JPH11130937A - Epoxy resin composition and semiconductor device - Google Patents

Epoxy resin composition and semiconductor device

Info

Publication number
JPH11130937A
JPH11130937A JP29697597A JP29697597A JPH11130937A JP H11130937 A JPH11130937 A JP H11130937A JP 29697597 A JP29697597 A JP 29697597A JP 29697597 A JP29697597 A JP 29697597A JP H11130937 A JPH11130937 A JP H11130937A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
resin
curing
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29697597A
Other languages
Japanese (ja)
Inventor
Takashi Aihara
孝志 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP29697597A priority Critical patent/JPH11130937A/en
Publication of JPH11130937A publication Critical patent/JPH11130937A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a semiconductor sealing composition excellent in moldability, reliability and the suitability for mounting by mixing an epoxy resin containing a specified amount of polyfunctional and dicyclopentadiene-modified epoxy resins with a phenolic resin curing agent containing a specified amount of a polyfunctional phenolic resin, a cure accelerator and fused silica. SOLUTION: This composition is compounded with an epoxy resin containing 20-90 wt.%, based on the total epoxy resin, at least one epoxy resin of formula I or II and 10-80 wt.% dicyclopentadiene-modified epoxy resin and a phenolic resin curing agent containing at least 20 wt.%, based on the total phenolic resin, phenolic resin of formula III. In the formulas, R is a halogen or a 1-12C alkyl; 1 is 1-10; m is 0-3; n is 0-4; and k is 1-6. One having a shrinkage after molding and curing of 0.15% or below, a coefficient α1 of linear expansion after being cured of 8-16 ppm/ deg.C and a glass transition temperature of 140 deg.C or above is desirable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は成形性、信頼性、実
装性に優れた樹脂封止型半導体装置に関し、更に詳述す
ればプリント配線板や金属リードフレームの片面に半導
体素子を搭載し、その搭載面側の実質的に片面のみが樹
脂封止されたいわゆるエリア実装型半導体装置におい
て、樹脂封止後の反りや基板実装時の半田付け工程での
反りが小さく、また温度サイクル試験での耐パッケージ
クラック性や半田付け工程での耐パッケージクラック性
や耐剥離性に優れ、かつ成形性に優れる半導体封止用エ
ポキシ樹脂組成物及び該半導体封止用エポキシ樹脂組成
物で封止された半導体装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin-encapsulated semiconductor device having excellent moldability, reliability, and mountability. More specifically, a semiconductor device is mounted on one side of a printed wiring board or a metal lead frame. In a so-called area mounting type semiconductor device in which substantially only one side of the mounting surface is resin-sealed, the warpage after resin sealing and the warping in the soldering process at the time of board mounting are small, and in a temperature cycle test. Epoxy resin composition for semiconductor encapsulation which has excellent package crack resistance and package crack resistance and exfoliation resistance in a soldering process, and is excellent in moldability, and a semiconductor encapsulated with the epoxy resin composition for semiconductor encapsulation It concerns the device.

【0002】[0002]

【従来の技術】近年の電子機器の小型化、軽量化、高性
能化の市場動向において、半導体の高集積化が年々進
み、又半導体パッケージの表面実装化が促進されるなか
で、新規にエリア実装のパッケージが開発され、従来構
造のパッケージから移行し始めている。エリア実装パッ
ケージとしてはBGA(ボールグリッドアレイ)あるい
は更に小型化を追求したCSP(チップスケールパッケ
ージ)が代表的であるが、これらは従来QFP、SOP
に代表される表面実装パッケージでは限界に近づいてい
る多ピン化・高速化への要求に対応するために開発され
たものである。構造としては、BT樹脂/銅箔回路基板
(ビスマレイミド・トリアジン/ガラスクロス基板)に
代表される硬質回路基板、あるいはポリイミド樹脂フィ
ルム/銅箔回路基板に代表されるフレキシブル回路基板
の片面上に半導体素子を搭載し、その素子搭載面、即ち
基板の片面のみがエポキシ樹脂組成物などで成形・封止
されている。また、基板の素子搭載面の反対面には半田
ボールを2次元的に並列して形成し、パッケージを実装
する回路基板との接合を行う特徴を有している。更に、
素子を搭載する基板としては、上記有機回路基板以外に
もリードフレーム等の金属基板を用いる構造も考案され
ている。
2. Description of the Related Art In recent years, in the market trend of miniaturization, weight reduction, and high performance of electronic equipment, high integration of semiconductors has been progressing year by year, and surface mounting of semiconductor packages has been promoted. Packaging packages have been developed and are beginning to move away from packages with traditional structures. A typical example of an area mounting package is a BGA (ball grid array) or a CSP (chip scale package) pursuing further miniaturization.
The surface-mount package represented by is developed to meet the demand for higher pin count and higher speed, which is approaching the limit. The structure is as follows: a rigid circuit board represented by a BT resin / copper foil circuit board (bismaleimide / triazine / glass cloth board) or a flexible circuit board represented by a polyimide resin film / copper foil circuit board; An element is mounted, and only the element mounting surface, that is, one side of the substrate is molded and sealed with an epoxy resin composition or the like. In addition, a solder ball is formed two-dimensionally in parallel on the surface opposite to the element mounting surface of the substrate, and has a feature of joining with a circuit board on which a package is mounted. Furthermore,
As a substrate on which the element is mounted, a structure using a metal substrate such as a lead frame has been devised in addition to the organic circuit substrate.

