a lead frame other than the organic circuit substrate has been devised as a substrate on which the element is mounted.

【0003】これらエリア実装型半導体パッケージの構
造は基板の素子搭載面のみを樹脂組成物で封止し、半田
ボール形成面側は封止しないという片面封止の形態をと
っている。ごく希に、リードフレーム等の金属基板など
では、半田ボール形成面でも数十μm程度の封止樹脂層
が存在することもあるが、素子搭載面では数百μmから
数mm程度の封止樹脂層が形成されるため、実質的に片
面封止となっている。このため、有機基板や金属基板と
樹脂組成物の硬化物との間での熱膨張・熱収縮の不整
合、あるいは樹脂組成物の成形・硬化時の硬化収縮によ
る影響により、これらのパッケージでは成形直後から反
りが発生しやすい。又、これらのパッケージを実装する
回路基板上に半田接合を行う場合、200℃以上の加熱
工程を経るが、この際にパッケージの反りが発生し、多
数の半田ボールが平坦とならず、パッケージを実装する
回路基板から浮き上がってしまい、電気的接合信頼性が
低下する問題も起こる。基板上の実質的に片面のみを樹
脂組成物で封止したパッケージにおいて、反りを低減す
るには、基板の線膨張係数と樹脂組成物硬化物の線膨張
係数を近付けること、及び樹脂組成物の硬化収縮を小さ
くする二つの方法が重要である。基板としては有機基板
ではBT樹脂やポリイミド樹脂のような高ガラス転移温
度の樹脂が広く用いられており、これらはエポキシ樹脂
組成物の成形温度である170℃近辺よりも高いガラス
転移温度を有する。従って、成形温度から室温までの冷
却過程では有機基板のα1 の領域のみで収縮する。その
ため樹脂組成物もガラス転移温度が高くかつα1 が回路
基板と同じであり、更に硬化収縮がゼロであれば反りは
ほぼゼロであると考えられる。このため、多官能型エポ
キシ樹脂と多官能型フェノール樹脂との組み合わせによ
りガラス転移温度を高くし、無機質充填材の配合量でα
1 を合わせる手法が既に提案されている。
[0003] The structure of these area mounting type semiconductor packages adopts a single-sided sealing form in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface is not sealed. Very rarely, on a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may exist even on the solder ball forming surface, but a sealing resin layer of several hundred μm to several mm on the element mounting surface. Since the layer is formed, one-sided sealing is substantially achieved. For this reason, due to the mismatch of thermal expansion and thermal contraction between the organic substrate or metal substrate and the cured product of the resin composition, or the effect of curing shrinkage during molding and curing of the resin composition, these packages cannot be molded. Warpage tends to occur immediately after. In addition, when soldering is performed on a circuit board on which these packages are mounted, a heating step of 200 ° C. or more is performed. At this time, warpage of the package occurs, and a large number of solder balls do not become flat, and the package is mounted. There is also a problem that the semiconductor device floats from the circuit board to be mounted and lowers the reliability of electrical connection. In a package in which substantially only one surface on a substrate is sealed with a resin composition, in order to reduce warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of the cured resin composition are brought close to each other, and the Two ways to reduce cure shrinkage are important. As the substrate, in the case of an organic substrate, a resin having a high glass transition temperature such as a BT resin or a polyimide resin is widely used, and these have a glass transition temperature higher than around 170 ° C. which is a molding temperature of the epoxy resin composition. Accordingly, in the cooling process from the molding temperature to room contracts only alpha 1 region of the organic substrate. Therefore, if the resin composition also has a high glass transition temperature and α 1 is the same as that of the circuit board, and if the curing shrinkage is zero, the warpage is considered to be almost zero. For this reason, the glass transition temperature is increased by a combination of a polyfunctional epoxy resin and a polyfunctional phenol resin, and α is determined by the amount of the inorganic filler.
A method of combining 1 has already been proposed.

【0004】又、赤外線リフロー、ベーパーフェイズソ
ルダリング、半田浸漬などの手段での半田処理による半
田接合を行う場合、樹脂組成物の硬化物並びに有機基板
からの吸湿によりパッケージ内部に存在する水分が高温
で急激に気化することによる応力でパッケージにクラッ
クが発生したり、基板の素子搭載面と樹脂組成物の硬化
物との界面で剥離が発生することもあり、硬化物の低応
力化・低吸湿化とともに、基板との密着性も求められ
る。さらに、基板と硬化物の熱膨張係数の不整合によ
り、信頼性テストの代表例である温度サイクル試験で
も、基板/硬化物界面の剥離やパッケージクラックが発
生する。従来のQFPやSOPなどの表面実装パッケー
ジでは、半田実装時のクラックや各素材界面での剥離の
防止のために、ビフェニル型エポキシ樹脂に代表される
ような結晶性エポキシ樹脂と可撓性骨格を有するフェノ
ール樹脂硬化剤とを組み合わせて用い、かつ無機質充填
材の配合量を増加することにより、低ガラス転移温度化
かつ低吸湿化を行う対策がとられてきた。しかし、この
手法では、片面封止パッケージにおける反りの問題は解
決できないのが現状であった。
When soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, moisture present inside the package due to moisture absorption from the cured resin composition and the organic substrate is high. Cracks in the package due to stress caused by rapid vaporization in the package, and peeling at the interface between the device mounting surface of the substrate and the cured product of the resin composition, resulting in a low stress and low moisture absorption of the cured product. With the development, the adhesion to the substrate is also required. Furthermore, due to the mismatch between the thermal expansion coefficient of the substrate and the cured product, peeling of the substrate / cured product interface and package cracking occur even in a temperature cycle test, which is a typical example of a reliability test. Conventional surface mount packages such as QFP and SOP use a crystalline epoxy resin typified by a biphenyl-type epoxy resin and a flexible skeleton to prevent cracks at the time of solder mounting and peeling at each material interface. By using a phenolic resin curing agent in combination and increasing the blending amount of an inorganic filler, measures have been taken to lower the glass transition temperature and lower the moisture absorption. However, at present, this method cannot solve the problem of warpage in a single-sided sealed package.

