JPH04363004A - 電流リード - Google Patents

電流リード

Info

Publication number
JPH04363004A
JPH04363004A JP3004429A JP442991A JPH04363004A JP H04363004 A JPH04363004 A JP H04363004A JP 3004429 A JP3004429 A JP 3004429A JP 442991 A JP442991 A JP 442991A JP H04363004 A JPH04363004 A JP H04363004A
Authority
JP
Japan
Prior art keywords
current
current mode
superconducting magnet
current lead
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3004429A
Other languages
English (en)
Inventor
Takashi Yazawa
孝 矢澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3004429A priority Critical patent/JPH04363004A/ja
Priority to EP19910110187 priority patent/EP0464498A3/en
Publication of JPH04363004A publication Critical patent/JPH04363004A/ja
Priority to US08/180,800 priority patent/US5563369A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【発明の目的】
【0002】
【産業上の利用分野】本発明は、極低温に冷却された超
電導マグネットと室温にある電源とを電気的に接続し、
かつ前記超電導マグネットを永久電流モードに励磁する
かあるいは永久電流モードを消磁するために用いる電流
リードに関する。
【0003】
【従来の技術】周知のように超電導の最大の特徴は、無
損失で大電流を流すことができることであり、永久電流
モードの超電導マグネットはその代表的な応用例といえ
る。ところで、この種の超電導マグネットにおいては、
室温に置かれる電源から極低温に置かれる超電導マグネ
ットに電流を供給するため、電流リードが必要となる。   前記電流リードは、超電導マグネットを永久電流モ
ードに励磁する役割と、永久電流モードを消磁する役割
とを果たすためにのみ通電される。たとえば1日1回励
消磁する場合についてみると、電流リードに通電する時
間は数分から高々す1時間程度であり、大部分の時間を
占める非通電状態においては、電流リードが極低温への
熱負荷となる。
【0004】前記熱負荷を低減して、永久電流モードの
超電導マグネットを効率的に駆動するため、次のような
方法が採られている。一つは電流リードを着脱する手段
あり、これによって非通電時の熱侵入量を大幅に低減で
きる。他の手段は電流リードのディメンジョンの最適化
を非通電時を考慮して設計する方法である。すなわち、
非通電時の熱侵入量は、電流リード導体のA/L(A:
断面積、L:全長)に比例するので、前記A/L の値
を極力小さくすればよいことになる。そして、通電時間
中は温度上昇が安定な範囲内に収まるように、冷却用配
管内に電流リード導体を配置・貫挿し、その周辺に冷却
用ガスを強制的に流すという方式である。
【0005】
【発明が解決しようとする課題】しかし、上記した電流
リードの熱負荷低減策には次のような問題がある。先ず
電流リードを着脱する手段の場合は、着脱部への不純物
ガスの混入があると動作の信頼性が損なわれ、ときには
緊急状態において超電導マグネットを強制消磁できない
という問題があり、システムによっては適用し得ない。 また、電流リードのディメンジョンの最適化を非通電時
を考慮して設計する手段の場合は、冷却用ガスを流す配
管のバルブ開閉および強制冷却ガス流通のためのヒータ
投入など繁雑な操作を伴うことになり、励消磁操作を極
力簡便化させようとする要請に反する結果となる。
【0006】本発明は上記事情に対処してなされたもの
で、繁雑な操作など要せずに非通電時の熱負荷低減を容
易に、かつ確実に解消し得る電流リードの提供を目的と
する。
【0007】
【発明の構成】
【0008】
【課題を解決するための手段】本発明は、極低温に冷却
保持される超電導マグネットと室温にある電源とを電気
的に接続し、かつ前記超電導マグネットを永久電流モー
ドに励磁するかあるいは永久電流モードを消磁するため
に用いる電流リードであって、前記電流リードが黄銅、
白銅、リン青銅などの低純度銅で構成されていることを
特徴とする。
【0009】上記本発明に係る解決手段は、低純度銅で
電流リード導体を構成した場合、高純度銅で構成した場
合に比べて導体体積を大きく採り得ること、および熱容
量の効果により通電中における導体の温度上昇も小さい
ことに着目してなされたものである。すなわち、非通電
時の熱侵入量に影響する電流リード導体のA/L(A:
断面積、L:全長)値を極力小さくし、かつ通電時にお
ける温度上昇が安定な範囲内に収まるようにしたことを
骨子とする。
【0010】
【作用】本発明によれば、電流リードを低純度銅で構成
したことにより、超電導マグネットを永久電流モードへ
の励磁や永久電流モードからの消磁のような短時間の通
電では、定常状態よりはるかに低い安定な温度上昇に抑
え得る。つまり、非通電時の熱侵入量は、次式で与えら
れる。
【0011】式1
【0012】
【0013】ここで、λは熱伝導率、Th,Tc はそ
れぞれ高温側、低温側の温度である。低純度の銅は、高
純度の銅に較べて熱伝導率が小さいため、全長L をそ
れほど変えられないとすれば、λが小さい分だけ断面積
A を大きくしても熱侵入量は変わらない。さらにWi
edemann−Frantz則 式2
【0014】
【0015】を利用すると、低純度の銅および高純度の
銅は、λA/およびρ/Aが等しいので、定格通電時の
定常状態における温度分布が等しくなる。ところが、低
純度の銅は断面積を大きく選び得るので、熱容量も大き
くなり、超電導マグネットを永久電流モードへの励磁や
永久電流モードからの消磁のような短時間の通電では、
定常状態よりはるかに低い安定な温度上昇に抑え得る。 つまり、この場合は冷却ガスの存在を考慮する必要もな
くなり、冷却ガスに頼らずに安定な動作を呈する。
【0016】
【実施例】以下図1〜図4を参照して本発明の実施例を
説明する。
【0017】図1〜図3は、本発明に係る低純度銅から
成る電流リードをそれぞれ適用した超電導マグネット装
置の構成例を断面的に示したもので、図1の場合1a,
1b は冷却用ヘリウムガス配管2a,2b 内を貫挿
して室温にある電源(図示せず)側に一端が接続する低
純度銅から成る電流リード、3は前記低純度銅から成る
電流リード1a,1b の他端が接続する超電導マグネ
ットである。しかして、前記超電導マグネット3および
これに接続する電流リード1a,1b の他端部は、前
記電流リード1a,1b 間に接続配置された永久電流
スイッチ4とともに液体ヘリウム槽5内に配設され、さ
らに真空化される筐体6内に装着した構成を成している
。なお、図1において7は冷却用ヘリウムガス配管2a
,2b とこの冷却用ヘリウムガス配管2a,2b 内
を貫挿して室温側に導出された電流リード1a,1b 
との間を絶縁する絶縁体、8は冷却用ヘリウムガスを流
した場合、冷却用ヘリウムガス配管2a,2b を流れ
るヘリウムガス量を調節するバルブである。
【0018】図2の場合は、前記図1に図示した構成に
おいて、低純度銅から成る電流リード1a,1b を格
別に冷却用ガスで冷却しないように構成したもので、こ
の場合、室温側に導出された電流リード1a,1b は
、液体ヘリウム槽5および真空化される筐体6の導出部
においてそれぞれ絶縁体7によって絶縁されている。さ
らに、図3の場合は、前記図1に図示した構成において
、電流リード1a,1b 間に接続配置された永久電流
スイッチ4とともに液体ヘリウム槽5内に配設し、これ
を2重構成の真空化される筐体6a内に装着する一方、
液体窒素アンカー9を配設して低温側への熱侵入量を低
減する構成としたものである。
【0019】前記図3の構成において、電流リード1a
,1b として断面積89mm2 、室温端から液体窒
素アンカー9までの距離500mm 、液体窒素アンカ
ー9から超電導マグネット3までの距離を1000mm
として、前記超電導マグネット3を定格電流600Aの
永久電流モードに励磁する過程での電流リードa,1b
の各部の温度変化を求めた結果は、図4に示すごとく通
電中の最高温度も320K程度で、温度上昇の小さい安
定な電流リードとして機能していた。なお、白銅もしく
はリン青銅などで構成した電流リードを用いた場合、あ
るいは前記図1もしくは図2に図示した構成した場合も
同様の結果が認められた。
【0020】
【発明の効果】上記説明したように、本発明に係る電流
リードは、極低温にある超電導マグネットと室温にある
電源との接続において、非通電時の熱侵入を大幅に低減
でき、また通電時には冷却用ガスに頼らずに所要通電も
可能である。つまり、繁雑な操作や構造を複雑化するこ
となく、常に安定した状態で超電導マグネットとしての
機能を呈することが可能となる。
【図面の簡単な説明】
【図1】  本発明に係る電流リードの使用例を示す断
面図。
【図2】  本発明に係る電流リードの他の使用例を示
す断面図。
【図3】  本発明に係る電流リードの他の使用例を示
す断面図。
【図4】  本発明に係る電流リードを用いた超電導マ
グネット装置の駆動における電流リード各部の温度変化
例を示す曲線図。
【符号の説明】
1a,1b …低純度銅製電流リード    2a,2
b …冷却用ヘリウムガス配管 3…超電導マグネット    4…永久電流スイッチ 
   5…液体ヘリウム槽 6,6a…真空化可能な筐体    7…絶縁体   
 8…バルブ 9…液体窒素アンカー

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】  極低温に冷却保持される超電導マグネ
    ットと室温にある電源とを電気的に接続し、かつ前記超
    電導マグネットを永久電流モードに励磁するかあるいは
    永久電流モードを消磁するために用いる電流リードであ
    って、前記電流リードが黄銅、白銅、リン青銅などの低
    純度銅で構成されていることを特徴とする電流リード。
JP3004429A 1990-06-22 1991-01-18 電流リード Withdrawn JPH04363004A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3004429A JPH04363004A (ja) 1991-01-18 1991-01-18 電流リード
EP19910110187 EP0464498A3 (en) 1990-06-22 1991-06-20 Current lead
US08/180,800 US5563369A (en) 1990-06-22 1994-01-10 Current lead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004429A JPH04363004A (ja) 1991-01-18 1991-01-18 電流リード

Publications (1)

Publication Number Publication Date
JPH04363004A true JPH04363004A (ja) 1992-12-15

Family

ID=11584004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004429A Withdrawn JPH04363004A (ja) 1990-06-22 1991-01-18 電流リード

Country Status (1)

Country Link
JP (1) JPH04363004A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8196386B2 (en) 2008-03-19 2012-06-12 Honeywell International Inc. Position sensors, metering valve assemblies, and fuel delivery and control systems
JP5686733B2 (ja) * 2009-06-11 2015-03-18 株式会社日立メディコ 磁気共鳴イメージング装置に用いる超電導磁石の調整方法および超電導磁石励磁用ドック

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8196386B2 (en) 2008-03-19 2012-06-12 Honeywell International Inc. Position sensors, metering valve assemblies, and fuel delivery and control systems
JP5686733B2 (ja) * 2009-06-11 2015-03-18 株式会社日立メディコ 磁気共鳴イメージング装置に用いる超電導磁石の調整方法および超電導磁石励磁用ドック

Similar Documents

Publication Publication Date Title
EP0596249B1 (en) Compact superconducting magnet system free from liquid helium
US5563369A (en) Current lead
US4868531A (en) Superconducting magnetic apparatus
JPH0236504A (ja) 超電導マグネツト装置
JPH04363004A (ja) 電流リード
JP2790549B2 (ja) 結晶引上げ装置用超電導マグネット装置
JPH10189328A (ja) 超電導マグネット
JP3020140B2 (ja) 冷凍機冷却型超電導磁石用永久電流スイッチ装置
JP4435468B2 (ja) 超伝導マグネット装置
JP3573972B2 (ja) 超電導磁石
JP2004111581A (ja) 超電導マグネット装置
JPH0511647B2 (ja)
JPH10116725A (ja) 超電導磁石装置
JP3068898B2 (ja) 電流リード
JPS62244110A (ja) 超電導コイル装置
JPH11329526A (ja) 低温機器用超電導線材の接続装置
JPS5861608A (ja) 超電導装置
JPH01248931A (ja) 限流装置
JPH0512873B2 (ja)
JPS63142621A (ja) 超電導マグネツト用電流リ−ド装置
JPH05291036A (ja) 着脱式電流リード
JP3181345B2 (ja) 超電導電流リード
JPH0950911A (ja) 交流超電導装置用電流リード
JP2003046150A (ja) 熱電冷却型パワーリード
JPH06268266A (ja) 超電導装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514