【0003】これらエリア実装型半導体パッケージの構
造は基板の素子搭載面のみを樹脂組成物で封止し、半田
ボール形成面側は封止しないという片面封止の形態をと
っている。ごく希に、リードフレーム等の金属基板など
では、半田ボール形成面でも数十μm程度の封止樹脂層
が存在することもあるが、素子搭載面では数百μmから
数mm程度の封止樹脂層が形成されるため、実質的に片
面封止となっている。このため、有機基板や金属基板と
樹脂組成物の硬化物との間での熱膨張・熱収縮の不整
合、あるいは樹脂組成物の成形・硬化時の硬化収縮によ
る影響により、これらのパッケージでは成形直後から反
りが発生しやすい。また、これらのパッケージを実装す
る回路基板上に半田接合を行う場合、200℃以上の加
熱工程を経るが、この際にパッケージの反りが発生し、
多数の半田ボールが平坦とならず、パッケージを実装す
る回路基板から浮き上がってしまい、電気的接合信頼性
が低下する問題も起こる。
[0003] The structure of these area mounting type semiconductor packages adopts a single-sided sealing form in which only the element mounting surface of the substrate is sealed with a resin composition and the solder ball forming surface is not sealed. Very rarely, on a metal substrate such as a lead frame, a sealing resin layer of about several tens of μm may exist even on the solder ball forming surface, but a sealing resin layer of several hundred μm to several mm on the element mounting surface. Since the layer is formed, one-sided sealing is substantially achieved. For this reason, due to the mismatch of thermal expansion and thermal contraction between the organic substrate or metal substrate and the cured product of the resin composition, or the effect of curing shrinkage during molding and curing of the resin composition, these packages cannot be molded. Warpage tends to occur immediately after. In addition, when soldering is performed on a circuit board on which these packages are mounted, a heating step of 200 ° C. or more is performed. At this time, package warpage occurs.
A large number of solder balls are not flattened and rise from the circuit board on which the package is mounted, which causes a problem that electrical connection reliability is reduced.

【0004】また、赤外線リフロー、ベーパーフェイズ
ソルダリング、半田浸漬などの手段での半田処理による
半田接合を行う場合、樹脂組成物の硬化物並びに有機基
板からの吸湿によりパッケージ内部に存在する水分が高
温で急激に気化することによる応力でパッケージにクラ
ックが発生したり、基板の素子搭載面と樹脂組成物の硬
化物との界面で剥離が発生することもあり、硬化物の低
応力化・低吸湿化とともに、基板との密着性も求められ
る。さらに、基板と硬化物の線膨張係数の不整合によ
り、信頼性テストの代表例である温度サイクル試験で
も、基板/硬化物界面の剥離やパッケージクラックが発
生する。従来のQFPやSOPなどの表面実装パッケー
ジでは、半田実装時のクラックや各素材界面での剥離の
防止のために、ビフェニル型エポキシ樹脂に代表される
ような結晶性エポキシ樹脂を用いて成形時の低粘度化を
図り、かつ無機質充填材の配合量を増加することが対策
としてとられてきた。しかし、この手法では、片面封止
パッケージにおける反りの問題は解決できないのが現状
であった。
Further, when soldering is performed by soldering by means such as infrared reflow, vapor phase soldering, or solder immersion, moisture present inside the package due to moisture absorption from the cured product of the resin composition and the organic substrate is high. Cracks in the package due to stress caused by rapid vaporization in the package, and peeling at the interface between the device mounting surface of the substrate and the cured product of the resin composition, resulting in a low stress and low moisture absorption of the cured product. With the development, the adhesion to the substrate is also required. Furthermore, due to the mismatch between the coefficient of linear expansion of the substrate and the cured product, peeling of the substrate / cured product interface and package cracking occur even in a temperature cycle test, which is a typical example of a reliability test. In conventional surface mount packages such as QFP and SOP, in order to prevent cracks at the time of solder mounting and peeling at the interface of each material, a molding epoxy resin such as a biphenyl type epoxy resin is used. Attempts to reduce the viscosity and increase the amount of the inorganic filler added have been taken as countermeasures. However, at present, this method cannot solve the problem of warpage in a single-sided sealed package.

【0005】基板上の実質的に片面のみを樹脂組成物で
封止したパッケージにおいて、反りを低減するには、基
板の線膨張係数と樹脂組成物の硬化物の線膨張係数を近
付けること、及び樹脂組成物の硬化収縮を小さくする二
つの方法が重要である。基板としては有機基板ではBT
樹脂やポリイミド樹脂のような高ガラス転移温度の樹脂
が広く用いられており、これらはエポキシ樹脂組成物の
成形温度である170℃近辺よりも高いガラス転移温度
を有する。従って、成形温度から室温までの冷却過程で
は有機基板のα1 の領域のみで収縮する。従って、樹脂
組成物もガラス転移温度が高くかつα1 が回路基板と同
じであり、さらに硬化収縮がゼロであれば反りはほぼゼ
ロであると考えられる。このため、多官能型エポキシ樹
脂と多官能型フェノール樹脂との組み合わせによりガラ
ス転移温度を高くし、無機質充填材の配合量でα1 を合
わせる手法が既に提案されている。
In a package in which substantially only one surface of a substrate is sealed with a resin composition, to reduce warpage, the linear expansion coefficient of the substrate and the linear expansion coefficient of a cured product of the resin composition should be close to each other; Two methods for reducing the cure shrinkage of the resin composition are important. BT for organic substrate
High glass transition temperature resins such as resins and polyimide resins are widely used, and have a glass transition temperature higher than around 170 ° C., which is the molding temperature of the epoxy resin composition. Accordingly, in the cooling process from the molding temperature to room contracts only alpha 1 region of the organic substrate. Therefore, the resin composition is also the same as high and alpha 1 is a circuit board glass transition temperature, warpage is considered to be substantially zero when further curing shrinkage is zero. Therefore, the glass transition temperature higher by a combination of a polyfunctional epoxy resin and a polyfunctional phenol resin, methods to adjust the alpha 1 in the amount of the inorganic filler has been proposed.

【0006】ところが、一分子中に3個以上のエポキシ
基を有する多官能型エポキシ樹脂と一分子中に3個以上
のフェノール性水酸基を有する多官能型フェノール樹脂
との組み合わせ系は吸湿率が大きいこと、半田処理温度
でも高弾性を示し、発生応力が高いことなどから、半田
処理時のパッケージクラック発生や界面剥離の発生が解
決されていない。信頼性に優れるパッケージを得るに
は、回路基板やICチップと樹脂組成物の硬化物との密
着性を高めることが必須の条件であった。
However, a combination system of a polyfunctional epoxy resin having three or more epoxy groups in one molecule and a polyfunctional phenol resin having three or more phenolic hydroxyl groups in one molecule has a large moisture absorption. In addition, it shows high elasticity even at the soldering temperature and high generated stress. Therefore, the occurrence of package cracks and the occurrence of interface peeling during the soldering process has not been solved. In order to obtain a package having excellent reliability, it was an essential condition to increase the adhesion between the circuit board or the IC chip and the cured product of the resin composition.