【0005】次にこれらエポキシ樹脂組成物中には、難
燃剤としてハロゲン系難燃剤、あるいはハロゲン系難燃
剤と三酸化アンチモンとの併用したものが配合されてお
り、高温においてハロゲンガスあるいはハロゲン化アン
チモンガス等を発生させ難燃化を図っている。しかし、
この方法ではハロゲンあるいはハロゲンとアンチモンの
併用系を使用するため、この樹脂組成物で封止した半導
体装置が例えば175℃、2000時間といった高温環
境下で保管された場合、ハロゲンあるいはハロゲン化ア
ンチモンに起因する金線−アルミニウムパッド間の電気
的接続不良を招き大きな問題となっている。この様な問
題に対して、電子部品の使用環境よりも高いガラス転移
温度を有するエポキシ樹脂組成物を使用し、高温保管中
のハロゲンやハロゲン化アンチモンの拡散を低減させて
高温保管性を改善する方法、イオン捕捉剤を添加し、高
温保管中のハロゲンやハロゲン化アンチモンを捕捉する
方法、更にこれら2種を組み合わせた方法が用いられて
いた。近年電子部品の表面実装化、小型化・薄型化が進
み、回路基板への実装時の耐半田クラック性向上への要
求が厳しくなってきており、耐半田クラック性と高温保
管性の両方を満足し、更に高温保管性の問題以外に環境
問題の点からもハロゲンフリー、アンチモンフリーの樹
脂組成物が求められている。BGA、CSPといったエ
リア実装型パッケージ用として、前記の諸問題を解決で
きるハロゲンフリー、アンチモンフリーの樹脂組成物が
無く、鋭意検討が進められてきた。
Next, these epoxy resin compositions contain a halogen-based flame retardant or a combination of a halogen-based flame retardant and antimony trioxide as a flame retardant. Gas and the like are generated to achieve flame retardancy. But,
Since this method uses a halogen or a combination of halogen and antimony, a semiconductor device encapsulated with this resin composition is stored in a high-temperature environment of, for example, 175 ° C. for 2,000 hours. This causes a poor electrical connection between the gold wire and the aluminum pad, which is a major problem. To solve such problems, an epoxy resin composition having a higher glass transition temperature than the environment in which electronic components are used is used, and the diffusion of halogen and antimony halide during high-temperature storage is reduced to improve high-temperature storage properties. A method, a method of adding an ion scavenger, and capturing a halogen or antimony halide during high-temperature storage, and a method of combining these two types have been used. In recent years, the surface mounting, miniaturization, and thinning of electronic components have progressed, and the demand for improved solder cracking resistance during mounting on circuit boards has become strict, and both solder cracking resistance and high-temperature storage properties have been satisfied. Further, a halogen-free and antimony-free resin composition has been demanded from the viewpoint of environmental problems in addition to the problem of high-temperature storage property. There is no halogen-free or antimony-free resin composition that can solve the above-mentioned problems for area mounting type packages such as BGA and CSP, and intensive studies have been made.

【0006】[0006]

【発明が解決しようとする課題】本発明は、エリア実装
パッケージでの成形後や半田処理時の反りが小さく、ま
た基板との接着性に特に優れるため温度サイクル試験や
半田処理時などの信頼性、に優れ、かつ高温保管性に優
れるハロゲンフリー、アンチモンフリーの半導体封止用
エポキシ樹脂組成物の開発を目的としてなされたもので
ある。
DISCLOSURE OF THE INVENTION The present invention has low warpage after molding in an area mounting package or during soldering, and has particularly excellent adhesion to a substrate, so that reliability in a temperature cycle test, soldering, etc. The present invention has been made for the purpose of developing a halogen-free and antimony-free epoxy resin composition for semiconductor encapsulation which is excellent in heat resistance and high-temperature storage property.

【0007】[0007]

【課題を解決するための手段】本発明は(A)、一般式
(1)、(2)で示される多官能エポキシ樹脂及び/又
は式(4)〜(8)で示され、融点が50〜150℃の
結晶性エポキシ樹脂の群から選択される少なくとも一つ
のエポキシ樹脂、(B)一般式(3)で示されるフェノ
ール樹脂硬化剤、(C)硬化促進剤、(D)溶融シリカ
粉末、及び(E)赤燐系難燃剤を総エポキシ樹脂組成物
中に0.3〜5.0重量%含むことを特徴とする半導体
封止用エポキシ樹脂組成物、及び基板の片面に半導体素
子が搭載され、この半導体素子が搭載された基板面側の
実質的に片面のみが前記半導体封止用エポキシ樹脂組成
物によって封止されていることを特徴とする半導体装置
である。好ましくは赤燐系難燃剤が、予め赤燐の表面を
水酸化アルミニウムで被覆し、更にその表面をフェノー
ル樹脂で被覆され、平均粒径10〜70μm、最大粒径
150μm以下であり、かつ該被覆難燃剤中の赤燐の含
有量が60〜95重量%である前記記載の半導体封止用
エポキシ樹脂組成物である。
The present invention relates to (A), a polyfunctional epoxy resin represented by the general formula (1) or (2) and / or a polyfunctional epoxy resin represented by the formula (4) to (8) and having a melting point of 50: At least one epoxy resin selected from the group of crystalline epoxy resins at a temperature of up to 150 ° C., (B) a phenolic resin curing agent represented by the general formula (3), (C) a curing accelerator, (D) fused silica powder, And (E) an epoxy resin composition for encapsulating a semiconductor, comprising 0.3 to 5.0% by weight of a red phosphorus-based flame retardant in the total epoxy resin composition, and a semiconductor element mounted on one surface of the substrate The semiconductor device is characterized in that substantially only one surface on the substrate surface side on which the semiconductor element is mounted is sealed with the semiconductor sealing epoxy resin composition. Preferably, a red phosphorus-based flame retardant coats the surface of red phosphorus in advance with aluminum hydroxide, and further coats the surface with a phenol resin, having an average particle size of 10 to 70 μm and a maximum particle size of 150 μm or less. The epoxy resin composition for semiconductor encapsulation as described above, wherein the content of red phosphorus in the flame retardant is 60 to 95% by weight.

