JPS6079016A - Production of supported transition metal catalyst - Google Patents

Production of supported transition metal catalyst

Info

Publication number
JPS6079016A
JPS6079016A JP18587283A JP18587283A JPS6079016A JP S6079016 A JPS6079016 A JP S6079016A JP 18587283 A JP18587283 A JP 18587283A JP 18587283 A JP18587283 A JP 18587283A JP S6079016 A JPS6079016 A JP S6079016A
Authority
JP
Japan
Prior art keywords
transition metal
metal catalyst
titanium halide
support
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18587283A
Other languages
Japanese (ja)
Other versions
JPH0471086B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP18587283A priority Critical patent/JPS6079016A/en
Publication of JPS6079016A publication Critical patent/JPS6079016A/en
Publication of JPH0471086B2 publication Critical patent/JPH0471086B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To produce the titled catalyst free of coarse particles in good efficiency, by classifying a specified copulverizate, allowing the fine particles as such to support a titanium halide and, after adding a halohydrocarbon and copulverizing the mixture, allowing the product to support a titanium halide. CONSTITUTION:A magnesium halide (e.g., MgCl2) and an organic compound (e.g., ethyl benzoate) are classified, the undersize as such is allowed to support a titanium halide (e.g., TiCl4), and the oversize is mixed and copulverized with a halohydrocarbon (e.g., trichloroethane), and then allowed to support a titanium halide. The titted catalyst is produced in this way. When the coarse particles are copulverized in the presence of a halohydrocarbon, the ultrafine partile fraction does not substantially increases, and the activity can be improved. Therefore, when it is used in the polymerization of an alpha-olefin, a polyolefin of improved stereoregularity can be obtained.

Description

【発明の詳細な説明】 本発明は担体伺遷移金属触媒の製造法に関する。[Detailed description of the invention] The present invention relates to a method for producing a supported transition metal catalyst.

詳し≦はα−オレフィンの重合用として適した担体付遷
移金属触媒の製造法に関する。
Details≦ relate to a method for producing a supported transition metal catalyst suitable for polymerizing α-olefins.

遷移金属当りのポリオレフィンの収率な高める方法につ
いてはチーグラー・ナツタによる触媒の発明以来さまざ
まの方法で行われているが中でも特公昭39−1210
5号で提案されたハロゲン化金属にハロゲン化チタンを
担持して触媒を得る方法は遷移金属当りのポリオレフィ
ンの収率を大幅に高めることが可能であり、数多くの改
良法が提案されている。
Various methods have been used to increase the yield of polyolefin per transition metal since the invention of catalysts by Ziegler and Natsuta.
The method proposed in No. 5 to obtain a catalyst by supporting titanium halide on a metal halide can greatly increase the yield of polyolefin per transition metal, and many improved methods have been proposed.

特に、ここ千年の触媒性能の向上は目覚しく遷移金属当
りのポリオレフィンの収率はもちろん、遷移金属触媒当
り(担体を含めた触媒色り)の収率が向上し、遷移金属
触媒当り敵方y / y−遷移金属触媒の高性能のもの
となっている。
In particular, the improvement in catalyst performance over the past thousand years has been remarkable, and not only the yield of polyolefin per transition metal, but also the yield per transition metal catalyst (catalyst color including carrier) has improved, and the yield per transition metal catalyst has improved. It is a high performance y-transition metal catalyst.

一般にポリオレフィンの重合は溶液粘度の問題、重合熱
の除去の問題から液状媒体中、或は気相媒体中でスラリ
ー状態で行われる。スラリー状態での重合に於て、ポリ
オレフィンは粒状で存在するため粒子の巨大なもの或は
微粒のものはない方が良く中でも巨大な粒子が存在する
と重合槽とか配管とかの装置の狭い部分に溜り場合によ
っては、閉部したりする問題があった。この閉塞の問題
は、ポリオレフィンの重合のように連続で製造する方法
に於てはプラント全体の停止にもつながる重大な問題で
ある。これに対する対処の方法としては、遷移金属触媒
の大きさと、ポリオレフィンの粒子の大きさが相関する
ことから遷移金属触媒を分級し、一定以上の粒子を除去
すれば良い。中でも担キ 体の段階で分級するのが操作的にも比較的平であり好ま
しい。しかしながら分級すると一定以上の大きさの担体
は無駄になり、又、担体は各種の有機物を含有している
ため産業廃棄物として処理しなければならず好ましくな
い。
Polyolefin polymerization is generally carried out in a slurry state in a liquid medium or a gaseous medium due to problems with solution viscosity and removal of polymerization heat. During polymerization in a slurry state, polyolefin exists in the form of particles, so it is better not to have large or fine particles.If large particles are present, they will accumulate in narrow parts of equipment such as polymerization tanks and piping. In some cases, there was a problem that the parts would close. This clogging problem is a serious problem in continuous production methods such as polyolefin polymerization, which can lead to the shutdown of the entire plant. To deal with this problem, since the size of the transition metal catalyst and the size of the polyolefin particles are correlated, the transition metal catalyst may be classified to remove particles larger than a certain level. Among these, it is preferable to classify the carrier at the carrier stage because it is relatively easy to operate. However, when classified, carriers larger than a certain size are wasted, and since the carriers contain various organic substances, they must be disposed of as industrial waste, which is not preferable.

