JPH04367218A - Formation method for low-resistance semiconductor film - Google Patents

Formation method for low-resistance semiconductor film

Info

Publication number
JPH04367218A
JPH04367218A JP14329291A JP14329291A JPH04367218A JP H04367218 A JPH04367218 A JP H04367218A JP 14329291 A JP14329291 A JP 14329291A JP 14329291 A JP14329291 A JP 14329291A JP H04367218 A JPH04367218 A JP H04367218A
Authority
JP
Japan
Prior art keywords
polycrystalline
film
low
region
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14329291A
Other languages
Japanese (ja)
Inventor
Toshiaki Aeba
利明 饗場
Masakazu Morishita
正和 森下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14329291A priority Critical patent/JPH04367218A/en
Priority to CA 2071192 priority patent/CA2071192C/en
Priority to EP19920109956 priority patent/EP0518377A3/en
Publication of JPH04367218A publication Critical patent/JPH04367218A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a polycrystallatine low-resistance film having a large particle size and oriented grain boundaries. CONSTITUTION:An SiO2 film 2 as an insulator in a thickness of 4000Angstrom is first deposited on an Si substrate 1. The SiO2 film 2 is then resist-patterned; it is etched by a chemical etchant, e.g. buffered hydrofluoric acid or the like; a stepped part 3 at a difference in height of 2000Angstrom is formed. A polycrystalline Si film 4 in a film thickness of 2000Angstrom is formed, by a low-pressure chemical vapor deposition method (LPCVD), on the SiO2 film 2 having the stepped part 3. In addition, As ions are implanted into the whole surface of the polycrystalline Si film 4 under conditions of 5E 15 pieces/cm<2> and 150keV. Thereby, parts 5 other than a part near the edge part of the stepped part 3 are made amorphous, and a polycrystalline region 6 is left near the edge part. Lastly, this specimen is annealed at 650 deg.C for one hour. Thereby, a low- resistance Si film is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はいわゆる再結晶法による
低抵抗半導体膜形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a low resistance semiconductor film by a so-called recrystallization method.

【0002】0002

【従来の技術】LSIなどの電子デバイスのスピード応
答性は、抵抗(R)と浮遊キャパシタンス(C)の積(
RC)で一般的に決定される。
[Prior Art] The speed response of electronic devices such as LSI is determined by the product of resistance (R) and stray capacitance (C).
RC) is generally determined.

【0003】しかしながら、単なる多結晶膜に原子を導
入(拡散)しただけでは、粒径が小さいために多数の粒
界が生じ、それが電位障壁となりキャリアの移動度が低
下したり、また粒径が小さいために多数の粒界が生じ、
粒界部に原子が析出して活性キャリアが減少するために
高抵抗化するといった問題が生じてしまう。
However, if atoms are simply introduced (diffused) into a polycrystalline film, many grain boundaries will occur due to the small grain size, which will act as a potential barrier and reduce the mobility of carriers. is small, many grain boundaries occur,
A problem arises in that atoms precipitate at grain boundaries and active carriers decrease, resulting in high resistance.

【0004】これらの問題を解決するために、従来、絶
縁物、例えばSiO2膜上にSi多結晶膜を形成させる
場合、その一方法として、SiO2膜上に多結晶Si膜
を形成させ、この多結晶Si膜全面にAsイオンなどの
不純物をイオン注入し、厚みの一部がアモルファス化し
た領域を形成し、その後熱処理を行い全厚みに不純物を
熱拡散させ多結晶膜を形成するという方法が採られてい
た。
In order to solve these problems, conventionally, when forming a polycrystalline Si film on an insulator such as a SiO2 film, one method is to form a polycrystalline Si film on the SiO2 film and A method is adopted in which impurities such as As ions are implanted into the entire surface of the crystalline Si film to form a region in which part of the thickness is amorphous, and then heat treatment is performed to thermally diffuse the impurities throughout the entire thickness to form a polycrystalline film. It was getting worse.