【0008】[0008]

【化6】 Embedded image

【0009】[0009]

【化7】 Embedded image

【0010】[0010]

【化8】 Embedded image

【0011】[0011]

【化9】 Embedded image

【0012】[0012]

【化10】 式(1)、(2)、(3)及び(8)中のRはハロゲン
原子又は炭素数1〜12のアルキル基を示し、互いに同
一であっても、異なっていてもよい。lは1〜10の正
の整数、mは0もしくは1〜3の正の整数、及びnは0
もしくは1〜4の正の整数である。式(4)〜(7)中
のRは水素原子、ハロゲン原子又は炭素数1〜12のア
ルキル基を示し、互いに同一であっても、異なっていて
もよい。
Embedded image R in the formulas (1), (2), (3) and (8) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different. l is a positive integer of 1 to 10, m is 0 or a positive integer of 1 to 3, and n is 0
Alternatively, it is a positive integer of 1 to 4. R in the formulas (4) to (7) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different.

【0013】[0013]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に用いられる式(1)で示される通常トリフェノ
ールメタン型エポキシ樹脂と総称される樹脂又は式
(2)で示されるエポキシ樹脂は、式(3)のフェノー
ル樹脂硬化剤との組み合わせにより硬化物の架橋密度が
高く、高いガラス転移温度となり、又硬化収縮率が小さ
い特徴を有するため、本エポキシ樹脂組成物の用途であ
るエリア実装半導体パッケージの封止では反りの低減に
効果的である。式(1)及び式(2)の具体例としては
以下のものが挙げられるが、これらに限定されるもので
はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The resin generally referred to as a triphenolmethane epoxy resin represented by the formula (1) or the epoxy resin represented by the formula (2) used in the present invention is cured by a combination with a phenol resin curing agent of the formula (3). Since the epoxy resin composition has a high cross-linking density, a high glass transition temperature, and a small curing shrinkage, it is effective in reducing warpage in sealing an area-mounted semiconductor package, which is an application of the present epoxy resin composition. Specific examples of the formulas (1) and (2) include the following, but are not limited thereto.

【0014】[0014]

【化11】 Embedded image

【0015】[0015]

【化12】 Embedded image

【0016】又、式(4)〜(8)で示され、かつ融点
が50〜150℃の結晶性エポキシ樹脂は、1分子中に
エポキシ基を2個有するジエポキシ化合物またはこれら
のオリゴマーである。これらのエポキシ樹脂はいずれも
結晶性を示すため、融点未満の温度では固体であるが、
融点以上の温度で低粘度の液状物質となる。このためこ
れらを用いたエポキシ樹脂組成物は溶融状態で低粘度を
示すため成形時に樹脂組成物の流動性が高く、薄型パッ
ケージへの充填性に優れる。従って、溶融シリカ粉末の
配合量を増量して、得られるエポキシ樹脂組成物の硬化
物の吸湿率を低減し、耐半田リフロー性を向上させる手
法をとるに際してはこれら結晶性エポキシ樹脂の使用が
好ましい。
The crystalline epoxy resin represented by the formulas (4) to (8) and having a melting point of 50 to 150 ° C. is a diepoxy compound having two epoxy groups in one molecule or an oligomer thereof. Since all of these epoxy resins show crystallinity, they are solid at a temperature below the melting point,
It becomes a low-viscosity liquid substance at temperatures above the melting point. For this reason, the epoxy resin composition using these has a low viscosity in a molten state, so that the fluidity of the resin composition at the time of molding is high, and the filling property into a thin package is excellent. Therefore, it is preferable to use these crystalline epoxy resins when increasing the amount of the fused silica powder to reduce the moisture absorption of the cured product of the obtained epoxy resin composition and improving the solder reflow resistance. .

【0017】これらの結晶性エポキシ樹脂は1分子中の
エポキシ基の数が2個からせいぜい数個と少なく、一般
的には架橋密度が低く、耐熱性の低い硬化物しか得られ
ない。しかし構造として剛直な平面ないし棒状骨格を有
しており、かつ結晶化する性質、即ち分子同士が配向し
やすいという特徴を有するため、一般式(3)で示され
る多官能型フェノール樹脂硬化剤と組み合わせて用いる
場合、硬化後ガラス転移温度などの耐熱性を低下させ難
い。このため、これら結晶性エポキシ樹脂と一般式
(3)で示されるフェノール樹脂硬化剤との組み合わせ
によるエポキシ樹脂組成物で封止された半導体パッケー
ジは反り量を小さくできる。更に一旦ガラス転移温度を
越えた温度領域では低官能基数化合物の特徴である低弾
性率を示すため、半田処理温度での低応力化に効果的で
ある。このため、半田処理でのパッケージクラック発生
や基板と樹脂組成物の硬化物界面の剥離発生を防止する
効果がある。
In these crystalline epoxy resins, the number of epoxy groups in one molecule is as small as 2 to at most several, and generally, only a cured product having a low crosslinking density and low heat resistance can be obtained. However, since it has a rigid plane or rod-like skeleton as a structure and has the property of being crystallized, that is, the feature that molecules are easily oriented, the polyfunctional phenol resin curing agent represented by the general formula (3) is used. When used in combination, it is difficult to lower the heat resistance such as the glass transition temperature after curing. For this reason, the semiconductor package sealed with the epoxy resin composition by the combination of the crystalline epoxy resin and the phenol resin curing agent represented by the general formula (3) can reduce the amount of warpage. Further, in a temperature region once exceeding the glass transition temperature, the compound exhibits a low elastic modulus characteristic of a compound having a low functional group, which is effective for reducing stress at a solder processing temperature. This has the effect of preventing the occurrence of package cracks during the soldering process and the occurrence of peeling at the interface between the substrate and the cured product of the resin composition.

