JPH0436166B2 - - Google Patents

Info

Publication number
JPH0436166B2
JPH0436166B2 JP19535483A JP19535483A JPH0436166B2 JP H0436166 B2 JPH0436166 B2 JP H0436166B2 JP 19535483 A JP19535483 A JP 19535483A JP 19535483 A JP19535483 A JP 19535483A JP H0436166 B2 JPH0436166 B2 JP H0436166B2
Authority
JP
Japan
Prior art keywords
olefin
titanium catalyst
catalyst
slurry
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19535483A
Other languages
Japanese (ja)
Other versions
JPS6088011A (en
Inventor
Tadashi Asanuma
Ichiro Fujikage
Shigeru Kimura
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP19535483A priority Critical patent/JPS6088011A/en
Publication of JPS6088011A publication Critical patent/JPS6088011A/en
Publication of JPH0436166B2 publication Critical patent/JPH0436166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明は、特定のチタン触媒を用いるオレフイ
ンの重合方法に関する。更に詳しくは、粗大粒子
によるプロセス上のトラブルのないオレフインの
重合方法に関する。 触媒当りのポリオレフインの収量を多くする方
法は、チーグラー・ナツタ触媒の発明以来さまざ
まの方法で行われているが中でも特公昭39−
12105号で提案されたハロゲン化金属にハロゲン
化チタンを担持して得た触媒と有機アルミニウム
化合物とからなる触媒を用いる方法が効果的であ
る。また、この方法に関しては、数多くの改良が
提案されており、特にここ十年の触媒性能の向上
は大きく、チタン触媒当り数万g/g−チタン触
媒の高性能を誇る触媒が報告されている。 オレフインの重合は、均一な溶液状態で重合す
ると溶液粘度が極めて高くなり、重合熱の除去、
溶液の転送が困難であるため一般には液状媒体あ
るいは気相媒体中スラリー状態で重合される。こ
のスラリー状態での重合では、ポリオレフインは
粒状で存在するわけであるが、粒子が巨大なもの
あるいは微粒のものはないほうが良い。とりわ
け、巨大な粒子があると、重合槽とか配管とかの
装置の狭い部分に溜り場合によつては閉塞したり
する問題があつた。この閉塞の問題は、オレフイ
ンの重合のように連続操作で製造する方法におい
ては、プラトン全体の停止にもつながる重大な問
題である。 本発明者らは上記問題を解決するため種々の検
討を行つた結果、形状に特段の配慮を施したチタ
ン触媒を用いることで、この問題が解決されるこ
とを見い出し本発明を完成した。 本発明の目的は、粗大ポリオレフイン粒子によ
るトラブルのないオレフインの重合方法を提供す
ることにある。 即ち、本発明のオレフインの重合方法は、ハロ
ゲン化マグネシウムとC−O結合を含有する有機
化合物とを共粉砕して得た担体に四塩化チタンを
担持して得たチタン触媒と有機アルミニウム化合
物とからなる触媒を用いてオレフインを重合する
方法において、チタン触媒を、不活性な炭化水素
媒体中のスラリー状態で目開が下式〔1〕で表わ
されるRよりも小さい網フルイを通過させた後用
いることを特徴とするオレフインの重合方法に関
する。 式〔1〕: 式中、R0はプロセスの限界スラリー粒径、 d1はポリオレフインの密度、 d2はチタン触媒の密度、 Wはチタン触媒当りのポリオレフインの生成
量を表わす。 本発明に用いるハロゲン化マグネシウムとして
は、塩化マグネシウム、臭化マグネシウム等が挙
げられるが、中でも塩化マグネシウムが好まし
い。また、有機化合物としてはハロゲン化マグネ
シウム担体を製造する際に用いられる公知の種々
の化合物が適用可能であるが、本発明においては
C−O結合含有化合物が好ましく用いられる。共
粉砕方法は公知の各種の方法が採用し得るが中で
もボールミル、振動ミルによる共粉砕が好まし
い。 こうして得られた担体は次いで液状のハロゲン
化チタンと接触することによりチタン触媒が作ら
れる。本発明においてはハロゲン化チタンとして
それ自身液状である四塩化チタンが好ましく用い
られるが炭化水素などで希釈して用いることも可
能である。接触は適宜の攪拌手段を用いて緊密な
接触を通常は常温以上の加熱下、好ましくは40〜
135℃で行うのが良い。これらの接触条件につい
ては既に多くの条件が公知である。 本発明においては、上記の処理で得られたチタ
ン触媒を不活性炭化水素媒体中のスラリー状態で
前記式〔1〕のRより小さい目開を有する網フル
イを通過させる。本発明に用いる不活性炭化水素
媒体としては、ヘキサン、ヘプタン、デカンなど
の脂肪族炭化水素、ベンゼン、トルエン、キシレ
ンなどの芳香族炭化水素またはこれらの混合物が
用いられる。 式〔1〕中R0のプロセスの限界スラリー粒径
は先に述べた各種プロセス上のトラブルが粗大粒
子の存在によつて起こる場合、その粗大粒子の最
小径を示す。即ちあるトラブルが生じた時、原因
となつた粗大粒子の最小径である。これはプロセ
スの詳細によつて異り特定できないが液状媒体ス
ラリーで重合を行う場合には、10mmを超える粒子
は存在してはいけない。好ましくは5mmを超える
粒子は存在しない方が良い。また、気相媒体スラ
リー法では、一般に粗大粒子の許容粒径は大きく
なるが、やはり10mmを超える粒子は存在しない方
が良い。好ましくは、R0は5mm以下である。 網フルイの通過は重力の作用で通過するよう適
宜の振動を与えながら行つても良いが、通過しな
いチタン触媒が多くなるのでハケとかヘラで強制
的に通過させる方法を採用しても良い。又オート
クレーブを用いて加圧下でスラリーを通過させて
も良い。 こうして得られたチタン触媒は、有機アルミニ
ウム化合物と組合せてオレフインの重合に供され
るが、本発明に用いる有機アルミニウム化合物と
してはトリアルキルアルミニウム、ジアルキルア
ルミニウムクロライド、アルキルアルミニウムセ
スキクロライド、アルキルアルミニウムジクロラ
イドなど市場で入手可能な各種有機アルミニウム
化合物が挙げられる。 本発明に用いるオレフインとしてはエチレン、
プロピレン、ブテン−1、ヘキセン−1などが挙
げられそれらの単独重合あるいは相互の共重合が
行われるが、中でもプロピレン、ブテン−1など
の炭素数3以上のα−オレフインにおいてその効
果が大である。即ち本発明の重合方法は触媒性能
の低下特に得られるポリオレフインの立体規則性
を低下させないからである。 本発明の方法によつて粗大粒子によるトラブル
がなくポリオレフインを触媒当り高収量で製造す
ることが可能となり工業的に極めて価値がある。 以下に実施例を挙げ本発明を更に具体的に説明
する。 〔実施例、比較例〕 Rの予測値 プロピレン重合プロセスの限界スラリー粒径を
通常値5mmと設定し、予め求められたチタン触媒
の密度(実測値2.2)、ならびにポリプロピレンの
密度0.9を用い、更にこの触媒系におけるWの通
常値約20000を、それぞれ前記式に代入し、Rの
概算値を求めた。 このR値を標準とし、これよりも小さい目開の
網フルイ(目開0.147mmの金網)及びこれよりも
大きい目開の網フルイ(目開0.295mmの金網)を
用いて、本発明方法を実施した。 実施例1、比較例1 イ チタン触媒の製造 水分0.4wt%含有する塩化マグネシウム30g、
オルソ酢酸エチル4.5ml、1,2−ジクロロエタ
ン3mlを直径12mmのステンレス製ボール80個入れ
た内容積600mlの粉砕用ポツトに入れ40時間粉砕
した。次いで共粉砕物30gを500mlの丸底フラス
コに入れ四塩化チタン150mlを加え80℃で1時間
撹拌下で処理し次いで300mlのn−ヘプタンで固
体部分を5回洗浄しさらにn−ヘプタンを抜き出
した後四塩化チタン150mlを加え80℃で1時間撹
拌下で処理した。次いで固体部分を300mlのn−
ヘプタンで7回洗浄しさらにn−ヘプタン150ml
を加えチタン触媒スラリーとした。半量はそのま
ま重合反応に用い(比較例1)、また、半量は目
開き0.147mmの金網を通過させて重合反応に用い
た(実施例1)。金網の通過は、下部に金網を設
けた耐圧容器にスラリーを入れ加圧させて通過さ
せたところほぼ定量的に通過した。 ロ 重合反応 十分に乾燥し窒素で置換した内容積5のオー
トクレーブを準備する。十分に乾燥し窒素置換し
た200mlのフラスコに乾燥し窒素置換したn−ヘ
プタン50ml入れジエチルアルミニウムクロライド
0.128ml、トルイル酸メチル0.06ml、トリエチル
アルミニウム0.08mlイ)で得たチタン触媒30mgを
加え混合した触媒スラリーを上記オートクレーブ
に入れ次いでプロピレン1.5Kg、水素0.6N入れ
オートフレーブを加熱することにより内温75℃で
2時間重合した後未反応のプロピレンを排出し得
られたポリプロピレンパウダーを取り出し60℃で
10時間乾燥した後秤量するという操作を上記ロ)
で得たチタン触媒2種について実施した。それぞ
れで得られたパウダーについて極限粘度数(以下
ηと略記135℃テトラリン溶液で測定)沸騰n−
ヘプタン抽出残率(以下IIと略記ソツクスレー抽
出器で沸騰n−ヘプタンで6時間抽出し
抽出残ポリマー重量/抽出前ポリマー重量×100%とし
て算出)、かさ 比重及び粒度分布(米国タイラーメツシユ)を測
定した結果を表に示す。表に示すように、目開
0.147mmの金網通過のチタン触媒スラリーを用い
た実施例では目開4.7mm(ASTM標準フルイ
#4)以上のポリオレフイン粗大粒子が全くない
ことがわかる。 実施例2,比較例2 共粉砕時の添加剤をクメン6ml、1,2−ジク
ロロエタン3mlにした他は実施例1と同様にチタ
ン触媒スラリーを合成し半量は0.295mmの金網
(比較例2)又半量は0.147mmの金網(実施例2)
を通過させた他は実施例1と同様にした。0.295
mmの金網による処理では4.7mm以上の粗大ポリオ
レフイン粒子があることがわかる。 比較例 3 比較例1の触媒スラリー中にガラス製のスター
ラーチツプを入れスターラーで2時間激しく撹拌
した他は比較例1と同様にした。結果は表に示
す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for polymerizing olefins using specific titanium catalysts. More specifically, the present invention relates to a method for polymerizing olefins that does not cause troubles in the process due to coarse particles. Various methods have been used to increase the yield of polyolefin per catalyst since the invention of the Ziegler-Natsuta catalyst.
The method proposed in No. 12105 using a catalyst obtained by supporting titanium halide on a metal halide and an organoaluminum compound is effective. In addition, many improvements have been proposed regarding this method, and catalyst performance has improved significantly over the past decade, with catalysts boasting high performance of tens of thousands of grams per titanium catalyst/g titanium catalyst being reported. . When olefin is polymerized in a homogeneous solution state, the solution viscosity becomes extremely high, and the removal of polymerization heat becomes difficult.
Since it is difficult to transfer the solution, polymerization is generally carried out in a slurry state in a liquid or gas phase medium. In this slurry polymerization, the polyolefin is present in the form of particles, but it is preferable that the particles are not huge or fine. In particular, if there are large particles, there is a problem that they can accumulate in narrow parts of equipment such as polymerization tanks and piping, and in some cases become clogged. This clogging problem is a serious problem in a continuous production method such as olefin polymerization, which can lead to the entire platoon being stopped. The present inventors conducted various studies to solve the above problem, and as a result, they discovered that this problem could be solved by using a titanium catalyst with special consideration given to the shape, and completed the present invention. An object of the present invention is to provide a method for polymerizing olefins that is free from troubles caused by coarse polyolefin particles. That is, the method for polymerizing olefin of the present invention involves combining a titanium catalyst obtained by supporting titanium tetrachloride on a carrier obtained by co-pulverizing a magnesium halide and an organic compound containing a C-O bond, and an organoaluminum compound. In the method of polymerizing olefin using a catalyst consisting of, after passing a titanium catalyst in a slurry state in an inert hydrocarbon medium through a mesh sieve with a mesh opening smaller than R expressed by the following formula [1]. The present invention relates to a method for polymerizing olefin, which is characterized in that it is used. Formula [1]: In the formula, R 0 is the critical slurry particle size of the process, d 1 is the density of the polyolefin, d 2 is the density of the titanium catalyst, and W represents the amount of polyolefin produced per titanium catalyst. Magnesium halides used in the present invention include magnesium chloride, magnesium bromide, and the like, with magnesium chloride being preferred. Further, as the organic compound, various known compounds used in producing a magnesium halide carrier can be used, but in the present invention, C-O bond-containing compounds are preferably used. Various known methods can be employed as the co-pulverization method, but co-pulverization using a ball mill or a vibration mill is particularly preferred. The support thus obtained is then brought into contact with liquid titanium halide to produce a titanium catalyst. In the present invention, titanium tetrachloride, which is liquid itself, is preferably used as the titanium halide, but it is also possible to use it diluted with a hydrocarbon or the like. The contact is carried out in close contact using an appropriate stirring means, usually under heating above room temperature, preferably at 40 to
It is best to do this at 135℃. Many conditions for these contact conditions are already known. In the present invention, the titanium catalyst obtained by the above treatment is passed in a slurry state in an inert hydrocarbon medium through a mesh sieve having a mesh opening smaller than R in the formula [1]. The inert hydrocarbon medium used in the present invention includes aliphatic hydrocarbons such as hexane, heptane, and decane, aromatic hydrocarbons such as benzene, toluene, and xylene, or mixtures thereof. The process limit slurry particle size of R 0 in formula [1] indicates the minimum diameter of coarse particles when the various process troubles described above occur due to the presence of coarse particles. In other words, when a certain trouble occurs, it is the minimum diameter of the coarse particles that are the cause. This depends on the details of the process and cannot be specified, but if the polymerization is carried out in a liquid medium slurry, no particles larger than 10 mm should be present. Preferably, there should be no particles larger than 5 mm. In addition, in the gas phase medium slurry method, the allowable particle size of coarse particles is generally large, but it is still better not to have particles larger than 10 mm. Preferably R 0 is less than or equal to 5 mm. Passage through the mesh sieve may be performed while applying appropriate vibrations so that the material passes under the action of gravity, but as this increases the amount of titanium catalyst that does not pass through, a method of forcibly passing it with a brush or spatula may be adopted. Alternatively, the slurry may be passed under pressure using an autoclave. The titanium catalyst thus obtained is combined with an organoaluminum compound and subjected to the polymerization of olefin.The organoaluminum compounds used in the present invention include trialkylaluminum, dialkylaluminum chloride, alkylaluminum sesquichloride, alkylaluminum dichloride, and other commercially available organoaluminum compounds. Examples include various organoaluminum compounds available at The olefin used in the present invention includes ethylene,
Examples include propylene, butene-1, hexene-1, etc., and their homopolymerization or mutual copolymerization is carried out, but the effect is particularly great in α-olefins having 3 or more carbon atoms such as propylene and butene-1. . That is, the polymerization method of the present invention does not cause any deterioration in catalyst performance, particularly the stereoregularity of the obtained polyolefin. The method of the present invention makes it possible to produce polyolefin in high yield per catalyst without any trouble caused by coarse particles, and is therefore extremely valuable industrially. EXAMPLES The present invention will be explained in more detail with reference to Examples below. [Example, Comparative Example] Predicted value of R The critical slurry particle size for the propylene polymerization process was set to the normal value of 5 mm, the density of the titanium catalyst determined in advance (actual value 2.2) and the density of polypropylene 0.9, and The normal value of W in this catalyst system, approximately 20,000, was substituted into the above equations to obtain an approximate value of R. Using this R value as a standard, the method of the present invention is carried out using a mesh sieve with a smaller opening (wire mesh with an opening of 0.147 mm) and a mesh sieve with a larger opening (wire mesh with an opening of 0.295 mm). carried out. Example 1, Comparative Example 1 A. Production of titanium catalyst 30 g of magnesium chloride containing 0.4 wt% water,
4.5 ml of ethyl orthoacetate and 3 ml of 1,2-dichloroethane were placed in a 600 ml grinding pot containing 80 stainless steel balls with a diameter of 12 mm, and ground for 40 hours. Next, 30 g of the co-pulverized product was placed in a 500 ml round bottom flask, 150 ml of titanium tetrachloride was added, and the mixture was stirred at 80°C for 1 hour.The solid portion was then washed 5 times with 300 ml of n-heptane, and further n-heptane was extracted. After adding 150 ml of titanium tetrachloride, the mixture was stirred at 80°C for 1 hour. The solid portion was then poured into 300 ml of n-
Wash with heptane 7 times and add 150ml of n-heptane.
was added to form a titanium catalyst slurry. Half of the amount was used as it was in the polymerization reaction (Comparative Example 1), and half of the amount was passed through a wire mesh with an opening of 0.147 mm and used in the polymerization reaction (Example 1). The slurry was passed through the wire mesh by putting the slurry in a pressure-resistant container with a wire mesh at the bottom, pressurizing it, and passing the slurry almost quantitatively. (b) Polymerization reaction Prepare an autoclave with an internal volume of 5 that has been thoroughly dried and purged with nitrogen. Pour 50 ml of dried n-heptane into a 200 ml flask that has been thoroughly dried and purged with nitrogen. Add diethylaluminum chloride.
0.128 ml, methyl toluate 0.06 ml, and triethylaluminum 0.08 ml were added, and the mixed catalyst slurry was put into the above autoclave. Next, 1.5 kg of propylene and 0.6 N of hydrogen were added, and the autoclave was heated to bring the internal temperature to After polymerizing at 75℃ for 2 hours, unreacted propylene was discharged and the resulting polypropylene powder was taken out and heated at 60℃.
The procedure of weighing after drying for 10 hours is performed as described in b) above.
The experiment was carried out using two types of titanium catalysts obtained in . The intrinsic viscosity (hereinafter abbreviated as η, measured in a tetralin solution at 135°C) of the powder obtained in each case is boiling n-
Heptane extraction residual rate (hereinafter abbreviated as II) extracted with boiling n-heptane in a Soxhlet extractor for 6 hours and calculated as extraction residual polymer weight / polymer weight before extraction × 100%), bulk specific gravity and particle size distribution (Tyler Mess., USA) The measured results are shown in the table. Eye opening as shown in the table
It can be seen that in the example using the titanium catalyst slurry passed through a 0.147 mm wire mesh, there were no coarse polyolefin particles with an opening of 4.7 mm or more (ASTM standard sieve #4). Example 2, Comparative Example 2 A titanium catalyst slurry was synthesized in the same manner as in Example 1, except that the additives during co-pulverization were changed to 6 ml of cumene and 3 ml of 1,2-dichloroethane, and half of the slurry was made using a 0.295 mm wire mesh (Comparative Example 2) Also, half of the amount is 0.147mm wire mesh (Example 2)
The procedure was the same as in Example 1 except that . 0.295
It can be seen that there are coarse polyolefin particles of 4.7 mm or more when treated with a wire mesh of 4.7 mm. Comparative Example 3 The same procedure as Comparative Example 1 was carried out except that a glass stirrer chip was placed in the catalyst slurry of Comparative Example 1 and the slurry was vigorously stirred for 2 hours using a stirrer. The results are shown in the table. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の理解を助けるためのフローチ
ヤート図である。
FIG. 1 is a flowchart to aid understanding of the present invention.