【0007】[0007]

【発明が解決しようとする課題】本発明は、エリア実装
パッケージでの成形後や半田処理時の反りが小さく、ま
た温度サイクル試験や半田処理時などの信頼性に優れた
半導体封止用エポキシ樹脂組成物及びそれにより封止さ
れた半導体装置の開発を目的としてなされたものであ
る。
SUMMARY OF THE INVENTION The present invention relates to an epoxy resin for semiconductor encapsulation which has a small warpage after molding in an area mounting package or during soldering, and has excellent reliability in a temperature cycle test or soldering. The purpose of the present invention is to develop a composition and a semiconductor device sealed with the composition.

【0008】[0008]

【課題を解決するための手段】本発明者は鋭意検討した
結果、特定の多官能型エポキシ樹脂と多官能型フェノー
ル樹脂硬化剤との組み合わせに、ジシクロペンタジエン
変性エポキシ樹脂を併用することで、ガラス転移温度の
低下を少なくしたまま低吸湿化が図れること、半田処理
温度での熱時弾性率が低減できるため発生応力が減少
し、回路基板との密着性が向上することなどを明らかに
したものである。
Means for Solving the Problems As a result of diligent studies, the present inventor has found that a combination of a specific polyfunctional epoxy resin and a polyfunctional phenol resin curing agent is used in combination with a dicyclopentadiene-modified epoxy resin. It has been clarified that low moisture absorption can be achieved while reducing the glass transition temperature, and that the elastic modulus at the time of soldering can be reduced, resulting in reduced stress and improved adhesion to circuit boards. Things.

【0009】即ち本発明は、(A)一般式(1)、
(2)で示されるエポキシ樹脂からなる群から選択され
る少なくとも一つのエポキシ樹脂を総エポキシ樹脂中に
20〜90重量%含み、一般式(3)で示されるジシク
ロペンタジエン変性エポキシ樹脂を総エポキシ樹脂中に
10〜80重量%含むエポキシ樹脂、(B)一般式
(4)で示されるフェノール樹脂を総フェノール樹脂中
に20重量%以上含むフェノール樹脂硬化剤、(C)硬
化促進剤、(D)溶融シリカ粉末からなることを特徴と
する半導体封止用エポキシ樹脂組成物であり、更に好ま
しくは、成形硬化時の硬化収縮率が0.15%以下、硬
化後の線膨張係数α1 が8〜16ppm/℃で、かつガ
ラス転移温度が140℃以上であることを特徴とした半
導体封止用エポキシ樹脂組成物、及びこの半導体封止用
エポキシ樹脂組成物によって封止された半導体装置であ
る。
That is, the present invention provides (A) a compound represented by the general formula (1):
The total epoxy resin contains at least one epoxy resin selected from the group consisting of the epoxy resins represented by (2) in an amount of 20 to 90% by weight, and the dicyclopentadiene-modified epoxy resin represented by the general formula (3) is a total epoxy resin. An epoxy resin containing 10 to 80% by weight in the resin, (B) a phenolic resin curing agent containing 20% by weight or more of the phenolic resin represented by the general formula (4) in the total phenolic resin, (C) a curing accelerator, (D) ) is a semiconductor encapsulating epoxy resin composition characterized by comprising a fused silica powder, more preferably, 0.15% curing shrinkage during molding curing or less, the linear expansion coefficient alpha 1 after curing 8 An epoxy resin composition for encapsulating a semiconductor, characterized in that the epoxy resin composition has a glass transition temperature of 140 ° C. or higher at a temperature of from 16 ppm / ° C. The semiconductor device is sealed by the following method.

【0010】[0010]

【化5】 Embedded image

【0011】[0011]

【化6】 Embedded image

【0012】[0012]

【化7】 Embedded image

【0013】[0013]

【化8】 式(1)、(2)、(4)中のRはハロゲン原子又は炭
素数1〜12のアルキル基を示し、互いに同一であって
も、異なっていてもよい。lは1〜10の正の整数、m
は0もしくは1〜3の正の整数、nは0もしくは1〜4
の整数である。式(3)中のkは1〜6の正の整数であ
る。
Embedded image R in the formulas (1), (2) and (4) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different. l is a positive integer from 1 to 10, m
Is a positive integer of 0 or 1-3, n is 0 or 1-4
Is an integer. K in the formula (3) is a positive integer of 1 to 6.

【0014】[0014]

【発明の実施の形態】以下に本発明を詳細に説明する。
本発明に用いられる(A)成分のエポキシ樹脂のうち一
般式(1)で表されるエポキシ樹脂は通常トリフェノー
ルメタン型エポキシ樹脂と総称される樹脂で、具体例と
しては以下のものが挙げられるが、これらに限定される
ものではない。いずれも、これを用いた樹脂組成物の硬
化物は架橋密度が高く、高いガラス転移温度となり、ま
た硬化収縮率が小さい特徴を有する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The epoxy resin represented by the general formula (1) among the epoxy resins of the component (A) used in the present invention is a resin generally referred to as a triphenolmethane type epoxy resin, and specific examples thereof include the following. However, the present invention is not limited to these. In any case, a cured product of the resin composition using the same has characteristics of a high crosslinking density, a high glass transition temperature, and a small cure shrinkage.

【0015】[0015]

【化9】 Embedded image

【0016】一般式(2)で表されるエポキシ樹脂は式
(1)と同様、硬化物の高架橋密度構造と低硬化収縮性
を有するが、更に比較的低粘度であるという特徴も有し
ている。具体例としては以下のものが挙げられるが、こ
れらに限定されるものではない。
The epoxy resin represented by the general formula (2) has a high crosslink density structure and a low curing shrinkage property of the cured product as in the case of the formula (1), but also has a feature that it has a relatively low viscosity. I have. Specific examples include the following, but are not limited thereto.

【化10】 Embedded image

【0017】一般式(1)、(2)で示される多官能型
エポキシ樹脂は総エポキシ樹脂中の20〜90重量%含
まれることがガラス転移温度及び硬化収縮の点から必要
である。20重量%未満では得られる架橋構造の架橋密
度が低下するためガラス転移温度が低下するとともに、
硬化収縮も増大する。又、90重量%を越えると成形時
の流動性が低下し、金線変形を起こし易く、また基板と
の密着性が低下する。
The polyfunctional epoxy resin represented by the general formulas (1) and (2) needs to be contained in an amount of 20 to 90% by weight of the total epoxy resin from the viewpoints of glass transition temperature and curing shrinkage. When the content is less than 20% by weight, the crosslink density of the obtained crosslinked structure decreases, so that the glass transition temperature decreases,
Cure shrinkage also increases. On the other hand, if it exceeds 90% by weight, the fluidity at the time of molding is reduced, so that the gold wire is easily deformed and the adhesion to the substrate is reduced.