【0018】上記結晶性エポキシ樹脂は50℃未満の融
点では、エポキシ樹脂組成物の製造工程において融着を
起こしやすく、作業性が著しく低下する。又、150℃
を越える融点を示す結晶性エポキシ樹脂では、エポキシ
樹脂組成物を加熱混練する製造工程で充分に溶融しない
ため、材料の均一性に劣るといった問題点を有する。融
点の測定方法は、示差走査熱量計[セイコー電子(株)S
SC520、昇温速度5℃/分]で吸熱ピーク温度から
求められる。以下にこれら結晶性エポキシ樹脂の具体例
を示すがこれらに限定されるものではない。
If the crystalline epoxy resin has a melting point of less than 50 ° C., it tends to fuse in the production process of the epoxy resin composition, and the workability is significantly reduced. Also, 150 ° C
A crystalline epoxy resin having a melting point exceeding the above range has a problem that the uniformity of the material is poor because the epoxy resin composition is not sufficiently melted in the production step of kneading under heating. The melting point is measured by a differential scanning calorimeter [Seiko Electronics Co., Ltd. S
SC520, heating rate 5 ° C./min]. Specific examples of these crystalline epoxy resins are shown below, but the invention is not limited thereto.

【0019】[0019]

【化13】 Embedded image

【0020】[0020]

【化14】 Embedded image

【0021】[0021]

【化15】 Embedded image

【0022】又、パッケージの反りの低減と成形時の高
流動化、及び実装時の耐半田性の両立という観点からは
上記一般式(1)、(2)で示される多官能エポキシ樹
脂を総エポキシ樹脂中に20〜90重量%含み、更に式
(4)〜(8)で示され、かつ融点50〜150℃の結
晶性エポキシ樹脂を総エポキシ樹脂中に20重量%以上
を含むことが特に好ましい。
From the viewpoint of reducing package warpage, increasing fluidity during molding, and achieving solder resistance during mounting, the polyfunctional epoxy resins represented by the above general formulas (1) and (2) are all It is particularly preferable that the total epoxy resin contains 20 to 90% by weight in the epoxy resin and further contains the crystalline epoxy resin represented by the formulas (4) to (8) and having a melting point of 50 to 150 ° C in the total epoxy resin. preferable.

【0023】本発明で用いられる一般式(3)で示され
るフェノール樹脂硬化剤はいわゆるトリフェノールメタ
ン型フェノール樹脂と呼ばれるもので、具体例を以下に
示すがこれらに限定されるものではない。
The phenolic resin curing agent represented by the general formula (3) used in the present invention is a so-called triphenolmethane-type phenolic resin, and specific examples are shown below, but are not limited thereto.

【化16】 Embedded image

【0024】これらフェノール樹脂を使用すると硬化物
の架橋密度が高くなり、高いガラス転移温度の硬化物が
得られる。このため、得られたエポキシ樹脂組成物によ
り封止されたパッケージの反りが低減できる。式(3)
のフェノール樹脂は他のフェノール樹脂と適宜併用可能
であり、特に限定されるものではないが、フェノールノ
ボラック樹脂、クレゾールノボラック樹脂、ナフタレン
型ノボラック樹脂等が挙げられる。
When these phenolic resins are used, the crosslinked density of the cured product increases, and a cured product having a high glass transition temperature can be obtained. For this reason, the warpage of the package sealed with the obtained epoxy resin composition can be reduced. Equation (3)
The phenol resin can be appropriately used in combination with other phenol resins, and is not particularly limited. Examples thereof include a phenol novolak resin, a cresol novolak resin, and a naphthalene-type novolak resin.

【0025】本発明で用いられる(C)成分の硬化促進
剤としては、前記エポキシ樹脂とフェノール樹脂硬化剤
との架橋反応の触媒となり得るものを指し、具体的には
トリブチルアミン等のアミン系化合物、トリフェニルホ
スフィン、テトラフェニルホスフォニウム・テトラフェ
ニルボレート塩等の有機リン系化合物、2−メチルイミ
ダゾール等のイミダゾール化合物等が例示できるがこれ
らに限定されるものではない。これらの硬化促進剤は単
独であっても混合して用いても差し支えない。
The curing accelerator of the component (C) used in the present invention refers to those which can serve as a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin curing agent, and specifically includes amine compounds such as tributylamine. And organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.

【0026】本発明で用いられる(D)成分の溶融シリ
カ粉末は、破砕状、球状のいずれでも使用可能である
が、溶融シリカ粉末の配合量を高め、かつ樹脂組成物の
溶融粘度の上昇を抑えるためには、球状シリカを主に用
いる方が好ましい。更に球状シリカの配合量を高めるた
めには、球状シリカの粒度分布をより広くとるよう調整
することが望ましい。
The fused silica powder of the component (D) used in the present invention can be used in any of a crushed form and a spherical form. However, the amount of the fused silica powder is increased, and the melt viscosity of the resin composition is increased. In order to suppress this, it is preferable to mainly use spherical silica. In order to further increase the content of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider.

