JPS6160085B2 - - Google Patents

Info

Publication number
JPS6160085B2
JPS6160085B2 JP5542276A JP5542276A JPS6160085B2 JP S6160085 B2 JPS6160085 B2 JP S6160085B2 JP 5542276 A JP5542276 A JP 5542276A JP 5542276 A JP5542276 A JP 5542276A JP S6160085 B2 JPS6160085 B2 JP S6160085B2
Authority
JP
Japan
Prior art keywords
titanium
polymerization
titanium trichloride
ethylene
catalyst component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5542276A
Other languages
Japanese (ja)
Other versions
JPS52139184A (en
Inventor
Tetsuya Iwao
Heizo Sasaki
Akira Ito
Masahiro Jinno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP5542276A priority Critical patent/JPS52139184A/en
Priority to GR53342A priority patent/GR63148B/en
Priority to GB19013/77A priority patent/GB1544193A/en
Priority to CA277,885A priority patent/CA1097316A/en
Priority to PT66524A priority patent/PT66524B/en
Priority to MX169120A priority patent/MX145423A/en
Priority to BR7703149A priority patent/BR7703149A/en
Priority to YU1221/77A priority patent/YU40477B/en
Priority to FR7714920A priority patent/FR2352000A1/en
Priority to IT23588/77A priority patent/IT1104772B/en
Priority to US05/797,227 priority patent/US4187385A/en
Priority to NLAANVRAGE7705370,A priority patent/NL184005C/en
Priority to AT350477A priority patent/AT360751B/en
Priority to DE19772722150 priority patent/DE2722150A1/en
Publication of JPS52139184A publication Critical patent/JPS52139184A/en
Publication of JPS6160085B2 publication Critical patent/JPS6160085B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は改良された粒度分布を有する重合体を
生成するエチレン又はα−オレフイン類の重合方
法にかんする。 チーグラー型触媒を用いるエチレン、またはα
−オレフイン類の重合、または共重合は既知であ
る。また最も一般的なチーグラー型触媒は、チタ
ン化合物をふくむ触媒成分と有機アルミニウム化
合物成分とからなるものである。 さらにまた、チタン化合物をふくむ触媒成分を
粉砕して使用すると触媒性能が向上することも既
知である。 本発明は、特殊粉砕処理したチタン触媒成分と
有機アルミニウム化合物とからなるチーグラー型
触媒を用いるエチレン、またはα−オレフイン類
の重合に関するものである。 チタン触媒成分をボールミルなどを用いて粉砕
する従来の方法では、えられる粉砕生成物の粒度
分布の幅が広く、通常5ミクロン以下の微粒子を
10重量%以上ふくんでいる。 チタン化合物をふくむ触媒成分と有機アルミニ
ウム化合物とからなる重合触媒を用いるエチレ
ン、またはα−オレフイン類の重合または共重合
において、生成する重合物または共重合物の粒度
は、使用されるチタン触媒成分の粒度の影響を著
しく受ける。従来の方法で粉砕されたチタン触媒
成分は微粒子を多量にふくんでいるので、それを
用いて得られる重合物または共重合物も粒度分布
が広く、通常50ミクロン以下の微粉末を10ないし
30重量%ふくんでいる。 ポリエチレンまたはポリα−オレフインの製造
にさいし、生成ポリマーの粒度分布が広く、とく
に微粉末が多いと過、遠心分離などによる生成
ポリマーと溶媒との分離が困難となり、また散逸
によるロスも多くなることは乾燥工程、ペレツト
化工程においても同様である。従つてそれらを防
止するため余分な設備を設け複雑な製造操作を必
要とするので、その改善が望まれている。 粉砕チタン触媒成分の粒度を改良する方法が、
いくつかすでに提案されている。たとえば、三塩
化チタンまたは三塩化チタン組成物に少量の有機
エーテル類、またはそれと金属ハロゲン化物との
錯体を添加して共粉砕する方法(特公昭42−
3024、特公昭43−10065など)、ハロゲン化マグネ
シウムなどの固体マグネシウム化合物と四塩化チ
タン、または三塩化チタンとを共粉砕して固体表
面にそれらのチタン化合物を担持させるさいに、
少量の有機エーテル類とハロゲン化アルミニウム
の錯体、あるいはポリシロキサンを添加して共粉
砕する方法(特願昭49−35136、特開昭48−
21777)などがある。 これらの方法では、粉砕操作により微粒化する
と同時に凝集団粒化がおこり、粉砕生成物の粒度
が改良され、直径5ミクロン以下の微粒子は数重
量%程度まで減少する。 しかし、このような粉砕生成物も、重合反応に
使用するさいに、溶媒に懸濁し、ポンプなどを用
いる重合機への装入、また重合中のかくはん、な
どにより再び微粒子に分散するものがあり、その
ために微細な重合物または共重合物が生成し、粒
度分布が広くなるという欠点を有している。 本発明の目的は微粉末含有率の極めて少ない、
粒度分布の狭い重合物又は共重合物を生成する、
エチレン又はα−オレフイン類の重合方法を提供
することにある。 本発明による重合方法の特徴は、三塩化チタ
ン、三塩化チタン組成物、又はハロゲン化マグネ
シウムに四塩化チタンを担持した組成物を、これ
に対し約10重量%以下の少量のエチレン又はα−
オレフインを添加して一般式AlRnX3-n(こゝで
Rはアルキル又はアリール、Xは水素又はハロゲ
ン、mは1〜3である)で示される有機アルミニ
ウム化合物と共粉砕して得られるチタン成分と有
機アルミニウム化合物成分とからなるチーグラー
型触媒を用いることにある。 出発原料のチタン触媒成分は三塩化チタン又は
その組成物あるいは固体担体の表面に担持された
四塩化チタン、三塩化チタンまたはその組成物で
ある。 三塩化チタンまたは三塩化チタン組成物とは、
四塩化チタンを水素で還元してえられる三塩化チ
タン、四塩化チタンを金属で還元してえられる三
塩化チタンと金属ハライドとの共晶体、および四
塩化チタンをSi−H結合を有する化合物、または
有機アルミニウム化合物で還元してえられる三塩
化チタン組成物など、三塩化チタンまたは三塩化
チタンを主成分とするすべての三塩化チタン組成
物を意味する。 また、四塩化チタン、あるいは上記の三塩化チ
タンまたは三塩化チタン組成物を担持させる固体
担体としては、シリカ、アルミナ、シリカ・アル
ミナ、酸化硼素、マグネシウム化合物など広範囲
のものが用いられ、とくに限定されないが、マグ
ネシウム化合物、とくにハロゲン化マグネシウム
が好適である。これらの固体担体に上記チタン化
合物を担持させるには、両者を混合共粉砕するか
あるいは溶媒の存在または不存在下で、両者を加
熱反応させる、などの方法が通常行なわれてい
る。 上記の出発原料は、とくに予じめ微粉砕するこ
とにより次の共粉砕を有利に行なうことができ
る。 共粉砕において使用される一般式AlRnX3-n
(R、X、mは前記のとおり)の有機アルミニウ
ム化合物は、たとえばトリエチルアルミニウム、
トリイソブチルアルミニウム、ジエチルアルミニ
ウムモノクロライド、ジイソブチルアルミニウム
モノクロライド、ジイソプロピルアルミニウムモ
ノクロライド、ジエチルアルミニウムモノブロマ
イド、エチルアルミニウムセスキクロライドなど
があげられる。その使用量は出発原料中のチタン
1原子に対して0.01ないし100モルの範囲が好ま
しい。この有機アルミニウム化合物は出発原料を
予め微粉砕するさいに加えておいてもよい。 共粉砕において添加するエチレンまたはα−オ
レフインの量は出発原料に対し約10重量%以下で
ありその上限は通常約0.01重量%である。α−オ
レフインとしてはプロピレン、ブテン−1などの
低級α−オレフインが用いられる。これらは触媒
の存在下で重合させるモノマーと同種である必要
はない。 共粉砕の条件及び操作は昭和51年5月17日付で
同時に出願された、重合触媒成分の製造方法と題
する特願昭51−55423号に詳述されている。 上記のようにして調製されたチタン触媒成分は
直径5μ以下の微粒子が数重量%以下である。こ
れは出発チタン原料と有機アルミニウム化合物の
共粉砕にさいし微粒化と凝集団粒化が併行してお
こりそれと同時に共存するエチレン又はα−オレ
フインの重合により極く少量のポリオレフインが
生成しこれが一種の連結剤となり団粒化したチタ
ン成分粒子の再分散及び微粒化を防ぐものと考え
られる。 本発明の方法で用いるもう一つの触媒成分であ
る有機アルミニウム化合物としては、上記のチタ
ン触媒成分の調製で用いるものと同様な、一般式
AlRnX3-n(ただしR、X、mは前記と同じであ
る)で示される化合物が使用され、前記と同様な
化合物が例示される。 本発明の方法における、チタン触媒成分と有機
アルミニウム化合物成分の使用割合は広範囲に変
えることができるが、一般にはチタン触媒成分に
対する有機アルミニウム化合物成分の使用モル比
は1〜500程度が好ましい。 本発明の方法にはエチレン、α−オレフイン類
の単独重合のみならず、これらのモノマー共重
合、たとえばエチレンとプロピレン、ブテン−
1、ペンテン−1、ヘキセン−1、4−メチルペ
ンテン−1、プロピレンとブテン−1、ヘキセン
−1などの共重合もふくまれる。 本発明の方法による重合反応は従来の当該技術
において通常行なわれている方法および条件が採
用できる。 その際の重合温度は20〜300℃、好ましくは50
〜200℃の範囲であり、重合圧力は常圧〜200気
圧、好ましくは常圧〜150気圧の範囲である。 重合反応では一般に脂肪族、脂環族、芳香族の
炭化水素類、またはそれらの混合物を溶媒として
使用することができ、たとえばプロパン、ブタ
ン、ペンタン、ヘキサン、ヘプタン、シクロヘキ
サン、ベンゼン、トルエンなど、およびそれらの
混合物が好ましく用いられる。また液状のモノマ
ー自身を溶媒として用いる塊状重合法で行なうこ
ともできる。さらにまた溶媒が実質的に存在しな
い条件、すなわちガス状モノマーと触媒とを接触
させる、いわゆる気相重合法で行なうこともでき
る。 本発明の方法において生成するポリマーの分子
量は反応様式、触媒系、重合条件によつて変化す
るが、必要に応じて、たとえば、水素、ハロゲン
化アルキル、ジアルキル亜鉛などの添加によつて
制御することができる。 本発明によれば、微粉末含有率の極めて少な
い、粒度分布の狭き重合体又は共重合体が得られ
る。以下に、本発明を実施例により説明する。 チタン成分の製造例 1 四塩化チタンを高温で水素によつて還元してえ
た三塩化チタン30gを窒素気流中で直径12mmの鋼
球100個の入つた内容積約1のボツトに入れ、
30時間振動ミル粉砕した。 次にジエチルアルミニウムモノクロライド0.3
mlを加え5分間粉砕し、粉砕を続けながらプロピ
レン200mlを4時間で装入した。 このようにして得られた三塩化チタンの微粒子
含有率を以下に示す方法で測定した結果3.4wt%
であつた。 窒素で置換された直立管中に粉砕して得られた
三塩化チタンを入れ0.7cm/secの速度で窒素ガス
を下方より上方に15時間通した。これによつて直
立管から溢流した微粒子をそれに連結した集塵器
に捕集し、装入量に対する上記の捕集量の比で表
わし、粉砕生成物の微粒子含有率とした。 上記の粒度調整三塩化チタンを用いてプロピレ
ンの重合を行なつた。 実施例 1 内容積2のSUS−32製オートクレーブ中に窒
素雰囲気下でヘプタン1000ml、粒度調製三塩化チ
タン1.2g、ジエチルアルミニウムモノクロライ
ド2.0mlを装入した。 オートクレーブをプロピレンで置換したのち、
水素を分圧で0.5Kg/cm2まで装入した。 オートクレーブの内容物をかきまぜながら、加
熱して5分後に内部温度を70℃まで昇温し、70℃
で重合を継続した。重合中はプロピレンを連続的
に圧入して内部圧力を5Kg/cm2ゲージに保つた。 重合時間4時間でプロピレンの装入を止め、メ
タノール300mlを加えて触媒を分離し、483gのポ
リマーが得られた。 得られたポリマーの沸とうn−ヘプタン抽出残
(以下と略記する)は 82.3%、極限粘度数1.83、かさ比重は0.42g/
mlであり、重合反応の活性は101g/g−Ticl3
成物hr(以下g/g−cat.hrと略記する)であつ
た。 得られたポリマーパウダーを200meshふるいで
ふるつて200mesh以下の微粒を測定した結果
9.3wt%であつた。 比較例 1 チタン成分製造例1の方法に於て四塩化チタン
を高温で水素還元して得られた三塩化チタンを単
に34時間粉砕して、チタン成分製造例1と同様に
三塩化チタンの微粒を測定した結果18.3wt%であ
つた。 この三塩化チタンを用いて実施例1と同様に重
合を行なつたところ、生成ポリマーのは80.3
%、極限粘度数1.73、かさ比重0.38g/ml、
200mesh以下の微粒28.7%であり、重合活性は83
g/g−cat.hrであつた。 チタン成分製造例 2 四塩化チタンを塩化アルミニウムの存在下でア
ルミニウム粉末で還元し、その組成がほゞ
Ticl3・1/3Alcl3である共晶体を得た。この共晶体
30gをチタン成分製造例1と同様に30時間粉砕し
たのち、更にジエチルアルミニウムモノクロライ
ド0.3ml、エチレン100mlを用いて同様に処理し
た。 同様に微粒を測定した結果3.7%であつた。 実施例 2 この粒度調整三塩化チタン0.6g、ジエチルア
ルミニウムモノクロライド1.2mlを用いて実施例
1と同様に重合を行なつた。 生成ポリマーのは91.1%、極限粘度数1.68、
かさ比重0.43、200mesh以下の微粒7.8wt%であ
り、重合活性は265g/g−cat.hrであつた。 比較例 2 チタン成分製造例2と同様にして金属アルミニ
ウムで還元してえた三塩化チタン共晶体を単に
34hr粉砕した。同様に測定した微粒は21.3%であ
つた。 この三塩化チタンを用いて実施例2と同様に重
合を行なつたところ、生成ポリマーのは88.9
%、極限粘度数1.68、かさ比重0.41g/ml、
200mesh以下の微粒23.4%であつた。また重合活
性は232g/g−cat.hrであつた。 チタン成分製造例 3 チタン成分製造例2の方法に於て、粒度調整時
に使用するオレフインをエチレンに代えて200ml
のブテン−1を用いた以外は同様に行なつたとこ
ろ三塩化チタンの微粒は4.3%であつた。 実施例 3 上記のチタン成分を用いて重合で得られたポリ
プロピレンのは90.8%、極限粘度数1.77、かさ
比重0.42、200mesh以下の微粒8.3%であつた。
また本重合反応での活性は235g/g−eat.hrで
あつた。 チタン成分製造例 4 無水塩化マグネシウム29.4g、四塩化チタン
0.6gをチタン成分製造例1と同様に振動ミルで
20時間粉砕したのち、トリイソブチルアルミニウ
ム0.3mlを加え粉砕を続けながらエチレン50g/
hrの速度で4時間導入し粒度調整チタン組成物を
作つた。 同様にして微粒を測定したところ5.0wt%であ
つた。 実施例 4 上記チタン組成物とトリイソブチルアルミニウ
ムを触媒として、実施例1の方法に準じてエチレ
ンの重合を行つたところ生成ポリマーの200mesh
以下の微粒は3.8%であつた。 比較例 3 実施例4の方法においてエチレンによる粒度調
整を行わなかつた場合の粉砕チタン組成物の微粒
は18.7%、生成ポリエチレンの200mesh以下の微
粒は15.3%であつた。 比較例 4〜6 チタン成分製造例2の方法に於て共粉砕時に添
加するエチレンの量を変化させて同じ実験をくり
返して触媒を調製した。結果を表に示す。
The present invention is directed to a process for the polymerization of ethylene or alpha-olefins that produces polymers with improved particle size distribution. Ethylene using Ziegler type catalyst, or α
- Polymerization or copolymerization of olefins is known. The most common Ziegler type catalyst is composed of a catalyst component containing a titanium compound and an organoaluminum compound component. Furthermore, it is also known that catalytic performance is improved by using a pulverized catalyst component containing a titanium compound. The present invention relates to the polymerization of ethylene or α-olefins using a Ziegler type catalyst consisting of a specially pulverized titanium catalyst component and an organoaluminum compound. In the conventional method of pulverizing the titanium catalyst component using a ball mill or the like, the resulting pulverized product has a wide particle size distribution, and usually contains fine particles of 5 microns or less.
Contains more than 10% by weight. In the polymerization or copolymerization of ethylene or α-olefins using a polymerization catalyst consisting of a catalyst component containing a titanium compound and an organoaluminum compound, the particle size of the produced polymer or copolymer depends on the titanium catalyst component used. Significantly affected by particle size. Since the titanium catalyst component pulverized by the conventional method contains a large amount of fine particles, the polymer or copolymer obtained using it also has a wide particle size distribution, and usually contains fine powder of 50 microns or less.
Contains 30% by weight. When producing polyethylene or polyα-olefin, the particle size distribution of the produced polymer is wide, especially if there are many fine powders, it becomes difficult to separate the produced polymer from the solvent by filtration or centrifugation, and there is also a large amount of loss due to dissipation. The same applies to the drying process and pelletizing process. Therefore, in order to prevent these problems, it is necessary to provide extra equipment and perform complicated manufacturing operations, and therefore, improvements are desired. A method for improving the particle size of pulverized titanium catalyst components is
Some have already been proposed. For example, a method of co-pulverizing titanium trichloride or a titanium trichloride composition by adding a small amount of organic ether or a complex of it and a metal halide (Japanese Patent Publication No. 1973-
3024, Japanese Patent Publication No. 43-10065, etc.), when solid magnesium compounds such as magnesium halides and titanium tetrachloride or titanium trichloride are co-pulverized to support those titanium compounds on the solid surface,
A method of co-pulverization by adding a small amount of organic ethers and a complex of aluminum halide or polysiloxane (Japanese Patent Application No. 35136/1983, Japanese Patent Application No. 1983-1999)
21777). In these methods, agglomeration and agglomeration occur simultaneously with atomization through the pulverization operation, and the particle size of the pulverized product is improved, with the number of fine particles having a diameter of 5 microns or less being reduced to about several percent by weight. However, when such pulverized products are used in polymerization reactions, they may be suspended in a solvent and redispersed into fine particles by charging into a polymerization machine using a pump or stirring during polymerization. Therefore, it has the disadvantage that fine polymers or copolymers are produced and the particle size distribution becomes wide. The purpose of the present invention is to provide extremely low content of fine powder.
producing polymers or copolymers with narrow particle size distribution;
An object of the present invention is to provide a method for polymerizing ethylene or α-olefins. A feature of the polymerization method according to the present invention is that a small amount of ethylene or α-