【0018】一般式(3)で示されるエポキシ樹脂は、
ジシクロペンタジエンとフェノール類とを付加反応によ
り重合させたフェノール樹脂をグリシジルエーテル化す
ることによって得られる。ジシクロペンタジエン変性エ
ポキシ樹脂は、従来のオルソクレゾールノボラック型エ
ポキシ樹脂に比べ、半田処理温度での熱時弾性率を低減
できるため発生応力が減少し、回路基板やICチップと
の密着性に優れる。また分子中にジシクロ骨格を有する
為、耐吸湿性に優れる。このエポキシ樹脂の使用量は、
これを調節することにより耐半田クラック性を最大限に
引き出すことができる。耐半田クラック性の効果を引き
出すためには式(3)で示されるエポキシ樹脂を総エポ
キシ樹脂中に10重量%以上、好ましくは30重量%以
上使用することが望ましい。10重量%未満だと高温時
の低弾性率化及び回路基板やICチップとの高密着性が
得難く、80重量%を越えると成形されたパッケージの
反りが大きくなり好ましくない。
The epoxy resin represented by the general formula (3)
It is obtained by glycidyl etherification of a phenol resin obtained by polymerizing dicyclopentadiene and phenols by an addition reaction. The dicyclopentadiene-modified epoxy resin can reduce the thermal stress at the soldering temperature and reduce the generated stress, as compared with the conventional orthocresol novolak-type epoxy resin, and has excellent adhesion to a circuit board or an IC chip. Further, since it has a dicyclo skeleton in the molecule, it has excellent moisture absorption resistance. The amount of this epoxy resin used is
By adjusting this, solder crack resistance can be maximized. In order to bring out the effect of solder crack resistance, it is desirable to use the epoxy resin represented by the formula (3) in an amount of 10% by weight or more, preferably 30% by weight or more in the total epoxy resin. If it is less than 10% by weight, it is difficult to obtain a low elastic modulus at a high temperature and high adhesion to a circuit board or an IC chip, and if it exceeds 80% by weight, the warpage of a molded package is undesirably large.

【0019】本発明のエポキシ樹脂は更に他のエポキシ
樹脂と併用しても差し支えない。併用可能なエポキシ樹
脂としては、エポキシ基を有するモノマー、オリゴマ
ー、ポリマー全般を指し、例えば、ビスフェノールA型
エポキシ樹脂、オルソクレゾールノボラック型エポキシ
樹脂、ナフトール型エポキシ樹脂等が挙げられる。又、
これらのエポキシ樹脂は、単独もしくは混合して用いて
も差し支えない。
The epoxy resin of the present invention may be used in combination with another epoxy resin. Epoxy resins that can be used in combination include all monomers, oligomers, and polymers having an epoxy group, such as bisphenol A epoxy resin, orthocresol novolac epoxy resin, and naphthol epoxy resin. or,
These epoxy resins may be used alone or in combination.

【0020】本発明で用いられる(B)成分のフェノー
ル樹脂硬化剤のうち、式(4)で示されるフェノール樹
脂硬化剤はいわゆるトリフェノールメタン型フェノール
樹脂と呼ばれるもので、具体例を以下に示す。
Among the phenolic resin curing agents of the component (B) used in the present invention, the phenolic resin curing agent represented by the formula (4) is a so-called triphenolmethane type phenolic resin, and specific examples are shown below. .

【化11】 Embedded image

【0021】これらフェノール樹脂を使用すると硬化物
の架橋密度が高くなり、高いガラス転移温度の硬化物が
得られる。式(4)のフェノール樹脂の使用量として
は、ガラス転移温度の点から総フェノール樹脂中の20
重量%以上配合することが必要である。20重量%未満
ではガラス転移温度が低下し、また硬化収縮率も大きく
なり、成形後のパッケージの反り量が大きくなる。式
(4)のフェノール樹脂は他のフェノール樹脂と適宜併
用可能であり、特に限定されるものではないが、フェノ
ールノボラック樹脂、クレゾールノボラック樹脂、ナフ
トール型ノボラック樹脂等が挙げられる。
When these phenolic resins are used, the crosslink density of the cured product is increased, and a cured product having a high glass transition temperature can be obtained. The amount of the phenol resin of the formula (4) used is 20% in the total phenol resin in terms of the glass transition temperature.
It is necessary to be added in an amount of at least% by weight. If it is less than 20% by weight, the glass transition temperature decreases, the curing shrinkage increases, and the amount of warpage of the molded package increases. The phenolic resin of the formula (4) can be appropriately used in combination with other phenolic resins, and is not particularly limited. Examples thereof include a phenol novolak resin, a cresol novolak resin, and a naphthol type novolak resin.

【0022】本発明で用いられる(C)成分の硬化促進
剤としては、前記エポキシ樹脂とフェノール樹脂硬化剤
との架橋反応の触媒となり得るものを指し、具体的には
トリブチルアミン等のアミン系化合物、トリフェニルホ
スフィン、テトラフェニルホスフォニウム・テトラフェ
ニルボレート塩等の有機リン系化合物、2−メチルイミ
ダゾール等のイミダゾール化合物等が例示できるがこれ
らに限定されるものではない。これらの硬化促進剤は単
独であっても混合して用いても差し支えない。
The curing accelerator of component (C) used in the present invention refers to those which can serve as a catalyst for a crosslinking reaction between the epoxy resin and the phenol resin curing agent, and specifically, amine compounds such as tributylamine. And organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium / tetraphenylborate, and imidazole compounds such as 2-methylimidazole, but are not limited thereto. These curing accelerators may be used alone or as a mixture.