【0027】本発明で用いる(E)成分の赤燐系難燃剤
には赤燐単独も含まれるが酸化され易く、又不安定なた
め取扱いに難点があり、より好ましいものは予め赤燐の
表面を水酸化アルミニウムで被覆した後、更にその表面
をフェノール樹脂で被覆したものである。被覆された赤
燐系難燃剤中の赤燐の含有量は60〜95重量%である
ことが好ましく、赤燐含有量が60重量%未満だと樹脂
組成物中に多量に配合する必要があり、多量に添加する
と流動性が低下するので好ましくない。95重量%を越
えると赤燐の酸化安定性の点で問題がある。又赤燐系難
燃剤の粒径としては、平均粒径が10〜70μm、最大
粒径が150μm以下のものが好ましい。平均粒径が1
0μm未満だと樹脂組成物の流動性の低下をきたし、7
0μmを越えると難燃剤の分散性が悪化し好ましくな
い。また最大粒径が150μmを越えるとパッケージの
充填性に問題が生じ好ましくない。これらの赤燐系難燃
剤としては、例えば、燐化学工業(株)のノーバレッ
ド、ノーバエクセル等があり市場より容易に入手するこ
とができる。全樹脂組成物中の赤燐の含有量としては
0.3〜5.0重量%が好ましく、0.3重量%未満だ
と難燃性が不足する。又赤燐系難燃剤は、可燃性で難燃
剤自身が酸化して難燃性を発揮するため、5.0重量%
を越えると難燃剤が多すぎることにより難燃剤が燃焼を
助ける働きをし難燃性が不足する。
The red phosphorus flame retardant of component (E) used in the present invention includes red phosphorus alone, but is liable to be oxidized and is unstable and has difficulty in handling. Is coated with aluminum hydroxide, and the surface thereof is further coated with a phenol resin. The content of red phosphorus in the coated red phosphorus flame retardant is preferably from 60 to 95% by weight, and if the content of red phosphorus is less than 60% by weight, it is necessary to incorporate a large amount into the resin composition. If added in a large amount, the fluidity is undesirably reduced. If it exceeds 95% by weight, there is a problem in the oxidation stability of red phosphorus. As the particle diameter of the red phosphorus flame retardant, those having an average particle diameter of 10 to 70 μm and a maximum particle diameter of 150 μm or less are preferable. Average particle size is 1
If it is less than 0 μm, the fluidity of the resin composition will decrease,
If it exceeds 0 μm, the dispersibility of the flame retardant deteriorates, which is not preferable. On the other hand, when the maximum particle size exceeds 150 μm, there is a problem in the filling property of the package, which is not preferable. These red phosphorus-based flame retardants include, for example, Nova Red and Nova Excel of Rin Kagaku Kogyo Co., Ltd., which can be easily obtained from the market. The content of red phosphorus in the entire resin composition is preferably from 0.3 to 5.0% by weight, and if it is less than 0.3% by weight, the flame retardancy is insufficient. The red phosphorus-based flame retardant is flammable, and the flame retardant itself oxidizes to exhibit flame retardancy.
When the ratio exceeds, the flame retardant acts to assist combustion due to too much flame retardant, resulting in insufficient flame retardancy.

【0028】本発明の樹脂組成物は、(A)〜(E)ま
での必須成分以外にも必要に応じてシリコーン系添加
剤、カップリング剤、不純物低減のためのイオン補足
剤、カーボンブラックに代表される着色剤、天然ワック
ス及び合成ワックス等の離型剤等が適宜配合可能であ
る。樹脂組成物とするには各成分を混合後、加熱ニーダ
や熱ロールにより加熱混練し、続いて冷却、粉砕するこ
とで目的とする樹脂組成物が得られる。本発明の半導体
装置は、上述の半導体封止用エポキシ樹脂組成物を用
い、トランスファ−成形、圧縮成形、射出成形等によ
り、半導体素子を封止することにより得られる。
The resin composition of the present invention may be used, if necessary, in addition to the essential components (A) to (E), a silicone additive, a coupling agent, an ion scavenger for reducing impurities, and carbon black. A representative coloring agent, a release agent such as a natural wax and a synthetic wax, and the like can be appropriately compounded. In order to obtain a resin composition, the components are mixed, heated and kneaded with a heating kneader or a hot roll, and then cooled and pulverized to obtain a desired resin composition. The semiconductor device of the present invention can be obtained by using the above-described epoxy resin composition for semiconductor encapsulation and encapsulating the semiconductor element by transfer molding, compression molding, injection molding or the like.

【0029】[0029]