【0005】また、他の方法としては、Si基板上の一
部を残してSiO2膜を形成させ、この上にアモルファ
スSi膜を形成後、熱処理を行なうことにより、Si基
板から横方向に固相成長させるという方法が採られてい
た。
Another method is to form a SiO2 film on a portion of the Si substrate, form an amorphous Si film thereon, and then perform heat treatment to form a solid phase laterally from the Si substrate. The method of growth was adopted.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、かかる
従来の方法においては、Si結晶粒をアモルファス化し
た厚みと同程度の大きさ(〜1000Å)までしか成長
させることができず、低抵抗の良質なSi膜を形成させ
ることができなかった。
[Problems to be Solved by the Invention] However, with such conventional methods, Si crystal grains can only be grown to a size (~1000 Å) that is approximately the same as the thickness of amorphous Si crystal grains. It was not possible to form a Si film.

【0007】また、かかる従来の方法においては、必ず
Si基板を用いねばならず、アモルファスなどの他の基
板を用いることができないという不都合があった。
[0007] Furthermore, in such conventional methods, a Si substrate must be used, and other substrates such as amorphous cannot be used.

【0008】本発明の目的は、粒径が大きくかつ粒界の
方向の揃った結晶粒を有する多結晶低抵抗半導体膜を形
成する方法を提供することにある。
An object of the present invention is to provide a method for forming a polycrystalline low-resistance semiconductor film having crystal grains with large grain sizes and aligned grain boundaries.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する本発
明の低抵抗多結晶膜の形成方法は、下地材料上に多結晶
半導体膜を形成させ、次に、該多結晶半導体膜の一部に
電気的活性種となる不純物をイオン注入することによっ
て、全厚みにわたって前記多結晶半導体膜をアモルファ
ス化された領域とアモルファス化されずに多結晶部分を
残した多結晶領域とを形成させ、その後、熱処理を行な
うことによって前記多結晶領域を核として再結晶させる
ことを特徴とする。
[Means for Solving the Problems] A method for forming a low-resistance polycrystalline film of the present invention that solves the above-mentioned problems includes forming a polycrystalline semiconductor film on a base material, and then forming a part of the polycrystalline semiconductor film. By ion-implanting impurities that serve as electrically active species into the polycrystalline semiconductor film, an amorphous region and a polycrystalline region in which a polycrystalline portion remains without being amorphous are formed throughout the entire thickness of the polycrystalline semiconductor film, and then The method is characterized in that the polycrystalline region is recrystallized by using the polycrystalline region as a nucleus by performing heat treatment.

【0010】多結晶領域を残す方法としては、絶縁物上
に段差を形成した後、多結晶膜を形成し、多結晶膜の全
面に不純物をイオン注入することによってアモルファス
化し、その一部に多結晶部分をシードとして残す方法な
どが挙げられる。
A method for leaving a polycrystalline region is to form a step on an insulator, form a polycrystalline film, and implant impurity ions into the entire surface of the polycrystalline film to make it amorphous. Examples include a method of leaving the crystal part as a seed.

【0011】このような多結晶領域は、下地材料の前記
段差下部にのみ存在するように形成するのが特に好まし
い。
[0011] It is particularly preferable that such a polycrystalline region is formed so that it exists only under the step of the underlying material.

【0012】図3および図4はポリSiのシート抵抗と
アニール温度との関係を示すグラフであり、図3はドー
プイオン種がAsの時の、図4はドープイオン種がPの
時のグラフである。図3、図4から明らかなように、ド
ープイオン種がAsの場合は650℃で、Pの場合は6
00℃で低抵抗化している。プロセスとして低温化する
ことが望ましいので、本発明における熱処理の温度とし
ては、600〜650℃が好ましい。
3 and 4 are graphs showing the relationship between the sheet resistance of poly-Si and the annealing temperature. FIG. 3 is a graph when the doped ion species is As, and FIG. 4 is a graph when the doped ion species is P. It is. As is clear from Figures 3 and 4, the temperature is 650°C when the doped ion species is As, and 650°C when the doped ion species is P.
The resistance becomes low at 00°C. Since it is desirable to lower the temperature of the process, the temperature of the heat treatment in the present invention is preferably 600 to 650°C.