【0023】本発明で用いられる(D)成分の溶融シリ
カ粉末は、破砕状、球状のいずれでも使用可能である
が、溶融シリカ粉末の配合量を高め、かつ樹脂組成物の
溶融粘度の上昇を抑えるためには、球状シリカを主に用
いる方が好ましい。更に球状シリカの配合量を高めるた
めには、球状シリカの粒度分布をより広くとるよう調整
することが望ましい。
The fused silica powder of the component (D) used in the present invention can be used in any of a crushed form and a spherical form. However, the amount of the fused silica powder is increased and the melt viscosity of the resin composition is increased. In order to suppress this, it is preferable to mainly use spherical silica. In order to further increase the content of the spherical silica, it is desirable to adjust the particle size distribution of the spherical silica to be wider.

【0024】本発明の樹脂組成物は、(A)〜(D)ま
での必須成分以外にも必要に応じて臭素化エポキシ樹
脂、三酸化アンチモン等の難燃剤、カップリング剤、カ
ーボンブラックに代表される着色剤、天然ワックス及び
合成ワックス等の離型剤等が適宜配合可能である。樹脂
組成物とするには各成分を混合後、加熱ニーダや熱ロー
ルにより加熱混練し、続いて冷却、粉砕することで目的
とする樹脂組成物が得られる。本発明の半導体装置は、
上述の半導体封止用エポキシ樹脂組成物を用い、トラン
スファ−成形、圧縮成形、射出成形等により、半導体素
子を封止することにより得られる。
The resin composition of the present invention is represented by a brominated epoxy resin, a flame retardant such as antimony trioxide, a coupling agent, and carbon black, if necessary, in addition to the essential components (A) to (D). Coloring agents, release agents such as natural waxes and synthetic waxes, etc., can be appropriately compounded. In order to obtain a resin composition, the components are mixed, heated and kneaded with a heating kneader or a hot roll, and then cooled and pulverized to obtain a desired resin composition. The semiconductor device of the present invention
It is obtained by encapsulating a semiconductor element by transfer molding, compression molding, injection molding or the like using the above-described epoxy resin composition for semiconductor encapsulation.

【0025】本発明の半導体装置は有機基板としてBT
樹脂基板を用いる場合は、エポキシ樹脂組成物の硬化後
の線膨張係数(α1 )が8〜16ppm/℃、熱機械分
析装置(TMA)で測定されるガラス転移温度が140
℃以上、かつ硬化収縮率が0.15%以下であることが
特に好ましい。BT樹脂基板の線膨張係数は14ppm
/℃程度であるが、これにシリコンチップ、銅箔回路な
どの金属とが組合される複合基板では、チップの面積比
率、銅箔回路の面積比率により線膨張係数が変化する。
この基板の線膨張係数と合わせて樹脂組成物の硬化物の
線膨張係数と硬化収縮率を上記範囲とすることで、BT
樹脂基板の成形温度から室温までの熱収縮量に合わせて
樹脂組成物の硬化物の熱収縮量がほぼ同じとなり、成形
後の反りを小さくできる。
The semiconductor device of the present invention uses BT as an organic substrate.
When a resin substrate is used, the coefficient of linear expansion (α 1 ) of the epoxy resin composition after curing is 8 to 16 ppm / ° C., and the glass transition temperature measured by a thermomechanical analyzer (TMA) is 140.
It is particularly preferable that the curing shrinkage is not less than 0.1 ° C and not more than 0.15%. The linear expansion coefficient of the BT resin substrate is 14 ppm
/ ° C., but in a composite substrate in which a metal such as a silicon chip or a copper foil circuit is combined, the linear expansion coefficient changes depending on the area ratio of the chip and the area ratio of the copper foil circuit.
By setting the linear expansion coefficient and the curing shrinkage ratio of the cured product of the resin composition in the above ranges together with the linear expansion coefficient of the substrate, BT
The amount of heat shrinkage of the cured product of the resin composition becomes almost the same in accordance with the amount of heat shrinkage from the molding temperature of the resin substrate to room temperature, and the warpage after molding can be reduced.

【0026】本発明でのガラス転移温度、線膨張係数、
硬化収縮率は以下の方法で測定する。 ・ガラス転移温度(Tg)及び線膨張係数(α1):樹脂
組成物を175℃、2分間トランスファー成形したテス
トピースを更に175℃、8時間、後硬化し、熱機械分
析装置(セイコー電子(株)製TMA−120、昇温速度
5℃/分)で測定した。 ・硬化収縮率:テストピースを180℃の金型温度、7
5kg/cm2 の射出圧力で2分間トランスファー成形
し、更に175℃で8時間、後硬化した。180℃に加
熱された状態の金型のキャビティ寸法と180℃に加熱
された成形品の寸法をノギスにより測定し、成形品寸法
/金型キャビティ寸法の比率で硬化収縮率を表した。
In the present invention, the glass transition temperature, the coefficient of linear expansion,
The cure shrinkage is measured by the following method. Glass transition temperature (Tg) and coefficient of linear expansion (α 1 ): A test piece obtained by transfer-molding the resin composition at 175 ° C. for 2 minutes is post-cured at 175 ° C. for 8 hours, and then thermo-mechanical analyzer (Seiko Electronics ( (TMA-120, Inc., heating rate 5 ° C./min). Curing shrinkage: 180 ° C mold temperature of test piece, 7
Transfer molding was performed at an injection pressure of 5 kg / cm 2 for 2 minutes, and post-curing was further performed at 175 ° C. for 8 hours. The cavity dimensions of the mold heated to 180 ° C. and the dimensions of the molded article heated to 180 ° C. were measured with calipers, and the curing shrinkage was represented by the ratio of molded article dimension / mold cavity dimension.

【0027】[0027]