【実施例】以下、本発明を実施例で具体的に説明する。 《実施例1》 ・式(9)で示される構造を主成分とするエポキシ樹脂: [油化シェルエポキシ(株)製、商品名エピコート1032H、軟化点60℃、 エポキシ当量170] 4.6重量部 ・式(10)で示される構造を主成分とするビフェニルエポキシ樹脂: [油化シェルエポキシ(株)製、商品名YX−4000H、融点105℃、エポ キシ当量195] 4.6重量部 ・式(11)で示されるフェノール樹脂: [明和化成(株)製、商品名MEH−7500、軟化点107℃、水酸基当量9 7] 4.8重量部 ・赤燐系難燃剤: (赤燐の表面を水酸化アルミニウムで被覆した後、更にその表面をフェノール 樹脂で処理したもので、赤燐含有量75重量%、平均粒径40μm、最大粒径 120μm) 1.0重量部 ・トリフェニルホスフィン: 0.2重量部 ・球状溶融シリカ: 84.0重量部 ・カルナバワックス: 0.5重量部 ・カーボンブラック: 0.3重量部 上記の全成分をミキサーにより混合した後、表面温度が
90℃と45℃の2本ロールを用いて30回混練し、得
られた混練物シートを冷却後粉砕して、樹脂組成物とし
た。得られた樹脂組成物の特性を以下の方法で評価をし
た。評価結果を表1に示す。
The present invention will be specifically described below with reference to examples. << Example 1 >> An epoxy resin having a structure represented by the formula (9) as a main component: [Epicoat 1032H, trade name, manufactured by Yuka Shell Epoxy Co., Ltd., softening point 60 ° C, epoxy equivalent 170] 4.6 weight Parts: Biphenyl epoxy resin having a structure represented by the formula (10) as a main component: [YX-4000H, manufactured by Yuka Shell Epoxy Co., Ltd., melting point: 105 ° C., epoxy equivalent: 195] 4.6 parts by weight A phenolic resin represented by the formula (11): [Mehwa Kasei Co., Ltd., trade name MEH-7500, softening point 107 ° C, hydroxyl equivalent 97] 4.8 parts by weight ・ Red phosphorus flame retardant: (Red phosphorus After the surface is coated with aluminum hydroxide, the surface is further treated with a phenol resin. The content of red phosphorus is 75% by weight, the average particle size is 40 μm, and the maximum particle size is 120 μm.) 1.0 part by weight Triphenylphosphine: 0.2 parts by weight ・ Spherical fused silica: 84.0 parts by weight ・ Carnauba wax: 0.5 parts by weight ・ Carbon black: 0.3 parts by weight After mixing all the above components with a mixer, the surface temperature becomes 90 ° C. The mixture was kneaded 30 times using two rolls at 45 ° C., and the obtained kneaded material sheet was cooled and pulverized to obtain a resin composition. The properties of the obtained resin composition were evaluated by the following methods. Table 1 shows the evaluation results.

【0030】[0030]

【化17】 Embedded image

【0031】《実施例2〜8》実施例1を基本配合とし
て、式(9)及び(10)のエポキシ樹脂及び式(1
1)のフェノール樹脂の種類並びにそれらの配合量を変
えて、その他は基本配合と同じ割合で各成分を配合し、
実施例1と同様に混合、混練して樹脂組成物を得た。実
施例1と同様に評価を行った。配合処方及び評価結果を
表1に示す。 《実施例9〜13、比較例1〜3》実施例1を基本配合
として、赤燐系難燃剤の添加量を難燃剤の種類を変え
て、その他は基本配合と同じ割合で各成分を配合し、実
施例1と同様に混合、混練して樹脂組成物を得た。実施
例1と同様に評価を行った。配合処方及び評価結果を表
2及び表3に示す。
<< Examples 2 to 8 >> Based on Example 1 as the basic formulation, the epoxy resins of the formulas (9) and (10) and the formula (1)
By changing the type of phenolic resin and the amount of the phenolic resin in 1), the other components are blended in the same ratio as the basic blending,
Mixing and kneading were performed in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 1 shows the formulation and evaluation results. << Examples 9 to 13, Comparative Examples 1 to 3 >> Based on Example 1 as a basic composition, the amount of the red phosphorus-based flame retardant was changed by changing the type of the flame retardant, and the other components were blended at the same ratio as the basic composition. Then, the mixture was mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Tables 2 and 3 show the formulation and evaluation results.

【0032】上記実施例及び比較例で使用した式(1
2)〜(16)のエポキシ樹脂及びフェノール樹脂の構
造及び性状を以下に示す。
The formula (1) used in the above Examples and Comparative Examples
The structures and properties of the epoxy resins and phenol resins of 2) to (16) are shown below.

【化18】 Embedded image

【0033】[0033]

【化19】 Embedded image

【0034】・式(12)で示される構造を主成分とす
るエポキシ樹脂:融点144℃、エポキシ当量175 ・式(13)で示される構造を主成分とするエポキシ樹
脂:融点103℃、エポキシ当量225 ・式(14)で示される構造を主成分とするエポキシ樹
脂:融点133℃、エポキシ当量182 ・式(15)で示される構造を主成分とするエポキシ樹
脂:融点82℃、エポキシ当量190 ・式(16)で示される構造を主成分とするエポキシ樹
脂:軟化点65℃、エポキシ当量210 ・オルソクレゾールノボラック型エポキシ樹脂(OCN
エポキシ樹脂):軟化点63℃、エポキシ当量200 ・フェノールノボラック樹脂:軟化点80℃、水酸基当
量104
Epoxy resin having a structure represented by formula (12) as a main component: melting point 144 ° C., epoxy equivalent 175 ・ Epoxy resin having a structure represented by formula (13) as a main component: melting point 103 ° C., epoxy equivalent 225 ・ Epoxy resin having a structure represented by formula (14) as a main component: melting point 133 ° C., epoxy equivalent 182 ・ Epoxy resin having a structure represented by formula (15) as a main component: melting point 82 ° C., epoxy equivalent 190 ・An epoxy resin having a structure represented by the formula (16) as a main component: a softening point of 65 ° C., an epoxy equivalent of 210 orthocresol novolac type epoxy resin (OCN)
Epoxy resin): Softening point 63 ° C, epoxy equivalent 200 ・ Phenol novolak resin: Softening point 80 ° C, hydroxyl equivalent 104