本発明者らは、上記問題について鋭意検討した結果特定
の方法を行うことによって担体を無駄にすることな(遷
移金属触媒が得られることを見い出し本発明を完成した
As a result of intensive study on the above problem, the present inventors discovered that a transition metal catalyst could be obtained without wasting the carrier by carrying out a specific method, and completed the present invention.

本発明の目的は効率良く相体付遷移金属触媒を製造する
方法を提供することにある。
An object of the present invention is to provide a method for efficiently producing a phased transition metal catalyst.

本発明は、ハロゲン化マダイ・シウムと有機化合物な共
粉砕して得た相体にハロゲン化チタンを担持して相体付
遷移金属触媒を製造する方法に於て、担体として共粉砕
物を分級し微粒はそのままハロゲン化チタンを担持し、
粗粒はハロゲン化炭化水素を添加して共粉砕した後ハロ
ゲン化チタンを担持することを特徴とする担体付遷移金
属触媒の製造方法に関する。
The present invention is a method for producing a phased transition metal catalyst by supporting a titanium halide on a phase obtained by co-pulverizing a red sea bream sium halide and an organic compound, in which the co-pulverized product is classified as a carrier. The fine particles directly support titanium halide,
The present invention relates to a method for producing a supported transition metal catalyst, characterized in that the coarse particles are co-pulverized with the addition of a halogenated hydrocarbon and then supported on a titanium halide.

本発明に於て/%ロゲン化マグネシウムとしては塩化マ
グネシウム、臭化マグネシウムが挙げられるが中でも塩
化マグネシウムが好ましい。
In the present invention, magnesium chloride may include magnesium chloride and magnesium bromide, with magnesium chloride being preferred.

又、有機化合物としては公知の)・ロゲン化マグネシウ
ムの担体な製造する際に用いられた種々の化合物が適用
可能であるが、中でもC−O結合含有化合物が好ましく
用いられる。共粉砕方法は公知の各種の装置、方法を採
用し得るが中でもボールミル、振動ミルによる共粉砕が
好ましい。
In addition, as organic compounds, various compounds used in the production of carriers of magnesium rogenide (known in the art) can be used, and among them, C--O bond-containing compounds are preferably used. For the co-pulverization method, various known devices and methods can be employed, but co-pulverization using a ball mill or a vibration mill is particularly preferred.

本発明に於ては上記操作で得た共粉砕物は分級され、粗
大粒子が分離される。この分級で除去されるべき共粉砕
物の粒径は、通常重合プロセスで好ましくないポリオレ
フィンの粗大粒子径は5 +ms程度であり、これは例
えば担体付遷移金属触媒当り2万2/2のポリオレフィ
ンの収率があればほぼ01□の担体付遷移金属触媒粒径
に相当する。従って担体付遷移金属触媒当りの収率が例
えばW2/2とすると分級除去されるべき共粉砕物の粒
径Rは分級の方法は公知の多くの方法が採用可能であり
、例えば適当な口開のふるいで分級する方法、或は、気
流輸送プロセスを利用した分級ナイフロン如よる分級な
どが挙げられる。
In the present invention, the co-pulverized product obtained by the above operation is classified to separate coarse particles. The particle size of the co-pulverized material to be removed in this classification is usually about 5 + ms, which is the coarse particle size of polyolefin which is undesirable in the polymerization process. The yield corresponds to a particle size of approximately 01□ of supported transition metal catalyst. Therefore, if the yield per supported transition metal catalyst is, for example, W2/2, the particle size R of the co-pulverized material to be classified and removed can be determined by many known classification methods. Examples include a method of classification using a sieve, or a classification method using a classification knife using an air flow transport process.