【実施例】以下、本発明を実施例で具体的に説明する。 《実施例1》 ・式(5)の構造を主成分とするエポキシ樹脂: [油化シェルエポキシ(株)製、エピコート1032H、軟化点60℃、エポキ シ当量170] 5.6重量部 ・式(3)の構造を主成分とするジシクロペンタジエン変性エポキシ樹脂: [大日本インキ化学工業(株)製、HP−7200、融点65℃、エポキシ当量 250] 3.8重量部 ・式(6)で示されるフェノール樹脂: [明和化成(株)製、MEH−7500、軟化点107℃、水酸基当量97] 4.6重量部 ・トリフェニルホスフィン 0.2重量部 ・球状溶融シリカ 85.0重量部 ・カルナバワックス 0.5重量部 ・カーボンブラック 0.3重量部 上記の全成分をミキサーにより混合した後、表面温度が
90℃と45℃の2本ロールを用いて30回混練し、得
られた混練物シートを冷却後粉砕して、樹脂組成物とし
た。得られた樹脂組成物の特性を以下の方法で評価をし
た。評価結果を表1に示す。
The present invention will be specifically described below with reference to examples. << Example 1 >> An epoxy resin having a structure represented by the formula (5) as a main component: [manufactured by Yuka Shell Epoxy Co., Ltd., Epicoat 1032H, softening point 60 ° C., epoxy equivalent 170] 5.6 parts by weight Dicyclopentadiene-modified epoxy resin having the structure of (3) as a main component: [HP-7200, manufactured by Dainippon Ink and Chemicals, Inc., melting point 65 ° C., epoxy equivalent 250] 3.8 parts by weight Formula (6) A phenolic resin represented by: [Mehka Kasei Co., Ltd., MEH-7500, softening point 107 ° C., hydroxyl equivalent 97] 4.6 parts by weight ・ Triphenylphosphine 0.2 parts by weight ・ Spherical fused silica 85.0 parts by weight・ 0.5 parts by weight of carnauba wax ・ 0.3 parts by weight of carbon black After mixing all the above components by a mixer, the mixture was kneaded 30 times using two rolls having a surface temperature of 90 ° C. and 45 ° C. to obtain a mixture. And the kneaded material sheet was pulverized after cooling, the resin composition. The properties of the obtained resin composition were evaluated by the following methods. Table 1 shows the evaluation results.

【0028】[0028]

【化12】 Embedded image

【0029】[0029]

【化13】 Embedded image

【0030】《実施例2〜6》実施例1を基本配合と
し、式(5)の他に式(7)、式(8)のエポキシ樹脂
及び式(6)の他に式(9)のフェノール樹脂硬化剤を
使用し、その配合比率を変えて、その他は基本配合と同
じ割合で各成分を配合し、実施例1と同様に混合、混練
して樹脂組成物を得た。実施例1と同様に評価を行っ
た。配合処方及び評価結果を表1に示す。 《比較例1〜5》実施例1を基本配合とし、実施例と同
様にエポキシ樹脂およびフェノール樹脂硬化剤の配合比
率を変えて、その他は基本配合と同じ割合で各成分を配
合し、実施例1と同様に混合、混練して樹脂組成物を得
た。実施例1と同様に評価を行った。配合処方及び評価
結果を表2に示す。
<< Examples 2 to 6 >> Based on Example 1 as a basic formulation, in addition to the formula (5), the epoxy resin of the formulas (7) and (8) and the epoxy resin of the formula (6) and the formula (9) A phenolic resin curing agent was used, the mixing ratio was changed, and the other components were mixed at the same ratio as the basic mixing, and mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 1 shows the formulation and evaluation results. << Comparative Examples 1 to 5 >> Example 1 was used as a basic compound, and the components were mixed at the same ratio as the basic compound except that the mixing ratio of the epoxy resin and the phenol resin curing agent was changed in the same manner as in the example. The mixture was mixed and kneaded in the same manner as in Example 1 to obtain a resin composition. Evaluation was performed in the same manner as in Example 1. Table 2 shows the formulation and evaluation results.

【0031】なお、上記実施例及び比較例で使用した式
(7)、(8)のエポキシ樹脂及び式(9)のフェノー
ル樹脂の構造及び性状を以下に示す。
The structures and properties of the epoxy resins of formulas (7) and (8) and the phenol resin of formula (9) used in the above Examples and Comparative Examples are shown below.

【化14】 Embedded image

【化15】 Embedded image

【化16】 ・式(7)のエポキシ樹脂:軟化点65℃、エポキシ当
量210 ・式(8)のエポキシ樹脂:液状、粘度(25℃)55Pois
e、エポキシ当量168 ・式(9)のフェノール樹脂:軟化点80℃、水酸基当
量104
Embedded image ・ Epoxy resin of formula (7): softening point 65 ° C., epoxy equivalent 210 ・ Epoxy resin of formula (8): liquid, viscosity (25 ° C.) 55 Pois
e, epoxy equivalent 168 ・ phenolic resin of formula (9): softening point 80 ° C., hydroxyl equivalent 104

【0032】《評価方法》 ・ガラス転移温度(Tg)及び線膨張係数(α1):前記
した方法による。 ・熱時弾性率:240℃での曲げ弾性率をJIS−K6
911の試験条件により測定した。 ・硬化収縮率:前記した方法による。 ・パッケージ反り量:225ピンBGAパッケージ(基
板は0.36mm厚のBT樹脂基板、パッケージサイズ
は24×24mm、厚み1.17mm、シリコンチップ
はサイズ9×9mm、厚み0.35mm、チップと回路
基板のボンディングパッドとを25μm径の金線でボン
ディングしている)を180℃の金型温度、75kg/
cm2 の射出圧力で2分間トランスファー成形を行い、
更に175℃で8時間、後硬化した。室温に冷却後パッ
ケージのゲートから対角線方向に、表面粗さ計を用いて
高さ方向の変位を測定し、変異差の最も大きい値を反り
量とした。 ・耐半田性:パッケージ反り量測定に用いた成形品パッ
ケージを85℃、相対湿度60%の環境下で168時間
放置し、その後240℃の半田槽に10秒間浸漬した。
超音波探傷機を用いてパッケージを観察し、内部クラッ
ク数及び基板/樹脂組成物界面の剥離数を(発生パッケ
ージ数)/(全パッケージ数)の%表示で表した。
<< Evaluation Method >> Glass transition temperature (Tg) and coefficient of linear expansion (α 1 ): Determined by the methods described above.・ Heat elastic modulus: Flexural elastic modulus at 240 ° C is JIS-K6
It was measured under the test conditions of 911. Curing shrinkage: According to the method described above. Package warpage: 225-pin BGA package (substrate is a 0.36 mm thick BT resin substrate, package size is 24 × 24 mm, thickness 1.17 mm, silicon chip is 9 × 9 mm, thickness 0.35 mm, chip and circuit board Is bonded with a gold wire having a diameter of 25 μm) at a mold temperature of 180 ° C. and 75 kg /
perform transfer molding for 2 minutes at an injection pressure of cm 2,
Further post-curing was performed at 175 ° C. for 8 hours. After cooling to room temperature, the displacement in the height direction was measured diagonally from the gate of the package using a surface roughness meter, and the value with the largest variation difference was defined as the amount of warpage. Solder Resistance: The molded product package used for measuring the package warpage was left for 168 hours in an environment of 85 ° C. and 60% relative humidity, and then immersed in a 240 ° C. solder bath for 10 seconds.
The package was observed using an ultrasonic flaw detector, and the number of internal cracks and the number of peels at the interface between the substrate and the resin composition were represented by% of (number of generated packages) / (total number of packages).