【0035】《評価方法》 ・スパイラルフロー:EMMI−1−66に準じたスパ
イラルフロー測定用の金型を用いて、金型温175℃、
注入圧力70kg/cm2 、硬化時間2分で測定した。 ・ガラス転移温度(Tg)及び線膨張係数(α1):1
75℃、2分間トランスファー成形したテストピースを
更に175℃、8時間後硬化し、熱機械分析装置[セイ
コー電子(株)製TMA−120、昇温速度5℃/分]に
より測定した。 ・熱時弾性率:240℃での曲げ弾性率をJIS−K6
911の試験条件により測定した。 ・硬化収縮率:テストピースを180℃の金型温度、7
5kg/cm2 の射出圧力で2分間トランスファー成形
し、更に175℃で8時間、後硬化した。180℃に加
熱された状態の金型のキャビティ寸法と180℃に加熱
された成形品の寸法をノギスにより測定し、成形品寸法
/金型キャビティ寸法の比率で硬化収縮率を表した。
<< Evaluation Method >> Spiral flow: Using a mold for measuring spiral flow according to EMMI-1-66, using a mold temperature of 175 ° C.
The measurement was performed at an injection pressure of 70 kg / cm 2 and a curing time of 2 minutes. -Glass transition temperature (Tg) and coefficient of linear expansion (α 1 ): 1
The test piece obtained by transfer molding at 75 ° C. for 2 minutes was further cured at 175 ° C. for 8 hours, and measured by a thermomechanical analyzer [TMA-120 manufactured by Seiko Denshi Co., Ltd., heating rate 5 ° C./min].・ Heat elastic modulus: Flexural elastic modulus at 240 ° C is JIS-K6
It was measured under the test conditions of 911. Curing shrinkage: 180 ° C mold temperature of test piece, 7
Transfer molding was performed at an injection pressure of 5 kg / cm 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. The cavity dimensions of the mold heated to 180 ° C. and the dimensions of the molded article heated to 180 ° C. were measured with calipers, and the curing shrinkage was represented by the ratio of molded article dimension / mold cavity dimension.

【0036】・パッケージ反り量:225ピンBGAパ
ッケージ(基板は0.36mm厚BT樹脂基板、パッケ
ージサイズは24×24mm、厚み1.17mm、シリ
コンチップはサイズ9×9mm、厚み0.35mm、チ
ップと回路基板のボンディングパッドとを25μm径の
金線でボンディングしている)を180℃の金型温度、
75kg/cm2 の射出圧力で2分間トランスファー成
形を行い、更に175℃で8時間、後硬化した。室温に
冷却後パッケージのゲートから対角線方向に、表面粗さ
計を用いて高さ方向の変位を測定し、変異差の最も大き
い値を反り量とした。 ・金線変形量:パッケージ反り量評価で成形した225
ピンBGAパッケージを軟X線透視装置で観察し、金線
の変形率を(流れ量)/(金線長)で%表示した。 ・高温保管性:14×20mm厚み2mmの80QFPにテ
スト用素子封止し、高温下(175℃)に放置し、リー
ドピン−金線−ALパッド−AL回路−ALパッド−金
線−リードピン間の電気抵抗値を測定し、抵抗値上昇開
始時間を測定する事で高温保管による内部回路の接続不
良を評価した。 ・耐燃性:UL−94垂直試験(試料厚さ1.0mm)
Package warpage: 225-pin BGA package (substrate is 0.36 mm thick BT resin substrate, package size is 24 × 24 mm, thickness 1.17 mm, silicon chip is 9 × 9 mm, thickness 0.35 mm, chip The bonding pad of the circuit board is bonded with a gold wire having a diameter of 25 μm) at a mold temperature of 180 ° C.
Transfer molding was performed at an injection pressure of 75 kg / cm 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. After cooling to room temperature, the displacement in the height direction was measured diagonally from the gate of the package using a surface roughness meter, and the value with the largest variation difference was defined as the amount of warpage. Gold wire deformation: 225 molded by evaluating package warpage
The pin BGA package was observed with a soft X-ray fluoroscope, and the deformation rate of the gold wire was represented by (flow amount) / (gold wire length) in%.・ High temperature storage: Seal the test element in 80 QFP of 14 × 20 mm and 2 mm in thickness, leave it at high temperature (175 ° C.), and place between lead pin-gold wire-AL pad-AL circuit-AL pad-gold wire-lead pin By measuring the electric resistance value and measuring the start time of the resistance value rise, the connection failure of the internal circuit due to high temperature storage was evaluated. -Flame resistance: UL-94 vertical test (sample thickness 1.0mm)

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】[0040]