分級によって分離された粗大粒子がない共粉砕物はハロ
ゲン化チタンが担持される。一方分級された粗大粒子は
、さらに前述のボールミル又は振動ミル等で粉砕し粗大
粒子は細くされる。この際粗大共粉砕物粒子のみを粉砕
し、ハロゲン化チタンを担持して得られた触媒を用いて
重合すると超微細粒子が増加し好ましくなく、又、α−
オレフィンの重合に用いる場合には得られるポリオレフ
ィンの立体規則性が低下する。これに対して粗大粒子を
ハロゲン化炭化水素の共存下で共粉砕すると超微細粒子
もほとんど増加せず又、活性も向上し、しかもα−オレ
フィンの重合に用いる場合にも得られるポリオレフィン
の立体規則性が向上する。粗大粒子に共存させて共粉砕
するに際して添加するハロゲン化炭化水素の量は重量比
で粗大粒子1に対して0.01〜o5、好ましくは0.
05〜o2程度である。共粉砕に要する時間は粉砕器の
形状等によって相異し特定できないが初めの共粉砕に要
した時間の1/3〜1/1oの時間で充分である。
The co-pulverized product separated by classification and free of coarse particles carries titanium halide. On the other hand, the classified coarse particles are further pulverized using the aforementioned ball mill or vibration mill, etc. to make the coarse particles fine. At this time, if only coarse co-pulverized particles are pulverized and polymerized using a catalyst obtained by supporting titanium halide, the number of ultrafine particles will increase, which is undesirable.
When used in the polymerization of olefins, the stereoregularity of the resulting polyolefin is reduced. On the other hand, when coarse particles are co-pulverized in the coexistence of a halogenated hydrocarbon, the number of ultrafine particles hardly increases, the activity is improved, and the stereoregularity of the polyolefin obtained when used in the polymerization of α-olefins is also improved. Improves sex. The amount of halogenated hydrocarbon added when co-pulverizing the coarse particles is 0.01 to 0.05, preferably 0.01 to 1 of the coarse particles, in terms of weight ratio.
It is about 05 to o2. The time required for co-pulverization varies depending on the shape of the crusher and cannot be specified, but a time of 1/3 to 1/1 of the time required for the initial co-pulverization is sufficient.

用いられるハロゲン化炭化水素としては、塩化メチレン
、二塩化エチレン、トリクロロエタン、塩化フロパン、
ジクロロプロパン、トリクロロプロパン、α、α、α−
トリクロロトルエン、ナト脂肪族、芳香族ハロゲン化炭
化水素が用いられるが好ましくは室温で液状のものであ
る。
The halogenated hydrocarbons used include methylene chloride, ethylene dichloride, trichloroethane, furopane chloride,
Dichloropropane, trichloropropane, α, α, α-
Trichlorotoluene, nathoaliphatic and aromatic halogenated hydrocarbons are used, preferably those which are liquid at room temperature.

本発明の方法を適用することVCより、粗大粒子のない
担体付遷移金属触媒を収率より与えることができ工業的
に価値が高い。
By applying the method of the present invention, a supported transition metal catalyst free of coarse particles can be obtained in higher yield than VC, and it is of high industrial value.

以下に実施例を挙げ本発明をさらに具体的に説明する。EXAMPLES The present invention will be explained in more detail with reference to Examples below.

実験例1 イ)触媒の製造 水分0.4 wt%含有する塩化マグネシウム3Or、
オルソ酢酸エチル4.5ml、 1.2−ジクロロエタ
/3−を直径12朋のステンレス製ボール80個入れた
ポットに入れ40時間粉砕した。この操作を繰り返し共
粉砕物を1にり得た。共粉砕物5002を0074藺の
口開の金f:目に乗せ共粉砕物をかきまわしながら全卵
上と下に分離した。金禰上としてろ57得た。
Experimental Example 1 a) Production of catalyst Magnesium chloride 3Or containing 0.4 wt% water,
4.5 ml of orthoethyl acetate and 1,2-dichloroethane/3- were placed in a pot containing 80 stainless steel balls with a diameter of 12 mm and ground for 40 hours. This operation was repeated to obtain 1 co-pulverized product. The co-pulverized product 5002 was placed on the open-mouth gold eyes of 0074 strawberries, and the co-pulverized product was stirred to separate the top and bottom parts of the whole egg. I got 57 as Kinnejo.

上で用いた粉砕機を用いて全卵上201と1,2−ジク
ロロエタン3m7B、及び金網下202だけでそれぞれ
5時間共粉砕した。
Using the crusher used above, the whole egg was co-pulverized with 3 m7B of 1,2-dichloroethane (201) and the wire mesh (202) for 5 hours, respectively.