【0013】[0013]

【作用】本発明においては、絶縁物との界面までアモル
ファス化することにより該界面での核形成確率が低下す
るため、再結晶時に多結晶Siの残った多結晶領域を核
として横方向に結晶成長する。ここで、結晶が横方向に
成長するために、成長速度の大きい方向に結晶粒が成長
し、粒径が大きくかつ粒界の方向の揃った結晶粒を形成
できるため、得られる半導体膜は低抵抗となる。
[Operation] In the present invention, by making the interface with the insulator amorphous, the probability of nucleation at the interface is reduced, so that during recrystallization, polycrystalline Si remains laterally crystallized using the remaining polycrystalline region as a nucleus. grow up. Here, since crystals grow laterally, crystal grains grow in the direction of higher growth rate, forming crystal grains with large grain sizes and uniform grain boundaries, resulting in a semiconductor film with low It becomes resistance.

【0014】[0014]

【実施例】【Example】

実施例1 以下、図1(a)〜(d)を参照して、低抵抗半導体膜
を形成する方法について説明する。
Example 1 Hereinafter, a method for forming a low resistance semiconductor film will be described with reference to FIGS. 1(a) to 1(d).

【0015】先ず、図1(a)に示すように、Si基板
1上に絶縁物としてSiO2膜2を4000Åの厚さで
堆積させた。次に、図1(b)に示すように、SiO2
膜2をレジストパターニングし、4.5%バッファード
フッ酸を含む化学エッチング液によって、温度22℃、
エッチング速度500Å/分でエッチングし、高低差2
000Åの段差3を形成させた。次に、図1(c) に
示すように、この段差3を有するSiO2膜2上に、膜
厚2000Åの多結晶Si膜4を下記条件で減圧化学堆
積法(LPCVD)によって形成させた。
First, as shown in FIG. 1(a), a SiO2 film 2 was deposited as an insulator on a Si substrate 1 to a thickness of 4000 Å. Next, as shown in FIG. 1(b), SiO2
The film 2 was patterned with a resist and etched at a temperature of 22°C using a chemical etching solution containing 4.5% buffered hydrofluoric acid.
Etched at an etching rate of 500 Å/min, with a height difference of 2
A step 3 of 000 Å was formed. Next, as shown in FIG. 1C, a polycrystalline Si film 4 having a thickness of 2000 Å was formed on the SiO2 film 2 having the steps 3 by low pressure chemical deposition (LPCVD) under the following conditions.

【0016】SiH4:50sccm,圧力:0.3T
orr,温度:620℃、堆積速度:100Å/分更に
図1(d) に示すように多結晶Si膜4の全面にAs
イオンをドーズ量5E15個/cm2、加速電圧150
keVの条件で注入することにより、段差部のエッジ部
近傍以外の部分5がアモルファス化され、エッジ部近傍
には多結晶領域6が残った。最後に、この試料を650
℃、1時間アニールした。
[0016] SiH4: 50sccm, pressure: 0.3T
orr, temperature: 620°C, deposition rate: 100 Å/min, and As shown in FIG.
Ion dose: 5E15/cm2, acceleration voltage: 150
By implanting under keV conditions, the portion 5 other than the vicinity of the edge of the stepped portion was made amorphous, and a polycrystalline region 6 remained in the vicinity of the edge. Finally, this sample was
C. for 1 hour.