【発明の効果】本発明の半導体封止用エポキシ樹脂組成
物は、これを用いたエリア実装型半導体装置の室温及び
半田付け工程での反りが小さく、耐半田性や耐温度サイ
クル性などの信頼性に優れ、高温保管性にも優れるもの
である。
The epoxy resin composition for semiconductor encapsulation of the present invention has a small warpage in the area mounting type semiconductor device using the same at room temperature and in the soldering process, and has a high reliability such as solder resistance and temperature cycle resistance. It has excellent storage properties and high-temperature storage properties.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 3/02 C08K 3/02 3/36 3/36 9/02 9/02 9/04 9/04 H01L 23/29 H01L 23/30 R 23/31 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 3/02 C08K 3/02 3/36 3/36 9/02 9/02 9/04 9/04 H01L 23/29 H01L 23 / 30 R 23/31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1)、(2)で示される
多官能エポキシ樹脂及び/又は式(4)〜(8)で示さ
れ、かつ融点が50〜150℃の結晶性エポキシ樹脂の
群から選択される少なくとも一つのエポキシ樹脂、
(B)一般式(3)で示されるフェノール樹脂硬化剤、
(C)硬化促進剤、(D)溶融シリカ粉末、及び(E)
総エポキシ樹脂組成物中に赤燐系難燃剤を0.3〜5.
0重量%含むことを特徴とする半導体封止用エポキシ樹
脂組成物。 【化1】 【化2】 【化3】 【化4】 【化5】 式(1)、(2)、(3)及び(8)中のRはハロゲン
原子又は炭素数1〜12のアルキル基を示し、互いに同
一であっても、異なっていてもよい。lは1〜10の正
の整数、mは0もしくは1〜3の正の整数、及びnは0
もしくは1〜4の正の整数である。式(4)〜(7)中
のRは水素原子、ハロゲン原子又は炭素数1〜12のア
ルキル基を示し、互いに同一であっても、異なっていて
もよい。
1. A polyfunctional epoxy resin represented by the general formulas (1) and (2) and / or a crystalline epoxy represented by the formulas (4) to (8) and having a melting point of 50 to 150 ° C. At least one epoxy resin selected from the group of resins,
(B) a phenolic resin curing agent represented by the general formula (3),
(C) a curing accelerator, (D) fused silica powder, and (E)
0.3 to 5. Red phosphorus flame retardant in the total epoxy resin composition.
An epoxy resin composition for encapsulating a semiconductor, comprising 0% by weight. Embedded image Embedded image Embedded image Embedded image Embedded image R in the formulas (1), (2), (3) and (8) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different. l is a positive integer of 1 to 10, m is 0 or a positive integer of 1 to 3, and n is 0
Alternatively, it is a positive integer of 1 to 4. R in the formulas (4) to (7) represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different.
【請求項2】 赤燐系難燃剤が、予め赤燐の表面を水酸
化アルミニウムで被覆し、更にその表面をフェノール樹
脂で被覆され、平均粒径10〜70μm、最大粒径15
0μm以下であり、かつ該被覆難燃剤中の赤燐の含有量
が60〜95重量%である請求項1記載の半導体封止用
エポキシ樹脂組成物。
2. A red phosphorus-based flame retardant, in which the surface of red phosphorus is coated in advance with aluminum hydroxide, and the surface is further coated with a phenol resin, having an average particle size of 10 to 70 μm and a maximum particle size of 15 μm.
2. The epoxy resin composition for semiconductor encapsulation according to claim 1, wherein the content is 0 μm or less, and the content of red phosphorus in the coated flame retardant is 60 to 95% by weight.
【請求項3】 基板の片面に半導体素子が搭載され、こ
の半導体素子が搭載された基板面側の実質的に片面のみ
が請求項1又は2記載の半導体封止用エポキシ樹脂組成
物によって封止されていることを特徴とする半導体装
置。
3. A semiconductor element is mounted on one side of a substrate, and substantially only one side on the side of the substrate on which the semiconductor element is mounted is sealed with the epoxy resin composition for semiconductor encapsulation according to claim 1 or 2. A semiconductor device characterized by being performed.
JP29697697A 1997-10-29 1997-10-29 Semiconductor device Expired - Fee Related JP3390335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29697697A JP3390335B2 (en) 1997-10-29 1997-10-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29697697A JP3390335B2 (en) 1997-10-29 1997-10-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH11130938A true JPH11130938A (en) 1999-05-18
JP3390335B2 JP3390335B2 (en) 2003-03-24

Family

ID=17840647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29697697A Expired - Fee Related JP3390335B2 (en) 1997-10-29 1997-10-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3390335B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097252A (en) * 2000-09-26 2002-04-02 Matsushita Electric Works Ltd Resin composition for optical semiconductor device and optical semiconductor device
JP2003064154A (en) * 2001-08-30 2003-03-05 Sumitomo Bakelite Co Ltd Method for producing epoxy resin composition and semiconductor device
WO2012121377A1 (en) * 2011-03-10 2012-09-13 住友ベークライト株式会社 Semiconductor device, and process for manufacturing semiconductor device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002097252A (en) * 2000-09-26 2002-04-02 Matsushita Electric Works Ltd Resin composition for optical semiconductor device and optical semiconductor device
JP2003064154A (en) * 2001-08-30 2003-03-05 Sumitomo Bakelite Co Ltd Method for producing epoxy resin composition and semiconductor device
JP4710200B2 (en) * 2001-08-30 2011-06-29 住友ベークライト株式会社 Manufacturing method of area mounting type semiconductor sealing epoxy resin composition and area mounting type semiconductor device
WO2012121377A1 (en) * 2011-03-10 2012-09-13 住友ベークライト株式会社 Semiconductor device, and process for manufacturing semiconductor device
CN103415923A (en) * 2011-03-10 2013-11-27 住友电木株式会社 Semiconductor device, and process for manufacturing semiconductor device
JP6032197B2 (en) * 2011-03-10 2016-11-24 住友ベークライト株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP3390335B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
JP4736506B2 (en) Epoxy resin composition and semiconductor device
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP3292452B2 (en) Epoxy resin composition and semiconductor device
JPH08157561A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JP2004018790A (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP3390335B2 (en) Semiconductor device
JP3608930B2 (en) Epoxy resin composition and semiconductor device
JP3844098B2 (en) Epoxy resin composition and semiconductor device
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JPH1192629A (en) Epoxy resin composition and semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JP2005162826A (en) Sealing resin composition and resin-sealed semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JPH11130937A (en) Epoxy resin composition and semiconductor device
JPH11100491A (en) Epoxy resin composition and semiconductor device
JP4370666B2 (en) Semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
JP3292456B2 (en) Epoxy resin composition and semiconductor device
JP2002212393A (en) Epoxy resin composition and semi-conductor device
JPH1192630A (en) Epoxy resin composition and semiconductor device
JPH1045872A (en) Epoxy resin composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees