JPS6088011A - Polymerization of olefin - Google Patents

Polymerization of olefin

Info

Publication number
JPS6088011A
JPS6088011A JP19535483A JP19535483A JPS6088011A JP S6088011 A JPS6088011 A JP S6088011A JP 19535483 A JP19535483 A JP 19535483A JP 19535483 A JP19535483 A JP 19535483A JP S6088011 A JPS6088011 A JP S6088011A
Authority
JP
Japan
Prior art keywords
catalyst
polyolefin
slurry
olefin
titanium catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19535483A
Other languages
Japanese (ja)
Other versions
JPH0436166B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Ichiro Fujikage
一郎 藤隠
Shigeru Kimura
茂 木村
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP19535483A priority Critical patent/JPS6088011A/en
Publication of JPS6088011A publication Critical patent/JPS6088011A/en
Publication of JPH0436166B2 publication Critical patent/JPH0436166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain a polyolefin in high yields per catalyst without any trouble due to coarse particles, by polymerizing the olefin in the presence of a catalyst comprising a Ti catalyst of a specified particle diameter and an organoaluminum compound. CONSTITUTION:A Ti catalyst is obtained by mixing a carrier obtained by copulverizing an Mg halide with a C-O bond-containing organic compound (e.g., ethyl o-acetate) in, for example, a ball mill with a liquid Ti halide (e.g., TiCl4) at 40-135 deg.C. A slurry formed by dispersing the catalyst in an inert hydrocarbon medium (e.g., hexane) is passed through a screening mesh having an opening smaller than R defined by the equation (wherein R0 is a slurry particle diameter limit for the process, d1 is a density of polyolefin, d2 is a density of the Ti catalyst, and w is an amount of the polyolefin formed per catalyst). A 3C or higher alpha-olefin is polymerized in the presence of a catalyst comprising the Ti catalyst and an organoaluminum compound (e.g., triethylaluminum).

Description

【発明の詳細な説明】 本発明紘、特定のチタン触媒を用いるオレフィンの重合
方法に関する。更に詳しくは、粗大粒子によるプロセス
上のトラブルのないオレフィンの重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polymerizing olefins using a specific titanium catalyst. More specifically, the present invention relates to an olefin polymerization method that does not cause process troubles due to coarse particles.

触媒当シのポリオレフィンの収量を多くする方法は、チ
ーグラー・ナツタ触媒の発明以来さまざまの方法で行わ
れているが中でも特公昭39−12105号で提案され
たハロゲン化金属にハロダン化チタンを担持して得た触
媒と有機アルミニウム化合物とからなる触媒を用いる方
法が効果的である。また、この方法に関しては、数多く
の改良が提案されておル、特にここ千年の触媒性能の向
上は大きく、チタン触媒当9数万g/11−チタン触媒
の高性能を誇る触媒が報告されている。
Various methods have been used to increase the yield of polyolefin using a catalyst since the invention of the Ziegler-Natsuta catalyst, but among them, the method of supporting titanium halide on a metal halide proposed in Japanese Patent Publication No. 39-12105 is a method to increase the yield of polyolefin using a catalyst. An effective method is to use a catalyst made of a catalyst obtained by the above method and an organoaluminum compound. In addition, many improvements have been proposed regarding this method, and catalyst performance has improved significantly over the past thousand years, with a catalyst boasting a high performance of 90,000 g per titanium catalyst/11-titanium catalyst being reported. There is.

オレフィンの重合は、均一な溶液状態で重合すると溶液
粘度が極めて高くなp1重合熱の除去、溶液の転送が困
難であるため一般には液状媒体あるいは気相媒体中スラ
リー状態で重合される。このスラリー状態での重合では
、ポリオレフィンは粒状で存在するわけであるが、粒子
が巨大なものあるいは微粒のものはないほうが良い。と
りわけ、巨大な粒子があると、重合槽とか配管とかの装
置の狭い部分に溜シ場合によっては閉塞したシする問題
があった。この閉塞の問題は、オレフィンの重合のよう
に連続操作で製造する方法においては、プラント全体の
停止にもつながる重大な問題であ本発明者らは上記問題
を解決するため種々の検討を行った結果、形状に特段の
配慮を施したチタン触媒を用いることで、この問題が解
決されることを見い出し本発明を完成した。
Olefin polymerization is generally carried out in a slurry state in a liquid medium or a gaseous medium, since the viscosity of the solution is extremely high if the polymerization is carried out in a homogeneous solution state, and it is difficult to remove the p1 polymerization heat and transfer the solution. In this slurry polymerization, the polyolefin is present in the form of particles, but it is preferable that the particles are not huge or fine. In particular, if there are large particles, there is a problem that they may clog the narrow parts of equipment such as polymerization tanks and piping. This clogging problem is a serious problem in continuous production methods such as olefin polymerization, which can lead to the shutdown of the entire plant.The inventors have conducted various studies to solve the above problem. As a result, they discovered that this problem could be solved by using a titanium catalyst with special consideration given to its shape, and completed the present invention.

本発明の目的は、粗大ポリオレフィン粒子によるトラブ
ルのないオレフィンの重合方法を提供することにある。
An object of the present invention is to provide a method for polymerizing olefins that is free from troubles caused by coarse polyolefin particles.

即ち、本発明のオレフィンの重合方法は、ハロゲン化マ
グネシウムと有機化合物とを共粉砕してン触媒と有機ア
ルミニウム化合物とからなる触媒を用いてオレフィンヲ
重合する方法において、チタン触媒を、不活性な炭化水
素媒体中のスラリー状態で口開が下式〔1〕で表わされ
るRよシも小さい網フルイを通過させた抜用いることを
特徴とするオレフィンの重合方法に関する。
That is, the olefin polymerization method of the present invention is a method of co-pulverizing magnesium halide and an organic compound and polymerizing the olefin using a catalyst consisting of a titanium catalyst and an organoaluminum compound. This invention relates to a method for polymerizing olefins, which comprises passing a slurry in a hydrocarbon medium through a mesh sieve whose opening is smaller than R represented by the following formula [1].

式〔l〕: R= 2R,g刊■ 式中、R11はプロセスの限界スラリー粒径、d□はポ
リオレフィンの密度、 d、はチタン触媒の密度、 W u f fi y触媒当りのポリオレンインの生成
量を表わす。
Formula [l]: R = 2R, g publication■ In the formula, R11 is the critical slurry particle size of the process, d□ is the density of the polyolefin, d is the density of the titanium catalyst, and the production of polyolefin per W u f fi y catalyst. represents quantity.

本発明に用いるハロゲン化マグネシウムとしては、塩化
マグネシウム、臭化マグネシウム等が挙げられるが、中
でも塩化マグネシウムが好ましい。
Magnesium halides used in the present invention include magnesium chloride, magnesium bromide, and the like, with magnesium chloride being preferred.

また、有機化合物としてはハロゲン化マグネシウム担体
を製造する際に用いられる公知の種々の化金物が適用可
能であるが、中でもC−O結合含有化合物が好ましく用
いられる。共粉砕方法は公知の各種の方法が採用し得る
が中でもボールミル、振動ミルによる共粉砕が好ましい
Further, as the organic compound, various known metal compounds used in producing a magnesium halide carrier can be used, and among them, a C-O bond-containing compound is preferably used. Various known methods can be employed as the co-pulverization method, but co-pulverization using a ball mill or a vibration mill is particularly preferred.

こうして得られた担体は次いで液状のハロゲン化チタン
と接触することによりチタン触媒が作られる。用いられ
るハロゲン化チタンとしてはそれ自身液状である四塩化
チタンが好ましく用いられるが炭化水素力どで希釈して
用いることも、また、三塩化チタンなど゛の固体のハロ
ゲン化チタンも適宜の媒体で溶解し液状として用いるこ
とも可能である。接触は適宜の攪拌手段を用いて緊密な
接触を通常は常温以上の加熱下、好ましくは40〜13
5℃で行うのが良い。これらの接触条件については既に
多くの条件が公知である。
The support thus obtained is then brought into contact with liquid titanium halide to produce a titanium catalyst. As the titanium halide used, titanium tetrachloride, which is liquid itself, is preferably used, but it can also be diluted with a hydrocarbon or the like, and solid titanium halide, such as titanium trichloride, can also be used in an appropriate medium. It is also possible to dissolve it and use it in liquid form. The contact is carried out in close contact using an appropriate stirring means, usually under heating at room temperature or higher, preferably at a temperature of 40 to 13
It is best to do this at 5°C. Many conditions for these contact conditions are already known.

本発明においては、上記の処理で得られたチタン触媒を
不活性炭化水素媒体中のスラリー状態で前記式(1)の
Rよル小さい口開を有する網フルイを通過させる。本発
明に用いる不活性炭化水素媒体としては、ヘキサン、ヘ
プタン、デカンなどの脂肪族炭化水1 、ベンゼン、ト
ルエン、キシレンなどの芳香族炭化水素またはこれらの
混合物が用いられる。
In the present invention, the titanium catalyst obtained by the above treatment is passed in a slurry state in an inert hydrocarbon medium through a mesh sieve having a small opening in the radius R of the formula (1). As the inert hydrocarbon medium used in the present invention, aliphatic hydrocarbons such as hexane, heptane, and decane, aromatic hydrocarbons such as benzene, toluene, and xylene, or mixtures thereof are used.

式〔1〕中R0のプロセスの限界スラリー粒径は先に述
べた各種ノ四セス上のトラブルが粗大粒子の存在によっ
て起こる場合、その粗大粒子の最小径を示す。即ちある
トラブルが生じた時、原因となった粗大粒子の最小径で
ある。これはプロセスの詳細によって異bm定できない
が液状媒体スラリーで重合を行う場合には、10mn1
超える粒子は存在してはいけない。好ましくは5III
I11ヲ超える粒子は存在しない方が良い。また、気相
媒体スラリー法では、一般に粗大粒子の許容粒径は大き
くなるが、やけJlommを超える粒子は存在しない方
が良い。好ましくは、Roは5mm以下である。
The critical slurry particle size of the process R0 in formula [1] indicates the minimum diameter of coarse particles when the aforementioned various process problems occur due to the presence of coarse particles. In other words, when a certain trouble occurs, it is the minimum diameter of the coarse particles that are the cause. This varies depending on the details of the process, but cannot be determined, but when polymerization is carried out in a liquid medium slurry, 10 mn1
There must be no particles that exceed this value. Preferably 5III
It is better that particles exceeding I11 do not exist. In addition, in the gas phase medium slurry method, generally the permissible particle size of coarse particles becomes large, but it is better that particles exceeding the desperation Jlomm do not exist. Preferably, Ro is 5 mm or less.

網フルイの通過は重力の作用で通過するよう適宜の振動
を与えながら行っても良いが、通過しないチタン触媒が
多くなるのでハケとがヘラで強制的に通過させる方法を
採用しても良い。又オートクレーブを用いて加圧下でス
ラリーを通過させても良い。
Passage through the mesh sieve may be performed while applying appropriate vibrations so that the material passes under the action of gravity, but as this increases the amount of titanium catalyst that does not pass through, a method may be adopted in which the material is forcibly passed through with a brush and a spatula. Alternatively, the slurry may be passed under pressure using an autoclave.

こうして得られたチタン触媒は、有機アルミニウム化合
物と組合せてオレフィンの重合に供されるが、本発明に
用いる有機アルミニウム化合物としてはトリアルキルア
ルミニウム、ジアルキルアルミニウムクロライド、アル
キルアルミニウムセスキクロライド、アルキルアルミニ
ウムジクロライド々ど市場で入手可能な各種有機アルミ
ニウム化合物が挙げられる。
The titanium catalyst thus obtained is combined with an organoaluminum compound and subjected to olefin polymerization. Examples of the organoaluminum compounds used in the present invention include trialkylaluminum, dialkylaluminum chloride, alkylaluminum sesquichloride, and alkylaluminum dichloride. There are various organoaluminum compounds available on the market.

本発明に用いるオレフィンとしてはエチレン、プロピレ
ン、ブテン−1、ヘキセン−1などが挙げられそれらの
単独重合あるいは相互の共重合が行われるが、中でもプ
ロピレン、ブテン−1などO炭素i3以上のα−オレフ
ィンにおいてその効果が大である。即ち本発明の重合方
法は触媒性能の低下特に得られるポリオレフィンの立体
規則性を低下させないからである。
Examples of olefins used in the present invention include ethylene, propylene, butene-1, hexene-1, etc., and homopolymerization or mutual copolymerization of these is carried out. Among them, α- The effect is great for olefins. That is, the polymerization method of the present invention does not cause any deterioration in catalyst performance, particularly the stereoregularity of the obtained polyolefin.

本発明の方法によって粗大粒子によるトラブルがなくポ
リオレフィンを触媒尚ル高収量で製造することが可能と
なル工業的に極めて価値がある。
The method of the present invention makes it possible to produce polyolefins in high yields without any problems caused by coarse particles, and is therefore extremely valuable industrially.

以下に実施例を挙げ本発明を更に具体的に説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

〔実施例、比較例〕[Example, comparative example]

Rの予測値 プロピレン重合プルセスの限界スラリー粒径を通常値5
鱈と設定し、予めめられたチタン触媒の密度(実測値2
.2)、ならびにポリノロピレンの密度0.9を用い、
更にこの触媒系におけるWの通常値約20,000′f
:、それぞれ前記式に代入し、凡の概算値をめた。
Predicted value of R The limit slurry particle size of propylene polymerization process is set to the normal value 5.
The density of titanium catalyst (actual value 2) was set as cod.
.. 2), and using a density of polynolopyrene of 0.9,
Furthermore, the normal value of W in this catalyst system is about 20,000'f.
:, were substituted into the above formulas, and approximate values were obtained.

= 0.274 (IllIn) このR値を標準とし、これよりも小さい口開の網フルイ
(口開0.147mの金網)及びこれよシも大きい口開
の網フルイ(口開0.2’95mmの金網)を用いて、
本発明方法を実施した。
= 0.274 (IllIn) This R value is taken as the standard, and a mesh sieve with an opening smaller than this (wire mesh with an opening of 0.147 m) and a mesh sieve with an opening even larger than this (wire mesh with an opening of 0.2') are used. Using a 95mm wire mesh),
The method of the invention was carried out.

実施例1、比較例1 イ)チタン触媒の製造 水分0.4 wt%含有する塩化マグネシウム30g、
オルン酢酸エチル4.5プ、1,2−ジクロロエタン3
1Ll’!:直径12 wmのステンレス製ポール80
個入れた内容積600ゴの粉砕用ポットに入れ40時間
粉砕した。次いで共粉砕物3011 f 500−の丸
底フラスコに入れ四塩化チタン15(ltA”i加え8
0℃で1時間攪拌下で処理し次いで3QQmA!のn−
へブタンで固体部分を5回洗浄しさらにn−へブタンを
抜き出した後四塩化チタン150rILlを加え80℃
で1時間攪拌下で処理した。次いで固体部分t30 Q
mA!のn−へブタンで7回洗浄しさらにn−へエタン
150 +aA’を加えチタン触媒スラリーとした。半
量はそのまま重合反応に用い(比較例1)、また、半量
は口開き0.147mの金網を通過させて重合反応に用
いた(実施例1)。金網の通過は、下部に金網を設けた
耐圧容器にスラリーを入れ加圧させて通過させたところ
eユは定量的に通過した。
Example 1, Comparative Example 1 a) Production of titanium catalyst 30 g of magnesium chloride containing 0.4 wt% water,
ethyl acetate 4.5%, 1,2-dichloroethane 3%
1Ll'! : Stainless steel pole 80 with a diameter of 12 wm
The mixture was placed in a pulverizing pot with an internal volume of 600 g, and pulverized for 40 hours. Next, the co-pulverized product was placed in a 3011 f 500-mm round bottom flask, and 15 titanium tetrachloride (ltA"i) was added.
Treatment under stirring at 0° C. for 1 hour and then 3QQmA! n-
After washing the solid portion with hebutane five times and extracting n-hebutane, 150 rIL of titanium tetrachloride was added and the mixture was heated at 80°C.
The mixture was treated with stirring for 1 hour. Then the solid part t30 Q
mA! The mixture was washed seven times with n-hebutane, and 150 + aA' of n-ethane was added to prepare a titanium catalyst slurry. Half of the amount was used as it was in the polymerization reaction (Comparative Example 1), and half of the amount was passed through a wire mesh with an opening of 0.147 m and used in the polymerization reaction (Example 1). The slurry was passed through a wire mesh by putting the slurry in a pressure-resistant container with a wire mesh at the bottom, pressurizing it, and allowing the slurry to pass through the wire mesh.

口)重合反応 十分に乾燥し窒素で置換した内容積5tのオートクレー
ブを準備する。十分に乾燥し窒素置換した200ゴのフ
ラスコに乾燥し窒素置換したn−ヘプタン5011Ll
入れジエチルアルミニウムクロライド0.128ゴ、ト
ルイル酸メチル0.0611Ll、)ジエチルアルミニ
ウム0.081nl!イ)で得たチタン触媒30m9’
ji−加え混合した触媒スラリーを上記オート7レーブ
に入れ次いでプロピレン1.5kg、水素0.6Nt入
れオート7レープを加熱するととによシ内温75℃で2
時間重合した後未反応のプロピレンを排出し得られたポ
リプロピレン/クウダーヲ取シ出し60℃で10時間乾
燥した後秤量するという操作を上記口)で得たチタン触
媒2種について実施した。それぞれで得られたパウダー
について極限粘度数(以下ηと略記135℃テトラリン
溶液で測定)沸騰n−へブタン抽出残率(以下IIと略
記ンックスレー抽出器で沸騰n−へブタンで6特出)、
かさ比重及び粒度分布(米国タイラーメツシー)を測定
した結果は表に示す。表に示すように、口開0.147
wmの金網通過のチタン触媒スラリ−を用いた実施例で
は口開4.7 +u (ASTM標準フルイナ4)以上
のポリオレフィン粗大粒子が全くないことがわかる。
1) Polymerization reaction Prepare an autoclave with an internal volume of 5 tons that is sufficiently dried and purged with nitrogen. Add 5011 liters of n-heptane that has been dried and replaced with nitrogen into a 200-liter flask that has been thoroughly dried and replaced with nitrogen.
) Diethylaluminium chloride 0.128g, methyl toluate 0.0611Ll, ) diethylaluminium 0.081nl! 30m9' of titanium catalyst obtained in b)
ji-The added and mixed catalyst slurry was put into the Auto 7 Leve, and then 1.5 kg of propylene and 0.6 Nt of hydrogen were added and the Auto 7 Leve was heated.
After polymerization for a period of time, unreacted propylene was discharged, the resulting polypropylene/coudder was taken out, dried at 60° C. for 10 hours, and then weighed. This procedure was performed on the two types of titanium catalysts obtained in the above step). For each powder obtained, the intrinsic viscosity number (hereinafter abbreviated as η, measured in a tetralin solution at 135°C), boiling n-hebutane extraction residual rate (hereinafter abbreviated as II), extracted with boiling n-hebutane using a Nxhlet extractor,
The results of measuring the bulk specific gravity and particle size distribution (Tyler Metsea, USA) are shown in the table. As shown in the table, mouth opening 0.147
It can be seen that in the example using the titanium catalyst slurry passed through a wire mesh of wm, there were no polyolefin coarse particles having an opening of 4.7+u (ASTM standard Fluina 4) or more.

実施例2、比較例2 共粉砕時の添加剤をクメン5m、1.2−ジクpロエタ
ン31rLlにした他は実施例1と同様にチタン触媒ス
ラリー全合成し半量は0.29511111の金網(比
較例2)又半量は0.147mの金網(実施例2)を通
過させた他は実施例1と同様にした。0.295mの金
網による処理では4.7簡以上の粗大ポリオレフィン粒
子があることがわかる。
Example 2, Comparative Example 2 A titanium catalyst slurry was totally synthesized in the same manner as in Example 1, except that the additives used during co-pulverization were 5 m of cumene and 31 rLl of 1,2-dichloroethane. Example 2) The same procedure as in Example 1 was carried out except that half of the sample was passed through a 0.147 m wire mesh (Example 2). It can be seen that in the treatment using a 0.295 m wire mesh, there were coarse polyolefin particles of 4.7 cm or more.

比較例3 比較例1の触媒スラリー中にガラス製のスターラーテッ
グを入れスターツーで2時間激しく攪拌した他は比較例
1と同様にした。結果は表に示す。
Comparative Example 3 The same procedure as Comparative Example 1 was carried out, except that a glass stirrer was placed in the catalyst slurry of Comparative Example 1, and the slurry was vigorously stirred for 2 hours using a Star Two. The results are shown in the table.

Claims (2)

【特許請求の範囲】[Claims] (1)ハロゲン化マグネシウムと有機化合物とを共粉砕
して得た担体にハロダン化チタンを担持して得たチタン
触媒と有機アルミニウム化合物とからなる触媒を用いて
オレフィンを重合する方法にお°いて、前記チタン触媒
を、不活性な炭化水素媒体中のスラリー状態で口開が下
式で表わされるRよルも小さい網フルイを通過させた後
に用いることを特徴とするオレフィンの重合方法。 式: 式中、Roはプロセスの限界スラリー粒径、d□はポリ
オレフィンの密度、 d、はチタン触媒の密度、 wはチタン触媒当シのポリオレフィンの生成量を表わす
(1) A method for polymerizing olefins using a titanium catalyst obtained by supporting titanium halide on a carrier obtained by co-pulverizing magnesium halide and an organic compound, and a catalyst consisting of an organoaluminum compound. A method for polymerizing olefins, characterized in that the titanium catalyst is used after being passed through a mesh sieve whose opening is expressed by the following formula and whose radius is small, in a slurry state in an inert hydrocarbon medium. Formula: In the formula, Ro represents the critical slurry particle size of the process, d□ represents the density of the polyolefin, d represents the density of the titanium catalyst, and w represents the amount of polyolefin produced per titanium catalyst.
(2) オレフィンが炭素数3以上のα−オレフィンで
ある特許請求の範囲第(1)項記載のオレンインの重合
方法。
(2) The method for polymerizing oleinin according to claim (1), wherein the olefin is an α-olefin having 3 or more carbon atoms.
JP19535483A 1983-10-20 1983-10-20 Polymerization of olefin Granted JPS6088011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19535483A JPS6088011A (en) 1983-10-20 1983-10-20 Polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19535483A JPS6088011A (en) 1983-10-20 1983-10-20 Polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS6088011A true JPS6088011A (en) 1985-05-17
JPH0436166B2 JPH0436166B2 (en) 1992-06-15

Family

ID=16339771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19535483A Granted JPS6088011A (en) 1983-10-20 1983-10-20 Polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS6088011A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445115A (en) * 1992-12-16 1995-08-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve system for internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5445115A (en) * 1992-12-16 1995-08-29 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Valve system for internal combustion engine

Also Published As

Publication number Publication date
JPH0436166B2 (en) 1992-06-15

Similar Documents

Publication Publication Date Title
JP4498925B2 (en) Liquid phase method for the polymerization of α-olefins
EA001029B1 (en) A PROCESS AND APPARATUS FOR POLYMERIZATION OF OLEFIN MONOMERS (57) 1. A process for polymerization of olefin monomer and optionally other monomer in the presence of olefin polymerizing catalyst, diluent and optional co-catalyst and donors, said process comprising the steps:
CA1086711A (en) Process for preparing polyolefins
EP0007800A1 (en) Catalyst component and method of polymerisation
JPS6088011A (en) Polymerization of olefin
US4079175A (en) Method for the polymerization or copolymerization of α-olefin
JPS5831086B2 (en) Method for producing titanium trichloride catalyst component for α-olefin polymerization
JPH08134124A (en) Method of polymerizing olefin by using ziegler/natta catalyst
JPS5846129B2 (en) Method for producing highly crystalline olefin polymer
CN104140481B (en) It is a kind of to be used for catalytic component, the preparation method and applications of vinyl polymerization or combined polymerization
JPS6088010A (en) Polymerization of olefin
JPH0725927A (en) Polymerization of olefin
JPH058205B2 (en)
JPS5812886B2 (en) polyolefin innoseizohouhou
JPH0128049B2 (en)
JPH0347644B2 (en)
JPH0128048B2 (en)
JPH05194650A (en) Preparation of alpha-olefin polymer
JPH0778093B2 (en) Method for producing α-olefin polymer
JPH02175708A (en) Preparation of propylene homopolymer or copolymer
JPS60252608A (en) Recovery of diluent
JPS63186706A (en) Polymerization of olefin
JPH0347646B2 (en)
JPH0562885B2 (en)
JPS5825083B2 (en) Method for manufacturing polyolefin