JPH04369230A - Charge coupled device - Google Patents

Charge coupled device

Info

Publication number
JPH04369230A
JPH04369230A JP3145791A JP14579191A JPH04369230A JP H04369230 A JPH04369230 A JP H04369230A JP 3145791 A JP3145791 A JP 3145791A JP 14579191 A JP14579191 A JP 14579191A JP H04369230 A JPH04369230 A JP H04369230A
Authority
JP
Japan
Prior art keywords
signal charge
charge
signal
floating diffusion
output circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3145791A
Other languages
Japanese (ja)
Inventor
Hideyuki Ono
秀行 小野
Haruhisa Ando
安藤 治久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3145791A priority Critical patent/JPH04369230A/en
Publication of JPH04369230A publication Critical patent/JPH04369230A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To eliminate a sensitivity changeover switch by a method wherein an output circuit is provided with the holding region of a signal charge and the potential of the holding region of the signal charge is distributed in a step shape. CONSTITUTION:An N-type layer 120 which is depleted by a voltage which is lower than a reset drain voltage VRD is formed. Then, when a signal charge amount is made small and a sensitivity is made high, a signal charge Q is accumulated in a floating diffusion layer 11 whose capacity is small. Then, when the signal charge amount is made large and a dynamic range is required, a signal charge Q' is accumulated in the floating diffusion layers 11 and 120, and the capacity of the floating diffusion layers can be increased. Consequently, the substantial capacity of the floating diffusion layers executing a charge-to- voltage conversion operation can be increased without installing a sensitivity changeover gate electrode as the signal charge amount is increased. As a result, when the signal charge amount is small, a sensitivity can be increased; when the signal charge amount is large, the dynamic range can be increased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電荷結合装置に係り、
特に、出力回路のランダム雑音を小さくできると共に飽
和電荷量を増加でき、小型化に好適な電荷結合装置に関
する。
[Industrial Field of Application] The present invention relates to a charge-coupled device.
In particular, the present invention relates to a charge coupled device that can reduce random noise in an output circuit, increase the amount of saturated charge, and is suitable for miniaturization.

【0002】0002

【従来の技術】図2(a),(b)は従来例の出力回路
の平面図、図2(c),(d)は図2(a),(b)に
示される出力回路の高感度時及び低感度時に浮遊拡散層
に蓄積された電荷のポテンシャル図を表したものである
。これについては、特開平1−166561号公報に開
示されている。
[Prior Art] FIGS. 2(a) and 2(b) are plan views of conventional output circuits, and FIGS. 2(c) and 2(d) are height views of the output circuits shown in FIGS. 2(a) and 2(b). This is a potential diagram of charges accumulated in the floating diffusion layer during high sensitivity and low sensitivity. This is disclosed in Japanese Unexamined Patent Publication No. 1-166561.

【0003】図2において、7はP型半導体基板、13
5は絶縁膜、1は転送チャンネル、2〜5は多結晶シリ
コン等で形成された転送電極、6は出力ゲート電極、1
0,11,13はN型領域、14はリセットゲート電極
、15,16は感度切り替え用ゲート電極である。なお
、SEL1,SEL2は、感度切り替え用ゲート電極に
適時印加されるスイッチング制御信号である。また、出
力は浮遊拡散層11と電荷検出トランジスタT1,抵抗
Rにより電荷電圧変換及びインピーダンス変換されて端
子VOUT から取り出される。なお、φ1,φ2,V
OGは転送チャンネル1の電位を変化させて信号電荷を
浮遊拡散層11に転送するためのクロックパルスであり
、φRはその信号電荷を排出するためのクロックパルス
である。
In FIG. 2, 7 is a P-type semiconductor substrate; 13 is a P-type semiconductor substrate;
5 is an insulating film, 1 is a transfer channel, 2 to 5 are transfer electrodes made of polycrystalline silicon, etc., 6 is an output gate electrode, 1
0, 11, and 13 are N-type regions, 14 is a reset gate electrode, and 15 and 16 are sensitivity switching gate electrodes. Note that SEL1 and SEL2 are switching control signals that are applied to the sensitivity switching gate electrodes at appropriate times. Further, the output is subjected to charge-voltage conversion and impedance conversion by the floating diffusion layer 11, the charge detection transistor T1, and the resistor R, and is taken out from the terminal VOUT. In addition, φ1, φ2, V
OG is a clock pulse for changing the potential of the transfer channel 1 and transferring signal charges to the floating diffusion layer 11, and φR is a clock pulse for discharging the signal charges.

【0004】次に、図2(b)〜(d)を用いて高感度
時及び低感度時の動作について説明する。まず、高感度
を得ようとする場合には、図2(c)に示すように感度
切り替え用のスイッチング信号SEL1をローレベルに
し、浮遊拡散層11に転送電極及び出力電極を介して転
送されてきた信号電荷を蓄積する。この時の浮遊拡散層
11の信号電荷Qによる電位変化ΔVSIHは、
Next, operations at high sensitivity and low sensitivity will be explained using FIGS. 2(b) to 2(d). First, when trying to obtain high sensitivity, the switching signal SEL1 for sensitivity switching is set to low level as shown in FIG. 2(c), and the signal is transferred to the floating diffusion layer 11 via the transfer electrode and the output electrode. Accumulates the signal charge. At this time, the potential change ΔVSIH due to the signal charge Q of the floating diffusion layer 11 is:

【00
05】
00
05]

【数1】     ΔVSIH=Q/C11          
                         
       …(1)となる。ここでC11は浮遊拡
散層11の基板に対する静電容量と浮遊拡散層11に接
続されている配線容量の和である。
[Equation 1] ΔVSIH=Q/C11

...(1). Here, C11 is the sum of the capacitance of the floating diffusion layer 11 with respect to the substrate and the capacitance of the wiring connected to the floating diffusion layer 11.

【0006】次に、低感度の場合は、図1(d)に示す
ように感度切り替え用のスイッチング信号SEL1をハ
イレベルにし第二のMOSトランジスタを開いて浮遊拡
散層11と12を導通させる。この時、感度切り替え用
のスイッチング信号SEL2をローレベルとする。信号
電荷量Qによる浮遊拡散層11と12の電位変化ΔVS
ILは、
Next, in the case of low sensitivity, as shown in FIG. 1(d), the switching signal SEL1 for switching the sensitivity is set to a high level to open the second MOS transistor and make the floating diffusion layers 11 and 12 conductive. At this time, the switching signal SEL2 for sensitivity switching is set to low level. Potential change ΔVS of floating diffusion layers 11 and 12 due to signal charge amount Q
IL is

【0007】[0007]

【数2】     ΔVSIL=Q/(C11+C12)    
                         
   …(2)となる。ここでC11は前述と同じで、
C12は浮遊拡散層12の基板に対する静電容量と隣接
するゲートに対する静電容量の和である。
[Equation 2] ΔVSIL=Q/(C11+C12)

...(2). Here, C11 is the same as above,
C12 is the sum of the capacitance of the floating diffusion layer 12 to the substrate and the capacitance to the adjacent gate.

【0008】このように従来例では、感度切り替え信号
SEL1,SEL2によって電荷電圧変換を行う浮遊拡
散層の実質的な容量を変化させることにより、信号電荷
量が少ない場合には感度が高く、また信号電荷量が多い
場合には感度を落としてダイナミックレンジを大きくと
っていた。
In this way, in the conventional example, by changing the substantial capacitance of the floating diffusion layer that performs charge-voltage conversion using the sensitivity switching signals SEL1 and SEL2, the sensitivity is high when the amount of signal charge is small, and the sensitivity is high when the amount of signal charge is small. When the amount of charge is large, the sensitivity is lowered to increase the dynamic range.

【0009】[0009]

【発明が解決しようとする課題】しかし、信号電荷量が
少ない場合と信号電荷量が多い場合で感度の切り替えが
必要であるため、回路が複雑になってしまうという問題
については考慮されていなかった。
[Problem to be solved by the invention] However, the problem that the circuit becomes complicated because it is necessary to switch the sensitivity when the amount of signal charge is small and when the amount of signal charge is large was not considered. .

【0010】本発明の目的は、この問題点を対策し、感
度の切り替えスイッチをなくすることにある。
An object of the present invention is to solve this problem and eliminate the need for a sensitivity changeover switch.