【0017】このようにして作製した試料の平面を透過
型電子顕微鏡により観察したところ、多結晶領域6を核
として横方向に固相成長が進み、大粒径かつ粒界の方向
の揃った結晶粒を有する低抵抗Si膜が形成された。ま
た、この試料のシート抵抗は55Ω・cmであった。
When the plane of the sample prepared in this manner was observed using a transmission electron microscope, it was found that solid phase growth progressed in the lateral direction with the polycrystalline region 6 as the nucleus, resulting in crystals with large grain size and uniform grain boundary direction. A low resistance Si film with grains was formed. Further, the sheet resistance of this sample was 55 Ω·cm.

【0018】これに対してイオン注入の条件をドーズ量
5E15個/cm2、加速電圧70keVに代え、表面
の1200Åのみをアモルファス化した場合、シート抵
抗は650Ω・cmとなり、ポリSiのかわりにアモル
ファスSiを用いた場合は90Ω・cmとなり、本発明
の方法により形成されたシートの抵抗が低くなっている
ことがわかる。
On the other hand, when the ion implantation conditions are changed to a dose of 5E15/cm2 and an acceleration voltage of 70 keV, and only 1200 Å of the surface is made amorphous, the sheet resistance becomes 650 Ω·cm, and amorphous Si is used instead of poly-Si. When using the method of the present invention, the resistance was 90 Ω·cm, which shows that the resistance of the sheet formed by the method of the present invention is low.

【0019】実施例2 図2に示す集積回路を常法により作製した。図2におい
て、21はp型基板、22はn+層のコレクタ、23は
n層、24はp層のベース、25はn+層のエミッタで
ある。26は多結晶Si配線であり、本発明の方法によ
り作製した。27、28はSiO2膜、29、30はA
l膜であり、それぞれコレクタ電極、ベース電極である
Example 2 The integrated circuit shown in FIG. 2 was fabricated by a conventional method. In FIG. 2, 21 is a p-type substrate, 22 is the collector of the n+ layer, 23 is the n layer, 24 is the base of the p layer, and 25 is the emitter of the n+ layer. 26 is a polycrystalline Si wiring, which was manufactured by the method of the present invention. 27 and 28 are SiO2 films, 29 and 30 are A
1 film, and serve as a collector electrode and a base electrode, respectively.

【0020】次に、図2に示した半導体装置の製造プロ
セスについて説明する。 (1)所定の伝導形(p型あるいはn型)の基板21に
、As,Sb,P等をイオン注入(不純物拡散等でも良
い)することにより、不純物濃度が1015〜1019
[cm−3]のn+埋め込み領域22を形成する。 (2)エピタキシャル技術等により、不純物濃度が10
14〜1017[cm−3]のn領域23を形成する。 (3)コレクタの抵抗を減少させるためのn+領域40
(不純物濃度が1017〜1020[cm−3])を形
成する。 (4)素子分離用の絶縁膜27を、選択酸化法あるいは
CVD法等により作製する。 (5)活性領域中にベース領域であるp領域24をイオ
ン注入法等により形成する。 (6)絶縁膜100にエミッタコンタクトを開口した後
、減圧化学堆積法により膜厚200ÅのSi多結晶層2
6を堆積させる。 (7)Asイオンを5E15/cm2、加速電圧150
keVでイオン注入後、N2ガス中で650℃、1時間
アニールした後、パターニングする。 (8)絶縁膜28を堆積させ、これをアニールした後、
コンタクトの開口を行なう。 (9)電極29、30となるAl−Si(1%)をスパ
ッタし、その後、Al−Siのパターン化を行なう。 (10)Al−Si電極のアロイ後、パッシベーション
膜を形成する。
Next, the manufacturing process of the semiconductor device shown in FIG. 2 will be explained. (1) By ion-implanting As, Sb, P, etc. into the substrate 21 of a predetermined conductivity type (p-type or n-type) (impurity diffusion etc. is also acceptable), the impurity concentration is reduced to 1015 to 1019.
An n+ buried region 22 of [cm-3] is formed. (2) Due to epitaxial technology, etc., the impurity concentration is 10
An n region 23 of 14 to 10<17>[cm<-3>] is formed. (3) n+ region 40 to reduce collector resistance
(impurity concentration is 1017 to 1020 [cm-3]). (4) An insulating film 27 for element isolation is manufactured by a selective oxidation method, a CVD method, or the like. (5) A p region 24 serving as a base region is formed in the active region by ion implantation or the like. (6) After opening an emitter contact in the insulating film 100, a Si polycrystalline layer 2 with a thickness of 200 Å is formed using a low pressure chemical deposition method.
Deposit 6. (7) As ion 5E15/cm2, acceleration voltage 150
After ion implantation at keV, annealing is performed at 650° C. for 1 hour in N2 gas, followed by patterning. (8) After depositing the insulating film 28 and annealing it,
Open the contact. (9) Sputter Al-Si (1%) which will become the electrodes 29 and 30, and then pattern the Al-Si. (10) After alloying the Al-Si electrode, a passivation film is formed.

【0021】上記手順によりBPTが完成する。BPT is completed by the above procedure.

【0022】このようにして作製した集積回路は低抵抗
化され、スピード応答性が向上されたものである。
The integrated circuit manufactured in this manner has a low resistance and an improved speed response.

【0023】[0023]

【発明の効果】本発明の方法によれば、アモルファス化
された領域中の多結晶Si領域より横方向に結晶成長が
起こるために、成長速度の大きい方向の結晶粒のみが大
きく成長し、粒径が大きくかつ粒界の方向の揃った結晶
粒を有する低抵抗Si膜が形成される。また、本発明の
方法を集積回路の多結晶Si配線、BPTのエミッタな
どに適用すれば高性能化が可能となる。
According to the method of the present invention, since crystal growth occurs in the lateral direction from the polycrystalline Si region in the amorphous region, only the crystal grains in the direction where the growth rate is high grow large, and the grains A low-resistance Si film is formed that has crystal grains that are large in diameter and have grain boundaries aligned in the same direction. Furthermore, if the method of the present invention is applied to polycrystalline Si wiring of integrated circuits, BPT emitters, etc., high performance can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の方法の各工程の概略断面図。FIG. 1 is a schematic cross-sectional view of each step of the method of the present invention.

【図2】本発明により作製された集積回路の模式断面図
である。
FIG. 2 is a schematic cross-sectional view of an integrated circuit manufactured according to the present invention.

【図3】ドープイオン種としてAsを用いた場合のアニ
ール温度と多結晶Siのシート抵抗との関係を示すグラ
フである。
FIG. 3 is a graph showing the relationship between annealing temperature and sheet resistance of polycrystalline Si when As is used as the doping ion species.

【図4】ドープイオン種としてPを用いた場合のアニー
ル温度と多結晶Siのシート抵抗との関係を示すグラフ
である。
FIG. 4 is a graph showing the relationship between annealing temperature and sheet resistance of polycrystalline Si when P is used as the doping ion species.

【符号の説明】[Explanation of symbols]

1  Si基板 2  SiO2膜 3  段差 4  多結晶膜 5  アモルファス化領域 6  多結晶領域 1 Si substrate 2 SiO2 film 3 Steps 4 Polycrystalline film 5 Amorphous region 6 Polycrystalline region