【0033】 表 1 実 施 例 1 2 3 4 5 6 《エポキシ樹脂の種類 と配合量(重量部)》 式(5)のエポキシ樹脂 5.6 7.6 2.4 2.4 7.6 式(7)のエポキシ樹脂 4.0 式(3)のエポキシ樹脂 3.8 1.4 4.8 6.0 4.7 1.3 式(8)のエポキシ樹脂 2.4 2.4 《硬化剤の種類と 配合量(重量部)》 式(6)のフェノール樹脂 4.6 2.5 2.2 4.0 1.1 1.3 式(9)のフェノール樹脂 2.5 2.2 3.4 3.8 《評価》 Tg(℃) 193 188 185 191 184 187 α1(ppm/℃) 13 13 13 13 13 13 熱時弾性率(N/mm2) 3050 2650 2100 2900 2150 2550 硬化収縮率(%) 0.06 0.07 0.07 0.06 0.09 0.08 パッケージ反り量(μm) 32 35 37 33 40 38 耐半田性:クラック数(%) 0 0 0 0 0 0 剥離数(%) 0 0 0 0 0 0 Table 1 Example 1 2 3 4 5 6 << Type and blending amount (parts by weight) of epoxy resin >> Epoxy resin of formula (5) 5.6 7.6 2.4 2.4 7.6 Epoxy resin of formula (7) 4.0 Epoxy resin of formula (3) 3.8 1.4 4.8 6.0 4.7 1.3 Epoxy resin of formula (8) 2.4 2.4 << Type and amount of blending agent (parts by weight) >> Phenolic resin of formula (6) 4.6 2.5 2.2 4.0 1.1 1.3 Phenolic resin of formula (9) 2.5 2.2 3.4 3.8 "evaluation" Tg (℃) 193 188 185 191 184 187 α 1 (ppm / ℃) 13 13 13 13 13 13 thermal time elastic modulus (N / mm 2) 3050 2650 2100 2900 2150 2550 cure shrinkage (%) 0.06 0.07 0.07 0.06 0.09 0.08 Package warpage (μm) 32 35 37 33 40 38 Solder resistance: Number of cracks (%) 0 0 0 0 0 0 Number of peels (%) 0 0 0 0 0 0

【0034】 表 2 比 較 例 1 2 3 4 5 《エポキシ樹脂の種類 と配合量(重量部)》 式(5)のエポキシ樹脂 8.9 7.9 1.9 式(7)のエポキシ樹脂 9.6 式(3)のエポキシ樹脂 4.9 0.9 4.7 式(8)のエポキシ樹脂 4.9 2.9 《硬化剤の種類と 配合量(重量部)》 式(6)のフェノール樹脂 5.1 4.4 4.2 式(9)のフェノール樹脂 5.2 4.5 《評価》 Tg(℃) 198 195 137 160 165 α1(ppm/℃) 13 13 13 13 13 熱時弾性率(N/mm2) 3450 3300 1750 2850 1950 硬化収縮率(%) 0.05 0.06 0.23 0.18 0.16 パッケージ反り量(μm) 30 35 113 90 72 耐半田性:クラック数(%) 80 60 70 20 0 剥離数(%) 50 30 40 10 0 Table 2 Comparative Example 1 2 3 4 5 << Type and blending amount (parts by weight) of epoxy resin >> Epoxy resin of formula (5) 8.9 7.9 1.9 Epoxy resin of formula (7) 9.6 Epoxy resin of formula (3) 4.9 0.9 4.7 formula Epoxy resin of (8) 4.9 2.9 << Type and blending amount (parts by weight) of curing agent >> Phenolic resin of formula (6) 5.1 4.4 4.2 Phenolic resin of formula (9) 5.2 4.5 << Evaluation >> Tg (° C) 198 195 137 160 165 α 1 (ppm / ° C) 13 13 13 13 13 Thermal elasticity (N / mm 2 ) 3450 3300 1750 2850 1950 Curing shrinkage (%) 0.05 0.06 0.23 0.18 0.16 Package warpage (μm) 30 35 113 90 72 Solder resistance: number of cracks (%) 80 60 70 200 0 Number of peelings (%) 50 30 40 100

【0035】[0035]

【発明の効果】本発明の半導体封止用エポキシ樹脂組成
物は金線変形など成形性においても優れおり、該半導体
封止用エポキシ樹脂組成物により封止されたエリア実装
型半導体装置は、室温及び半田付け工程での反りが小さ
く、耐半田性や耐温度サイクル性などの信頼性が高いも
のである。
The epoxy resin composition for semiconductor encapsulation of the present invention is also excellent in moldability such as gold wire deformation, and the area mounting type semiconductor device sealed with the epoxy resin composition for semiconductor encapsulation can be used at room temperature. Also, the warpage in the soldering process is small, and the reliability such as solder resistance and temperature cycle resistance is high.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08K 3/36 C08K 3/36 H01L 23/29 H01L 23/30 R 23/31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C08K 3/36 C08K 3/36 H01L 23/29 H01L 23/30 R 23/31