【0011】[0011]

【課題を解決するための手段】上記目的は、浮遊拡散層
のポテンシャル分布を階段状とすることにより達成され
る。
[Means for Solving the Problems] The above object is achieved by making the potential distribution of the floating diffusion layer step-like.

【0012】0012

【作用】浮遊拡散層のポテンシャル分布を階段状とする
ことにより達成される。これにより、信号電荷量の増加
にともない浮遊拡散層の実質的な容量を自動的に増加さ
せることができるので、感度切り替えスイッチを不要に
することができる。
[Operation] This is achieved by making the potential distribution of the floating diffusion layer step-like. As a result, the substantial capacitance of the floating diffusion layer can be automatically increased as the amount of signal charge increases, making it possible to eliminate the need for a sensitivity changeover switch.

【0013】[0013]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は本発明を適用した出力回路の平面図、A−A
′断面図及び電位分布を示したものである。本実施例が
図2に示す従来例と異なるところは、感度切り替え用ゲ
ート電極をなくし、リセットドレイン電圧:VRDより
低い電圧で空乏化するようなN型層120を新たに設け
たところである。これにより、信号電荷量が少なく高感
度を得ようとする場合には、図1(c)に示すように信
号電荷Qは容量の小さい浮遊拡散層11に蓄積される。 次に信号電荷量が多くダイナミックレンジが必要な場合
には、図1(d)に示すように信号電荷Q′は浮遊拡散
層11及び120に蓄積され、浮遊拡散層の容量を大き
くすることができる。このように本実施例では、感度切
り替えゲート電極を設けることなく電荷電圧変換を行う
浮遊拡散層の実質的な容量を信号電荷量の増加にともな
って増やすことができるので、信号電荷量が少ない場合
には感度を高くまた信号電荷量が多い場合にはダイナミ
ックレンジを大きくとることができる。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of an output circuit to which the present invention is applied, A-A
' This shows a cross-sectional view and potential distribution. This embodiment differs from the conventional example shown in FIG. 2 in that the gate electrode for sensitivity switching is eliminated, and an N-type layer 120 that is depleted at a voltage lower than the reset drain voltage: VRD is newly provided. As a result, when high sensitivity is to be obtained with a small amount of signal charge, the signal charge Q is accumulated in the floating diffusion layer 11 having a small capacitance, as shown in FIG. 1(c). Next, when the amount of signal charge is large and a dynamic range is required, the signal charge Q' is accumulated in the floating diffusion layers 11 and 120 as shown in FIG. 1(d), making it possible to increase the capacitance of the floating diffusion layer. can. In this way, in this embodiment, the effective capacity of the floating diffusion layer that performs charge-voltage conversion can be increased as the amount of signal charge increases without providing a sensitivity switching gate electrode, so when the amount of signal charge is small, It has high sensitivity and can provide a large dynamic range when the amount of signal charge is large.

【0014】本発明の第二の実施例の出力回路の平面図
及びA−A′断面図を示したものを図3に、また図3の
A−A′断面の電位分布を示したものを図4に示す。本
実施例が図1に示す実施例と異なるところは、一つには
浮遊拡散層123,26,27上に一定の電位に固定さ
れた電極30,31,32を新たに設けたところである
。これにより、基板側の構造を変えることなく絶縁膜3
3,34,35の厚さを変えることで浮遊拡散層123
,26,27の容量を自由に設定することができる。 もう一つは、リセットドレイン電圧:VRDより低い電
圧で空乏化するようなN型層26,27を複数設けたこ
とである。ここで、N型層27はN型層26より低い電
圧で空乏化するものとする。これにより、信号電荷量が
少なく高感度を得ようとする場合には、図4(a)に示
すように信号電荷QA1は容量の小さい浮遊拡散層12
3に蓄積される。信号電荷量が増加しダイナミックレン
ジが必要となってきた場合には、図4(b)に示すよう
に信号電荷QA2は浮遊拡散層123及び26に蓄積さ
れ、浮遊拡散層の容量を大きくできる。さらに信号電荷
量が増えダイナミックレンジが必要な場合には、図4(
c)に示すように信号電荷QA3は浮遊拡散層123,
26及び27に蓄積され、浮遊拡散層の容量をさらに大
きくできる。これにより、信号電荷量に応じて浮遊拡散
層の容量をよりきめ細やかに設定することができる。な
お、ウェル構造21,22は撮像素子特性改善のために
設けたものであり詳細については省略する。
FIG. 3 shows a plan view and an A-A' cross-sectional view of the output circuit of the second embodiment of the present invention, and a diagram showing the potential distribution of the A-A' cross-section in FIG. Shown in Figure 4. One difference between this embodiment and the embodiment shown in FIG. 1 is that electrodes 30, 31, and 32 fixed at constant potentials are newly provided on floating diffusion layers 123, 26, and 27. This allows the insulating film 3 to be removed without changing the structure on the substrate side.
By changing the thickness of 3, 34, and 35, the floating diffusion layer 123
, 26, and 27 can be freely set. Another reason is that a plurality of N-type layers 26 and 27 are provided, which are depleted at a voltage lower than the reset drain voltage: VRD. Here, it is assumed that the N-type layer 27 is depleted at a lower voltage than the N-type layer 26. As a result, when trying to obtain high sensitivity with a small amount of signal charge, the signal charge QA1 is transferred to the floating diffusion layer 12 with a small capacitance, as shown in FIG. 4(a).
It is accumulated in 3. When the amount of signal charges increases and a dynamic range becomes necessary, the signal charges QA2 are accumulated in the floating diffusion layers 123 and 26, as shown in FIG. 4(b), and the capacitance of the floating diffusion layers can be increased. If the amount of signal charge increases further and a dynamic range is required, use the method shown in Figure 4 (
As shown in c), the signal charge QA3 is transferred to the floating diffusion layer 123,
26 and 27, and the capacitance of the floating diffusion layer can be further increased. Thereby, the capacitance of the floating diffusion layer can be set more precisely according to the amount of signal charge. It should be noted that the well structures 21 and 22 are provided to improve the characteristics of the image sensor, and the details thereof will be omitted.

【0015】本発明の第五の実施例の出力回路の平面図
及びA−A′断面図を示したものを図9に、また図9の
A−A′断面の電位分布を示したものを図10に示す。 本実施例が図3及び図4に示す実施例と異なるところは
、リセットドレイン電圧:VRDより低い電圧で空乏化
するようなN型層26の幅を変えたところである。横方
向拡散の影響により、N型領域26−1よりN型領域2
6−2の方が不純物濃度が薄くなるため、N型領域26
−1よりN型領域26−2の方が低い電圧で空乏化する
。これにより一種類のN型層26用いても、図10に示
すように図4と同様の電位分布を実現することができる
。なおN型層の幅を滑らかに変えても同様の効果がある
FIG. 9 shows a plan view and an A-A' cross-sectional view of the output circuit of the fifth embodiment of the present invention, and a diagram showing the potential distribution of the A-A' cross-section in FIG. It is shown in FIG. This embodiment differs from the embodiments shown in FIGS. 3 and 4 in that the width of the N-type layer 26 is changed so that it is depleted at a voltage lower than the reset drain voltage: VRD. Due to the influence of lateral diffusion, the N-type region 26-1 is larger than the N-type region 26-1.
6-2 has a lower impurity concentration, so the N-type region 26
-1, the N-type region 26-2 is depleted at a lower voltage. As a result, even if one type of N-type layer 26 is used, a potential distribution similar to that shown in FIG. 4 can be realized as shown in FIG. 10. Note that the same effect can be obtained even if the width of the N-type layer is smoothly changed.

【0016】本発明の第三の実施例の出力回路の断面図
を示したものを図5に示す。本実施例が図3に示す実施
例と異なるところは、浮遊拡散層123,26,27上
に例えば100nm程度の絶縁膜42を介して電気的に
フローティングな、例えば、多結晶Siからなる電極8
1,82,83を設けたところである。これにより基板
内の電位分布をよりしっかりと規定でき、電位のポケッ
トの発生を防ぐことができる。
FIG. 5 shows a sectional view of an output circuit according to a third embodiment of the present invention. The difference between this embodiment and the embodiment shown in FIG. 3 is that an electrically floating electrode 8 made of, for example, polycrystalline Si is provided on the floating diffusion layers 123, 26, 27 via an insulating film 42 of about 100 nm.
1, 82, and 83 have been installed. This allows the potential distribution within the substrate to be defined more firmly and prevents potential pockets from occurring.

【0017】本発明の第四の実施例の出力回路の断面図
を示したものを図6に示す。本実施例が図3に示す実施
例と異なるところは、階段状の電位分布をつくるために
濃いP型拡散層113,114,115を用いて行った
ところである。これによりSi−SiO2 界面の空乏
化を防ぎ、界面トラップにより発生する1/f雑音を抑
圧することができる。なお、117は信号電荷の転送が
滑らかに行われるように設けられたN型層、112は絶
縁膜、116は一定電位に固定された電極、113,1
14,115は電気的にフローティングである。
FIG. 6 shows a sectional view of an output circuit according to a fourth embodiment of the present invention. This embodiment differs from the embodiment shown in FIG. 3 in that dense P-type diffusion layers 113, 114, and 115 are used to create a stepped potential distribution. This prevents depletion of the Si--SiO2 interface and suppresses 1/f noise generated by interface traps. Note that 117 is an N-type layer provided to ensure smooth transfer of signal charges, 112 is an insulating film, 116 is an electrode fixed at a constant potential, 113, 1
14 and 115 are electrically floating.

【0018】本発明はフローティングウェル型電荷検出
器にももちろん適用することができる。図7は、従来の
フローティングウェル型電荷検出器の断面図を示したも
のである。なお、この素子については、大沢他、TV学
会全国大会2−12(1988)、「CCD用高感度電
荷検出器」、において述べられている。従来のフローテ
ィングウェル型電荷検出器は、この図に示すように、N
型基板20上にP型ウェル層41が形成され、P型ウェ
ル層41内にN型CCDチャンネル層103が形成され
ている。出力回路の電荷検出トランジスタのゲート電極
105は、大きさ5μm×5μmで酸化膜106の膜厚
1μm、FPP(Flat Potential Pl
ate)104下の酸化膜42の膜厚は93nmとなっ
ている。なお、FPP104は電気的にフローティング
な多結晶Siゲートである。また、電荷転送チャンネル
103の下にPチャンネル43を形成するためボロンイ
オン打ち込みをしている。従来例における信号電荷検出
は、出力回路の電荷検出トランジスタのゲート電極10
5下に転送されてきた信号電荷102がソース100か
らドレイン44へ流れる正孔電流101を変調すること
により行われる。
The present invention can of course also be applied to floating well type charge detectors. FIG. 7 shows a cross-sectional view of a conventional floating well type charge detector. This element is described in Osawa et al., TV Society National Conference 2-12 (1988), "High Sensitive Charge Detector for CCD." A conventional floating well type charge detector, as shown in this figure, has N
A P-type well layer 41 is formed on the type substrate 20, and an N-type CCD channel layer 103 is formed within the P-type well layer 41. The gate electrode 105 of the charge detection transistor of the output circuit has a size of 5 μm×5 μm, an oxide film 106 of 1 μm thickness, and an FPP (Flat Potential Pl).
The thickness of the oxide film 42 under the oxide film 104 is 93 nm. Note that the FPP 104 is an electrically floating polycrystalline Si gate. Further, boron ions are implanted to form a P channel 43 under the charge transfer channel 103. In the conventional example, signal charge detection is performed using the gate electrode 10 of the charge detection transistor of the output circuit.
This is done by modulating the hole current 101 flowing from the source 100 to the drain 44 by the signal charge 102 transferred below the source 100.

【0019】このように従来例によれば正孔電流101
がSi−SiO2 界面45を流れないため、界面トラ
ップにより発生する1/f雑音を含まない。また、ゲー
ト酸化膜106の膜厚を1μmと厚くすることにより検
出容量を小さくし高感度化を実現している。しかし、飽
和電荷量が2000電子数と小さく、従ってダイナミッ
クレンジが小さいという点については考慮されていなか
った。
As described above, according to the conventional example, the hole current 101
does not flow through the Si-SiO2 interface 45, and therefore does not include 1/f noise generated by interface traps. Furthermore, by increasing the thickness of the gate oxide film 106 to 1 μm, the detection capacitance is reduced and high sensitivity is achieved. However, no consideration was given to the fact that the saturated charge amount is as small as 2000 electrons, and therefore the dynamic range is small.

【0020】図8は、従来のフローティングウェル型電
荷検出器における電荷の転送方向の断面図を示したもの
である。信号電荷102はCCDの最終ゲート電極47
を経て、出力回路の電荷検出トランジスタのゲート電極
105下に転送され、ソース100からドレイン44へ
流れる正孔電流101を変調する。そして、リセットゲ
ート48下を通り、リセットドレイン108に排出され
る。
FIG. 8 shows a cross-sectional view of a conventional floating well type charge detector in the charge transfer direction. The signal charge 102 is connected to the final gate electrode 47 of the CCD.
The hole current 101 is transferred to the gate electrode 105 of the charge detection transistor of the output circuit, and modulates the hole current 101 flowing from the source 100 to the drain 44 . Then, it passes under the reset gate 48 and is discharged to the reset drain 108.

【0021】図8に示した従来のフローティングウェル
型電荷検出器にも、図5,図6に示す本発明の実施例を
全く同様に適用することができる。
The embodiments of the present invention shown in FIGS. 5 and 6 can be applied to the conventional floating well type charge detector shown in FIG. 8 in exactly the same manner.

【0022】[0022]

【発明の効果】本発明によれば、浮遊拡散層のポテンシ
ャル分布を階段状とすることにより、信号電荷量の増加
にともない浮遊拡散層の実質的な容量を増加させること
ができるので、感度切り替えスイッチを不要にすること
ができる。
Effects of the Invention According to the present invention, by making the potential distribution of the floating diffusion layer step-like, the effective capacitance of the floating diffusion layer can be increased as the amount of signal charge increases. Switches can be made unnecessary.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第一の実施例の出力回路の平面図、A
−A′断面図及び電位分布図。
FIG. 1 is a plan view of an output circuit according to a first embodiment of the present invention, A
-A' cross-sectional view and potential distribution diagram.

【図2】従来例の出力回路の平面図、A−A′断面図及
び電位分布図。
FIG. 2 is a plan view, an A-A' sectional view, and a potential distribution diagram of a conventional output circuit.

【図3】本発明の第二の実施例の出力回路の平面図及び
A−A′断面図。
FIG. 3 is a plan view and a sectional view taken along line AA' of an output circuit according to a second embodiment of the present invention.

【図4】本発明の第二の実施例の出力回路の電位分布図
FIG. 4 is a potential distribution diagram of an output circuit according to a second embodiment of the present invention.

【図5】本発明の第三の実施例の出力回路の断面図。FIG. 5 is a sectional view of an output circuit according to a third embodiment of the present invention.

【図6】本発明の第四の実施例の出力回路の断面図。FIG. 6 is a sectional view of an output circuit according to a fourth embodiment of the present invention.

【図7】従来例の出力回路の断面図。FIG. 7 is a cross-sectional view of a conventional output circuit.

【図8】従来例の出力回路の断面図。FIG. 8 is a cross-sectional view of a conventional output circuit.

【図9】本発明の第五の実施例の出力回路の平面図及び
A−A′断面図。
FIG. 9 is a plan view and a sectional view taken along line A-A' of an output circuit according to a fifth embodiment of the present invention.