Claims (1)

【特許請求の範囲】 1 ハロゲン化マグネシウムとC−O結合を含有
する有機化合物とを共粉砕して得た担体に四塩化
チタン担持して得たチタン触媒と有機アルミニウ
ム化合物とからなる触媒を用いてオレフインを重
合する方法において、前記チタン触媒を、不活性
な炭化水素媒体中のスラリー状態で、目開が下式
で表わされるRよりも小さい網フルイを通過させ
た後に用いることを特徴とするオレフインの重合
方法: 式: 式中、R0はプロセスの限界スラリー粒径、 d1はポリオレフインの密度、 d2はチタン触媒の密度、 Wはチタン触媒当りのポリオレフインの生成
量を表わす。 2 オレフインが炭素数3以上のα−オレフイン
である特許請求の範囲第1項記載のオレフインの
重合方法。
[Claims] 1. Using a catalyst consisting of a titanium catalyst obtained by supporting titanium tetrachloride on a carrier obtained by co-pulverizing magnesium halide and an organic compound containing a C-O bond and an organoaluminum compound. In the method for polymerizing olefin, the titanium catalyst is used in a slurry state in an inert hydrocarbon medium after being passed through a mesh sieve having a mesh opening smaller than R expressed by the following formula. Olefin polymerization method: Formula: In the formula, R 0 is the critical slurry particle size of the process, d 1 is the density of the polyolefin, d 2 is the density of the titanium catalyst, and W represents the amount of polyolefin produced per titanium catalyst. 2. The method for polymerizing olefin according to claim 1, wherein the olefin is an α-olefin having 3 or more carbon atoms.
JP19535483A 1983-10-20 1983-10-20 Polymerization of olefin Granted JPS6088011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19535483A JPS6088011A (en) 1983-10-20 1983-10-20 Polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19535483A JPS6088011A (en) 1983-10-20 1983-10-20 Polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS6088011A JPS6088011A (en) 1985-05-17
JPH0436166B2 true JPH0436166B2 (en) 1992-06-15

Family

ID=16339771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19535483A Granted JPS6088011A (en) 1983-10-20 1983-10-20 Polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS6088011A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235309A (en) * 1992-12-16 1994-08-23 Mitsubishi Motors Corp Valve system for internal combustion engine

Also Published As

Publication number Publication date
JPS6088011A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
JPH0436166B2 (en)
JPS5846129B2 (en) Method for producing highly crystalline olefin polymer
JPH08134124A (en) Method of polymerizing olefin by using ziegler/natta catalyst
JPH0436165B2 (en)
JPH0859731A (en) Production of olefin polymerization catalyst
JPS58215408A (en) Polymerization of olefin
JPS591405B2 (en) α-olefin polymerization method
JPH058205B2 (en)
JP2553042B2 (en) Olefin Polymerization Method
JPH0128049B2 (en)
JPH0319846B2 (en)
JPH0350765B2 (en)
JPS6160085B2 (en)
JPH0347644B2 (en)
JPH0311284B2 (en)
JPH0254361B2 (en)
JPS63225613A (en) Manufacture of propylene block copolymer
JPS6397605A (en) Catalyst for olefin polymerization
JPH0344563B2 (en)
JPH055842B2 (en)
JPS5825083B2 (en) Method for manufacturing polyolefin
JPS643204B2 (en)
JPS5991104A (en) Polymerization of alpha-olefin
JPS6079016A (en) Production of supported transition metal catalyst
JPH0725805B2 (en) Delivery method of solid transition metal catalyst for olefin polymerization