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 (A)一般式(1)、(2)で示される
エポキシ樹脂からなる群から選択される少なくとも一つ
のエポキシ樹脂を総エポキシ樹脂中に20〜90重量%
含み、一般式(3)で示されるジシクロペンタジエン変
性エポキシ樹脂を総エポキシ樹脂中に10〜80重量%
含むエポキシ樹脂、(B)一般式(4)で示されるフェ
ノール樹脂を総フェノール樹脂中に20重量%以上含む
フェノール樹脂硬化剤、(C)硬化促進剤、(D)溶融
シリカ粉末からなることを特徴とする半導体封止用エポ
キシ樹脂組成物。 【化1】 【化2】 【化3】 【化4】 式(1)、(2)、(4)中のRはハロゲン原子又は炭
素数1〜12のアルキル基を示し、互いに同一であって
も、異なっていてもよい。lは1〜10の正の整数、m
は0もしくは1〜3の正の整数、nは0もしくは1〜4
の正の整数である。式(3)中のkは1〜6の正の整数
である。
(A) at least one epoxy resin selected from the group consisting of the epoxy resins represented by the general formulas (1) and (2) in an amount of 20 to 90% by weight in the total epoxy resin;
A dicyclopentadiene-modified epoxy resin represented by the general formula (3):
Epoxy resin, (B) a phenol resin curing agent containing at least 20% by weight of the phenol resin represented by the general formula (4) in the total phenol resin, (C) a curing accelerator, and (D) a fused silica powder. Characteristic epoxy resin composition for semiconductor encapsulation. Embedded image Embedded image Embedded image Embedded image R in the formulas (1), (2) and (4) represents a halogen atom or an alkyl group having 1 to 12 carbon atoms, and may be the same or different. l is a positive integer from 1 to 10, m
Is a positive integer of 0 or 1-3, n is 0 or 1-4
Is a positive integer. K in the formula (3) is a positive integer of 1 to 6.
【請求項2】 成形硬化時の硬化収縮率が0.15%以
下、硬化後の線膨張係数α1 が8〜16ppm/℃であ
り、かつガラス転移温度が140℃以上である請求項1
記載の半導体封止用エポキシ樹脂組成物。
Wherein% cure shrinkage during molding curing 0.15, the linear expansion coefficient alpha 1 after curing is 8~16ppm / ℃, and claim 1 having a glass transition temperature of 140 ° C. or higher
The epoxy resin composition for semiconductor encapsulation according to the above.
【請求項3】 基板の片面に半導体素子が搭載され、こ
の半導体素子が搭載された基板面側の実質的に片面のみ
が請求項1又は2記載のエポキシ樹脂組成物によって封
止されていることを特徴とする半導体装置。
3. A semiconductor element is mounted on one side of a substrate, and substantially only one side on the substrate side on which the semiconductor element is mounted is sealed with the epoxy resin composition according to claim 1 or 2. A semiconductor device characterized by the above-mentioned.
JP29697597A 1997-10-29 1997-10-29 Epoxy resin composition and semiconductor device Withdrawn JPH11130937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29697597A JPH11130937A (en) 1997-10-29 1997-10-29 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29697597A JPH11130937A (en) 1997-10-29 1997-10-29 Epoxy resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JPH11130937A true JPH11130937A (en) 1999-05-18

Family

ID=17840633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29697597A Withdrawn JPH11130937A (en) 1997-10-29 1997-10-29 Epoxy resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JPH11130937A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055632A (en) * 2001-08-21 2003-02-26 Lintec Corp Pressure-sensitive adhesive tape
JP2006104334A (en) * 2004-10-05 2006-04-20 Hitachi Chem Co Ltd Sealing epoxy resin molding material and electronic part device
JP4491900B2 (en) * 2000-03-28 2010-06-30 パナソニック電工株式会社 Epoxy resin composition and semiconductor device
WO2019083003A1 (en) * 2017-10-27 2019-05-02 Jxtgエネルギー株式会社 Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4491900B2 (en) * 2000-03-28 2010-06-30 パナソニック電工株式会社 Epoxy resin composition and semiconductor device
JP2003055632A (en) * 2001-08-21 2003-02-26 Lintec Corp Pressure-sensitive adhesive tape
JP2006104334A (en) * 2004-10-05 2006-04-20 Hitachi Chem Co Ltd Sealing epoxy resin molding material and electronic part device
WO2019083003A1 (en) * 2017-10-27 2019-05-02 Jxtgエネルギー株式会社 Composition for cured resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device
CN111278883A (en) * 2017-10-27 2020-06-12 Jxtg能源株式会社 Composition for curing resin, cured product of the composition, method for producing the composition and the cured product, and semiconductor device
KR20200070275A (en) * 2017-10-27 2020-06-17 제이엑스티지 에네루기 가부시키가이샤 Cured resin composition, cured product of composition, method for manufacturing composition and cured product, and semiconductor device
JPWO2019083003A1 (en) * 2017-10-27 2020-11-12 Eneos株式会社 A composition for a cured resin, a cured product of the composition, a method for producing the composition and the cured product, and a semiconductor device.
CN111278883B (en) * 2017-10-27 2022-12-30 Jxtg能源株式会社 Composition for curing resin, cured product of the composition, method for producing the composition and the cured product, and semiconductor device
US11897998B2 (en) 2017-10-27 2024-02-13 Eneos Corporation Composition for curable resin, cured product of said composition, production method for said composition and said cured product, and semiconductor device

Similar Documents

Publication Publication Date Title
JPH11147936A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
KR100663680B1 (en) Epoxy resin composition and semiconductor device
JP3292452B2 (en) Epoxy resin composition and semiconductor device
JP3365725B2 (en) Epoxy resin composition and semiconductor device
JP4622221B2 (en) Epoxy resin composition and semiconductor device
JPH11130936A (en) Epoxy resin composition and semiconductor device
JP2000273280A (en) Epoxy resin composition and semiconductor device
JP2000169677A (en) Epoxy resin composition and semiconductor apparatus
JP3608930B2 (en) Epoxy resin composition and semiconductor device
JPH11130937A (en) Epoxy resin composition and semiconductor device
JP3649554B2 (en) Epoxy resin composition and semiconductor device
JPH1160901A (en) Epoxy resin composition and semiconductor device
JP4491884B2 (en) Epoxy resin composition and semiconductor device
JP3844098B2 (en) Epoxy resin composition and semiconductor device
JP4370666B2 (en) Semiconductor device
JPH1192631A (en) Epoxy resin composition and semiconductor device
JPH1192629A (en) Epoxy resin composition and semiconductor device
JP3390335B2 (en) Semiconductor device
JP3292456B2 (en) Epoxy resin composition and semiconductor device
JPH1192630A (en) Epoxy resin composition and semiconductor device
JP2002212393A (en) Epoxy resin composition and semi-conductor device
JP4470264B2 (en) Area type mounting semiconductor sealing epoxy resin composition and area type mounting semiconductor device
JP2002020460A (en) Epoxy resin composition and semiconductor device
JP4556324B2 (en) Area mounting semiconductor sealing epoxy resin composition and area mounting semiconductor device.
JPH11100491A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A761 Written withdrawal of application

Effective date: 20060329

Free format text: JAPANESE INTERMEDIATE CODE: A761