【図10】本発明の第五の実施例の出力回路の電位分布
図。
FIG. 10 is a potential distribution diagram of an output circuit according to a fifth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11,12,123…浮遊拡散層、26,27,120
…リセットドレイン電圧より低い電圧で空乏化するN型
層、30〜32,105,116…一定電位に固定され
た電極、33〜35,106,112…層間絶縁膜。
11, 12, 123... floating diffusion layer, 26, 27, 120
...N-type layer depleted at a voltage lower than the reset drain voltage, 30-32, 105, 116... Electrode fixed at a constant potential, 33-35, 106, 112... Interlayer insulating film.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体基体上に形成された信号電荷の転送
を行う転送素子および前記信号電荷を電圧に変換して取
り出す出力回路からなる電荷結合装置において、前記出
力回路は前記信号電荷の保持領域をもち、前記信号電荷
の保持領域の電位分布が階段状となっていることを特徴
とする電荷結合装置。
1. A charge coupling device comprising a transfer element formed on a semiconductor substrate that transfers signal charges and an output circuit that converts the signal charges into voltage and takes out the signal charges, wherein the output circuit is located in the signal charge holding area. A charge-coupled device characterized in that the potential distribution of the signal charge holding region is step-like.
【請求項2】半導体基体上に形成された信号電荷の転送
を行う転送素子および前記信号電荷を電圧に変換して取
り出す出力回路からなる電荷結合装置において、前記出
力回路は前記信号電荷の保持領域と前記信号電荷を捨て
去るリセットトランジスタをもち、前記信号電荷の保持
領域の幅が前記リセットトランジスタから離れるほど狭
くなっていることを特徴とする電荷結合装置。
2. A charge coupling device comprising a transfer element formed on a semiconductor substrate that transfers signal charges and an output circuit that converts the signal charges into voltage and takes out the signal charges, wherein the output circuit includes a storage area for the signal charges. and a reset transistor for discarding the signal charge, and the width of the signal charge holding region becomes narrower as the distance from the reset transistor increases.
【請求項3】請求項1において、前記信号電荷の保持領
域は前記信号電荷の保持を行う前記信号電荷と同導電型
の不純物領域をもち、前記不純物領域は不純物濃度の異
なる複数の領域からなる電荷結合装置。
3. In claim 1, the signal charge holding region has an impurity region of the same conductivity type as the signal charge that holds the signal charge, and the impurity region is composed of a plurality of regions having different impurity concentrations. Charge coupled device.
【請求項4】請求項3において、前記不純物濃度の異な
る複数の領域上それぞれに異なる膜厚を持つ絶縁膜を介
して一定電位に固定された電極を設けた電荷結合装置。
4. The charge-coupled device according to claim 3, wherein electrodes fixed to a constant potential are provided on the plurality of regions having different impurity concentrations via insulating films having different thicknesses.
JP3145791A 1991-06-18 1991-06-18 Charge coupled device Pending JPH04369230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3145791A JPH04369230A (en) 1991-06-18 1991-06-18 Charge coupled device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3145791A JPH04369230A (en) 1991-06-18 1991-06-18 Charge coupled device

Publications (1)

Publication Number Publication Date
JPH04369230A true JPH04369230A (en) 1992-12-22

Family

ID=15393245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3145791A Pending JPH04369230A (en) 1991-06-18 1991-06-18 Charge coupled device

Country Status (1)

Country Link
JP (1) JPH04369230A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292277A (en) * 2000-02-29 2001-10-19 Agfa Gevaert Nv Light stimulated phosphor reader
KR100423349B1 (en) * 2000-10-05 2004-03-18 혼다 기켄 고교 가부시키가이샤 Image sensor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001292277A (en) * 2000-02-29 2001-10-19 Agfa Gevaert Nv Light stimulated phosphor reader
KR100423349B1 (en) * 2000-10-05 2004-03-18 혼다 기켄 고교 가부시키가이샤 Image sensor

Similar Documents

Publication Publication Date Title
US6023293A (en) Active type solid-state imaging device
KR100192954B1 (en) Image pick-up device with a vertical transmission gate
US11437416B2 (en) Pixel device layout to reduce pixel noise
JPS59108461A (en) Solid-state image pickup device
US5477070A (en) Drive transistor for CCD-type image sensor
US5712498A (en) Charge modulation device
US4616249A (en) Solid state image pick-up element of static induction transistor type
JP2832136B2 (en) Solid-state imaging device and manufacturing method thereof
US6489658B2 (en) MOS-transistor for a photo cell
CN116435323A (en) CMOS image sensor and method of forming the same
WO1988002186A1 (en) Output circuit for image sensor
JP3621273B2 (en) Solid-state imaging device and manufacturing method thereof
JPH04369230A (en) Charge coupled device
JPH0352218B2 (en)
JP3648518B2 (en) Solid-state imaging device
JPH05315587A (en) Semiconductor device
US5005062A (en) Image sensor device of the frame transfer type
JP3105781B2 (en) Solid-state imaging device
KR100204914B1 (en) Signal pick-up device for solid-state image sensor
US5461247A (en) Load resistance structure for source follower in charge transfer device
JP3578611B2 (en) Solid-state imaging device
JPH0465133A (en) Charge coupled device
JP2003347537A (en) Solid-state image pickup element
JP2885296B2 (en) Charge transfer element
JPS61123171A (en) Solid-state image pickup device