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  下地材料上に多結晶半導体膜を形成さ
せ、該多結晶半導体膜の一部に電気的活性種となる不純
物をイオン注入することによって、全厚みにわたって前
記多結晶半導体膜をアモルファス化された領域とアモル
ファス化されずに多結晶部分を残した多結晶領域とを形
成し、熱処理を行なうことによって前記多結晶領域を核
として再結晶させることを特徴とする低抵抗半導体膜の
形成方法。
1. A polycrystalline semiconductor film is formed on a base material, and an impurity that becomes an electrically active species is ion-implanted into a part of the polycrystalline semiconductor film, thereby making the polycrystalline semiconductor film amorphous throughout its entire thickness. Formation of a low-resistance semiconductor film characterized by forming an amorphous region and a polycrystalline region in which a polycrystalline portion remains without being amorphized, and performing heat treatment to recrystallize the polycrystalline region using the polycrystalline region as a core. Method.
【請求項2】  前記多結晶領域が幅のある直線、曲線
状であることを特徴とする請求項1記載の方法。
2. The method according to claim 1, wherein the polycrystalline region has a wide straight line or curved shape.
【請求項3】  前記多結晶領域が全厚みの一部のみに
存在することを特徴とする請求項1または2記載の方法
3. A method as claimed in claim 1 or 2, characterized in that the polycrystalline regions are present over only part of the total thickness.
【請求項4】  熱処理温度が600〜650℃である
ことを特徴とする請求項1、2または3に記載の方法。
4. The method according to claim 1, wherein the heat treatment temperature is 600 to 650°C.
JP14329291A 1991-06-14 1991-06-14 Formation method for low-resistance semiconductor film Pending JPH04367218A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP14329291A JPH04367218A (en) 1991-06-14 1991-06-14 Formation method for low-resistance semiconductor film
CA 2071192 CA2071192C (en) 1991-06-14 1992-06-12 Method for forming a seed and a semiconductor film using said seed
EP19920109956 EP0518377A3 (en) 1991-06-14 1992-06-12 Method for forming a seed and a semiconductor film using said seed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14329291A JPH04367218A (en) 1991-06-14 1991-06-14 Formation method for low-resistance semiconductor film

Publications (1)

Publication Number Publication Date
JPH04367218A true JPH04367218A (en) 1992-12-18

Family

ID=15335343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14329291A Pending JPH04367218A (en) 1991-06-14 1991-06-14 Formation method for low-resistance semiconductor film

Country Status (1)

Country Link
JP (1) JPH04367218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759879A (en) * 1995-04-10 1998-06-02 Sharp Kabushiki Kaisha Method for forming polycrystalline silicon film and method for fabricating thin-film transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5759879A (en) * 1995-04-10 1998-06-02 Sharp Kabushiki Kaisha Method for forming polycrystalline silicon film and method for fabricating thin-film transistor

Similar Documents

Publication Publication Date Title
US4808546A (en) SOI process for forming a thin film transistor using solid phase epitaxy
JP3149414B2 (en) Method of fabricating a semiconductor device having a shallow junction
JP3313432B2 (en) Semiconductor device and manufacturing method thereof
JPH08293465A (en) Manufacture of semiconductor device
JP2826982B2 (en) Crystallization method and method of manufacturing thin film transistor using the same
US5382549A (en) Method of manufacturing polycrystalline silicon having columnar orientation
KR100317639B1 (en) Thin film transistor, liquid crystal display device and the method of fabricating the same
JP3023189B2 (en) Method for manufacturing semiconductor device
KR940004450B1 (en) Method of making semiconductor device
JPH04367218A (en) Formation method for low-resistance semiconductor film
JPH09139360A (en) Metal wiring formation of semiconductor element
JP3006396B2 (en) Method of forming semiconductor thin film
JP2797200B2 (en) Polycrystalline silicon electrode and method of manufacturing the same
JPS63198373A (en) Semiconductor device and its manufacture
JPS63236310A (en) Semiconductor device and manufacture thereof
JPH04336468A (en) Fabrication of thin film transistor
JP2875258B2 (en) Semiconductor device and manufacturing method thereof
JPH05190449A (en) Manufacture of semiconductor film
JPH05299348A (en) Forming method for polysrystalline silicon thin film
JPH03297148A (en) Manufacture of semiconductor device
JPH04260325A (en) Manufacture of semiconductor device
JPH04219928A (en) Manufacture of semiconductor device
JPH0536911A (en) Three-dimensional circuit element and manufacture thereof
CA2071192C (en) Method for forming a seed and a semiconductor film using said seed
JPH04291929A (en) Manufacture of semiconductor device