It is obtained by adding olefin and co-pulverizing it with an organoaluminum compound represented by the general formula AlR n X 3-n (where R is alkyl or aryl, X is hydrogen or halogen, and m is 1 to 3). The purpose is to use a Ziegler type catalyst consisting of a titanium component and an organoaluminum compound component. The starting titanium catalyst component is titanium trichloride or a composition thereof, or titanium tetrachloride, titanium trichloride, or a composition thereof supported on the surface of a solid support. What is titanium trichloride or titanium trichloride composition?
Titanium trichloride obtained by reducing titanium tetrachloride with hydrogen, a eutectic of titanium trichloride and a metal halide obtained by reducing titanium tetrachloride with a metal, and a compound of titanium tetrachloride having an Si-H bond, It also means titanium trichloride or all titanium trichloride compositions containing titanium trichloride as a main component, such as titanium trichloride compositions obtained by reduction with organoaluminum compounds. Further, as the solid carrier for supporting titanium tetrachloride or the above-mentioned titanium trichloride or titanium trichloride composition, a wide range of materials can be used, including silica, alumina, silica/alumina, boron oxide, and magnesium compounds, and there are no particular limitations. However, magnesium compounds, particularly magnesium halides, are preferred. In order to support the above-mentioned titanium compound on these solid carriers, methods such as mixing and co-pulverizing the two or subjecting the two to a heating reaction in the presence or absence of a solvent are usually carried out. The abovementioned starting materials can advantageously be subjected to the subsequent co-pulverization, in particular by being pulverized beforehand. General formula AlR n X 3-n used in co-grinding
The organoaluminum compound (R,
Examples include triisobutylaluminum, diethylaluminum monochloride, diisobutylaluminum monochloride, diisopropylaluminum monochloride, diethylaluminium monobromide, and ethylaluminum sesquichloride. The amount used is preferably in the range of 0.01 to 100 mol per 1 atom of titanium in the starting material. This organoaluminum compound may be added when the starting material is pulverized in advance. The amount of ethylene or α-olefin added in co-grinding is about 10% by weight or less based on the starting material, and the upper limit is usually about 0.01% by weight. As the α-olefin, lower α-olefins such as propylene and butene-1 are used. These need not be the same type of monomers that are polymerized in the presence of the catalyst. The conditions and operation for co-pulverization are detailed in Japanese Patent Application No. 55423/1983, entitled Process for Producing Polymerization Catalyst Component, filed simultaneously on May 17, 1975. The titanium catalyst component prepared as described above contains fine particles with a diameter of 5 μm or less in an amount of several percent by weight or less. This is because during the co-pulverization of the starting titanium raw material and the organoaluminum compound, atomization and agglomeration occur simultaneously, and at the same time, a very small amount of polyolefin is produced by the polymerization of coexisting ethylene or α-olefin, which forms a type of linkage. It is thought that this prevents re-dispersion and atomization of the titanium component particles that have become agglomerated. The organoaluminum compound, which is another catalyst component used in the method of the present invention, has the same general formula as that used in the preparation of the titanium catalyst component described above.
A compound represented by AlR n X 3-n (wherein R, Although the ratio of the titanium catalyst component to the organoaluminum compound component used in the method of the present invention can be varied over a wide range, it is generally preferred that the molar ratio of the organoaluminum compound component to the titanium catalyst component is about 1 to 500. The method of the present invention involves not only homopolymerization of ethylene and α-olefins, but also copolymerization of these monomers, such as ethylene and propylene, butene-
It also includes copolymers of 1, pentene-1, hexene-1, 4-methylpentene-1, propylene and butene-1, hexene-1, and the like. For the polymerization reaction according to the method of the present invention, conventional methods and conditions commonly used in the art can be employed. The polymerization temperature at that time is 20 to 300℃, preferably 50℃.
-200°C, and the polymerization pressure is in the range of normal pressure to 200 atm, preferably in the range of normal pressure to 150 atm. In polymerization reactions, aliphatic, cycloaliphatic, aromatic hydrocarbons, or mixtures thereof, can generally be used as solvents, such as propane, butane, pentane, hexane, heptane, cyclohexane, benzene, toluene, etc. Mixtures thereof are preferably used. It is also possible to perform bulk polymerization using the liquid monomer itself as a solvent. Furthermore, it can also be carried out under conditions in which a solvent is substantially absent, that is, by a so-called gas phase polymerization method in which a gaseous monomer and a catalyst are brought into contact. The molecular weight of the polymer produced in the method of the present invention varies depending on the reaction mode, catalyst system, and polymerization conditions, but can be controlled by, for example, adding hydrogen, alkyl halide, dialkylzinc, etc., as necessary. I can do it. According to the present invention, a polymer or copolymer with a narrow particle size distribution and an extremely low fine powder content can be obtained. The present invention will be explained below using examples. Production example of titanium component 1 30 g of titanium trichloride obtained by reducing titanium tetrachloride with hydrogen at high temperature was placed in a bottle with an internal volume of about 1 containing 100 steel balls with a diameter of 12 mm in a nitrogen stream.
Vibratory mill grinding for 30 hours. Then diethyl aluminum monochloride 0.3
ml was added and ground for 5 minutes, and while continuing grinding, 200 ml of propylene was charged over 4 hours. The fine particle content of titanium trichloride thus obtained was measured using the method shown below, and the result was 3.4wt%.
It was hot. The pulverized titanium trichloride was placed in a standpipe purged with nitrogen, and nitrogen gas was passed from the bottom to the top at a rate of 0.7 cm/sec for 15 hours. As a result, the fine particles overflowing from the standpipe were collected in a dust collector connected thereto, and expressed as the ratio of the above collected amount to the charged amount, which was taken as the fine particle content of the pulverized product. Polymerization of propylene was carried out using the above particle size-adjusted titanium trichloride. Example 1 1000 ml of heptane, 1.2 g of titanium trichloride for particle size adjustment, and 2.0 ml of diethylaluminium monochloride were placed in a SUS-32 autoclave having an internal volume of 2 under a nitrogen atmosphere. After replacing the autoclave with propylene,
Hydrogen was charged to a partial pressure of 0.5 Kg/cm 2 . While stirring the contents of the autoclave, heat the autoclave and raise the internal temperature to 70℃ after 5 minutes.
Polymerization was continued. During the polymerization, propylene was continuously injected to maintain the internal pressure at 5 kg/cm 2 gauge. After 4 hours of polymerization, charging of propylene was stopped, and 300 ml of methanol was added to separate the catalyst, yielding 483 g of polymer. The boiling n-heptane extraction residue (abbreviated below) of the obtained polymer was 82.3%, the intrinsic viscosity was 1.83, and the bulk specific gravity was 0.42 g/
ml, and the activity of the polymerization reaction was 101 g/g-Ticl 3 composition hr (hereinafter abbreviated as g/g-cat.hr). Results of sifting the obtained polymer powder through a 200mesh sieve and measuring fine particles of 200mesh or less
It was 9.3wt%. Comparative Example 1 Titanium trichloride obtained by hydrogen reduction of titanium tetrachloride at high temperature in the method of Titanium Component Production Example 1 was simply ground for 34 hours to produce fine particles of titanium trichloride in the same manner as in Titanium Component Production Example 1. The result was 18.3wt%. When polymerization was carried out in the same manner as in Example 1 using this titanium trichloride, the resulting polymer was 80.3
%, intrinsic viscosity number 1.73, bulk specific gravity 0.38g/ml,
28.7% of fine particles less than 200mesh, polymerization activity is 83
g/g-cat.hr. Titanium component production example 2 Titanium tetrachloride is reduced with aluminum powder in the presence of aluminum chloride, and its composition is approximately
A eutectic of Ticl 3 and 1/3 Alcl 3 was obtained. This eutectic
After pulverizing 30 g for 30 hours in the same manner as in Titanium Component Production Example 1, it was further treated in the same manner using 0.3 ml of diethylaluminum monochloride and 100 ml of ethylene. Similarly, fine particles were measured and found to be 3.7%. Example 2 Polymerization was carried out in the same manner as in Example 1 using 0.6 g of this particle size-adjusted titanium trichloride and 1.2 ml of diethylaluminum monochloride. The resulting polymer is 91.1%, with an intrinsic viscosity of 1.68,
The bulk specific gravity was 0.43, the fine particles of 200 mesh or less were 7.8 wt%, and the polymerization activity was 265 g/g-cat.hr. Comparative Example 2 A titanium trichloride eutectic obtained by reducing with metal aluminum in the same manner as in Titanium Component Production Example 2 was simply
34hr crushed. The percentage of fine particles measured in the same manner was 21.3%. When polymerization was carried out in the same manner as in Example 2 using this titanium trichloride, the resulting polymer was 88.9
%, intrinsic viscosity number 1.68, bulk specific gravity 0.41g/ml,
Fine particles of 200 mesh or less accounted for 23.4%. The polymerization activity was 232 g/g-cat.hr. Titanium component production example 3 In the method of titanium component production example 2, the olefin used for particle size adjustment was replaced with ethylene and 200ml was used.
The same procedure was carried out except that butene-1 was used, and the amount of titanium trichloride fine particles was 4.3%. Example 3 Polypropylene obtained by polymerization using the above titanium component had a content of 90.8%, an intrinsic viscosity of 1.77, a bulk specific gravity of 0.42, and 8.3% of fine particles of 200 mesh or less.
The activity in the main polymerization reaction was 235 g/g-eat.hr. Titanium component production example 4 Anhydrous magnesium chloride 29.4g, titanium tetrachloride
0.6g in a vibrating mill in the same way as titanium component production example 1.
After grinding for 20 hours, add 0.3ml of triisobutylaluminum and continue grinding while adding 50g of ethylene/
hr rate for 4 hours to produce a particle-sized titanium composition. When the fine particles were measured in the same manner, it was found to be 5.0 wt%. Example 4 Ethylene polymerization was carried out according to the method of Example 1 using the above titanium composition and triisobutylaluminum as a catalyst.
The following fine particles were 3.8%. Comparative Example 3 When the particle size adjustment using ethylene was not carried out in the method of Example 4, the fine particles of the pulverized titanium composition was 18.7%, and the proportion of fine particles of 200 mesh or less in the produced polyethylene was 15.3%. Comparative Examples 4 to 6 Catalysts were prepared by repeating the same experiment in the method of Titanium Component Production Example 2 by varying the amount of ethylene added during co-pulverization. The results are shown in the table.

【表】 比較例4A、5A、で調製した触媒を用いて重合
を行なつた結果を表2に示す。比較例5の場合触
媒成分の微粒は減少するが粉砕物中にブロツク状
物が生成しかさ比重が低下してしまい、これを用
いて重合したポリマーも同様であり、三塩化チタ
ンの形状が不良になつていると考えられる。
[Table] Table 2 shows the results of polymerization using the catalysts prepared in Comparative Examples 4A and 5A . In the case of Comparative Example 5, the number of fine particles of the catalyst component was reduced, but block-like substances were formed in the pulverized material, and the bulk specific gravity was decreased.The same was true for the polymer polymerized using this, and the shape of titanium trichloride was poor. It is thought that it has become.

【表】【table】

Claims (1)

【特許請求の範囲】 1 三塩化チタン、三塩化チタン組成物、又はハ
ロゲン化マグネシウムに四塩化チタンを担持した
組成物を、これに対し約10重量%以下の少量のエ
チレン又はα−オレフインを添加して、一般式
AlRnX3-n(こゝでRはアルキル基又はアリール
基を示し、Xは水素またはハロゲンを表わし、m
は1〜3である)で示される有機アルミニウム化
合物と共粉砕することを特徴とする、エチレンま
たはα−オレフイン類重合用触媒成分の製造方
法。 2 三塩化チタン、三塩化チタン組成物、又はハ
ロゲン化マグネシウムに四塩化チタンを担持した
組成物を予じめ微粉砕する特許請求の範囲第1項
記載の触媒成分の製造方法。 3 上記エチレン又はα−オレフインを約0.01な
いし10重量%の範囲で添加する特許請求の範囲第
1項記載の触媒成分の製造方法。
[Claims] 1. Titanium trichloride, a titanium trichloride composition, or a composition in which titanium tetrachloride is supported on magnesium halide, to which a small amount of about 10% by weight or less of ethylene or α-olefin is added. Then, the general formula
AlR n X 3-n (where R represents an alkyl group or an aryl group, X represents hydrogen or halogen, m
is 1 to 3) A method for producing a catalyst component for polymerizing ethylene or α-olefins, the method comprising co-pulverizing the catalyst component with an organoaluminum compound represented by formula (1 to 3). 2. The method for producing a catalyst component according to claim 1, wherein titanium trichloride, a titanium trichloride composition, or a composition in which titanium tetrachloride is supported on magnesium halide is pulverized in advance. 3. The method for producing a catalyst component according to claim 1, wherein the ethylene or α-olefin is added in an amount of about 0.01 to 10% by weight.
JP5542276A 1976-05-17 1976-05-17 Polymerization of ethylene or alpha-olefin Granted JPS52139184A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP5542276A JPS52139184A (en) 1976-05-17 1976-05-17 Polymerization of ethylene or alpha-olefin
GR53342A GR63148B (en) 1976-05-17 1977-04-30 Process for the polymerization of ethylene of a-olefins and catalyst therefor
GB19013/77A GB1544193A (en) 1976-05-17 1977-05-06 Polymerisation of olefins and catalyst component therefor
CA277,885A CA1097316A (en) 1976-05-17 1977-05-06 PROCESS FOR THE POLYMERIZATION OF ETHYLENE OR .alpha.- OLEFINS AND CATALYST THEREFOR
PT66524A PT66524B (en) 1976-05-17 1977-05-06 Process for the polymerization of ethylene or alpha-olefins and a catalyst for the same
MX169120A MX145423A (en) 1976-05-17 1977-05-13 IMPROVED PROCEDURE FOR THE PREPARATION OF A CATALYST FOR THE POLYMERIZATION OF STYLENE AND / OL-OLEPHINS
BR7703149A BR7703149A (en) 1976-05-17 1977-05-16 PROCESS FOR POLYMERIZATION OF ETHYLENE OR ALPHA-OLEFINS AND CATALYST FOR THE SAME
YU1221/77A YU40477B (en) 1976-05-17 1977-05-16 Process for obtaining catalysts used in the polymerisation of alpha-olefines
FR7714920A FR2352000A1 (en) 1976-05-17 1977-05-16 PROCESS FOR POLYMERIZATION OF ETHYLENE OR A-OLEFINS USING TITANIUM AND ALUMINUM-BASED CATALYZERS AND NEW PRODUCTS THUS OBTAINED AT HIGH STEREOREGULARITY
IT23588/77A IT1104772B (en) 1976-05-17 1977-05-16 PROCEDURE FOR THE POLYMERIZATION OF ETHYLENE AND / OR ALFA-OLEFINE, AND RELATED CATALYST
US05/797,227 US4187385A (en) 1976-05-17 1977-05-16 Process for the polymerization of ethylene or alpha-olefins and catalyst therefor
NLAANVRAGE7705370,A NL184005C (en) 1976-05-17 1977-05-16 PROCESS FOR PREPARING A CATALYST FOR POLYMERIZING ETHENE AND / OR ALFA OLEFINS AND POLYMERIZATION TO BE CARRIED OUT.
AT350477A AT360751B (en) 1976-05-17 1977-05-16 METHOD FOR POLYMERIZING AETHYLENE AND / OR ALPHA OLEFINES
DE19772722150 DE2722150A1 (en) 1976-05-17 1977-05-16 PROCESS AND CATALYST FOR THE MANUFACTURING OF POLYOLEFINS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5542276A JPS52139184A (en) 1976-05-17 1976-05-17 Polymerization of ethylene or alpha-olefin

Publications (2)

Publication Number Publication Date
JPS52139184A JPS52139184A (en) 1977-11-19
JPS6160085B2 true JPS6160085B2 (en) 1986-12-19

Family

ID=12998128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5542276A Granted JPS52139184A (en) 1976-05-17 1976-05-17 Polymerization of ethylene or alpha-olefin

Country Status (1)

Country Link
JP (1) JPS52139184A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS603324B2 (en) * 1978-12-28 1985-01-28 三井化学株式会社 Method for producing ethylene copolymer
FR2689133A1 (en) * 1992-03-27 1993-10-01 Atochem Elf Sa Catalyst for the polymerization of olefins, process for obtaining it.

Also Published As

Publication number Publication date
JPS52139184A (en) 1977-11-19

Similar Documents

Publication Publication Date Title
US7348383B2 (en) Spray-dried, mixed metal ziegler catalyst compositions
JPH07119257B2 (en) Method for polymerizing ethylene using chromium oxide catalyst
EP1778746A1 (en) Robust spray-dried ziegler-natta procatalyst and polymerization process employing same
WO2006020623A1 (en) Robust spray-dried ziegler-natta procatalyst and polymerization process employing same
EP0007800A1 (en) Catalyst component and method of polymerisation
JPH09118790A (en) Powder of polymer or copolymer of one or more olefins mixed with powdery inorganic substance
JPH03290410A (en) Catalytic composition for olefin polymerization activated by dimethyl aluminium chloride
JPS6338363B2 (en)
JPS5912685B2 (en) Polymerization method of α-alkenes
CA1169842A (en) Polymerization of olefins
JPH0714977B2 (en) Method for dimerizing ethylene and simultaneously copolymerizing dimerization product with ethylene
JPH02107605A (en) Catalyst component
EP0014337A2 (en) Catalyst, catalyst composition and process for the polymerization of olefins
CA1219996A (en) Process for preparing polyolefins
JPS6160085B2 (en)
US4158088A (en) Process for the polymerization of ethylene or α-olefins and catalyst therefor
US4525552A (en) Process for producing polyolefins
JPS6026407B2 (en) Method for producing ethylene copolymer
JPS5928570B2 (en) Method for producing polymerization catalyst component
CA1118148A (en) Preparation of high density ethylene polymers in fluid bed reactor
JPS58225105A (en) Preparation of improved ethylenic polymer
JPS6363561B2 (en)
JPS5835522B2 (en) Stereoregular polymerization method of α↓-olefin
JPH04304208A (en) Method of (co)polymerization of ethylene
KR840001168B1 (en) Titanium tricheoride catalytic component