上記で得られた共粉砕物、金網下(a)、金匍上+1.
2−ジクロロエタン共粉砕(bl、金量上粉砕(C)、
金線上(d)の4種について、それぞれ107を200
コの丸底フラスコに入れ、四塩化チタンを50−加え8
0℃で1時間攪拌下で処理し次いでID0rnlのn−
へブタンで固体部分を5回洗浄し、さらにn−へブタン
を抜き出した後四塩化チタン50+++1!を加え80
℃で1時間攪拌下で処理し、次いで固体部分を100m
6のn−へブタンで7回洗浄し、さらにn−へブタン5
0m1を加え担体付遷移金属触媒とした。
Co-pulverized product obtained above, bottom of wire mesh (a), top of wire mesh +1.
2-dichloroethane co-pulverization (bl, gold-based grinding (C),
For the four types on the gold line (d), 107 and 200 respectively
Put it in a round bottom flask and add 50% of titanium tetrachloride.
Treated under stirring for 1 hour at 0°C and then treated with n-
After washing the solid portion with hebutane five times and extracting n-hebutane, titanium tetrachloride 50+++1! Add 80
℃ for 1 hour under stirring, then the solid portion was
Wash 7 times with n-hebutane 6, and then wash with n-hebutane 5
0ml was added to prepare a supported transition metal catalyst.

口)重合反応 十分に乾燥し窒素で置換した内容積5tのオートクレー
ブを準備する。十分に乾燥し窒素置換した200−のフ
ラスコに乾燥し窒素置換したn−ヘプタン5〇−人れジ
エチルアルミニウムクロライド0.128−1p−)ル
イル酸メチル006−、トリエチルアルミニウム0.0
8rntイ)で得た触媒50■ケ加え混合した触媒スラ
リーを上記オートクレーブに入れ、次いでプロピレン1
.511Ji、水素0.6 Nt入れオートクレーブを
加熱することにより内温75℃で2時間重合した。次い
で未反応のプロピレンを排出し得られたポリプロピレン
パウダーを取り出し60℃で10時間減圧下に乾燥し秤
量した。又、パウダーの極限粘度数(以下ηと略記13
5℃テトラリン溶液で測定)沸騰n−へブタン抽出残率
(以下IIと略記、ソックスレー抽出器で沸騰n−へブ
タンて算出)、かさ比重及び粒度分布(米国タイラーメ
ッシュ)′ff:測定した、結果は表に示す。
1) Polymerization reaction Prepare an autoclave with an internal volume of 5 tons that is sufficiently dried and purged with nitrogen. N-heptane, which was dried and purged with nitrogen, was placed in a 200-ml flask that had been thoroughly dried and purged with nitrogen.
The catalyst slurry obtained by adding 50 cm of the catalyst obtained in step 1) was placed in the above autoclave, and then 1 part of propylene was added to the mixed catalyst slurry.
.. 511Ji and 0.6 Nt of hydrogen were heated in an autoclave to conduct polymerization at an internal temperature of 75° C. for 2 hours. Next, unreacted propylene was discharged, and the resulting polypropylene powder was taken out, dried under reduced pressure at 60° C. for 10 hours, and weighed. In addition, the intrinsic viscosity number of the powder (hereinafter abbreviated as η13
(measured with a tetralin solution at 5°C) boiling n-hebutane extraction residue (hereinafter abbreviated as II, calculated using boiling n-hebutane in a Soxhlet extractor), bulk specific gravity and particle size distribution (Tyler mesh, USA)'ff: Measured, The results are shown in the table.

実験例2 共粉砕を塩化マグ坏シウム30F、安息香酸エチル3m
l!で行った他は実験1と同様にした、但し、金4!1
上は約10%であった。
Experimental Example 2 Co-pulverization of magnicium chloride 30F and ethyl benzoate 3M
l! The procedure was the same as Experiment 1, except that gold 4!
The upper limit was about 10%.

実験例3−、b、4−b 実M例1−’bで1,2−ジクロロエタン3rnlに変
えて1,3−ジクロロエタンくンを用いた他は実験例1
、−bと同様にした(3−b)、実験例2−bで1.2
−ジクロロエタン37!にかえて1,1.1−)ジクロ
ロエタンを用いた他は実験例2−bと同様にした(4−
b)結果は表に示す。
Experimental Examples 3-, b, 4-b Experimental Example 1 except that 1,3-dichloroethane was used instead of 3rnl of 1,2-dichloroethane in Actual M Example 1-'b
, the same as in -b (3-b), 1.2 in Experimental Example 2-b
-Dichloroethane 37! The procedure was the same as in Experimental Example 2-b except that 1,1.1-) dichloroethane was used instead of (4-
b) Results are shown in the table.

Claims (1)

【特許請求の範囲】[Claims] ハロゲン化マグネシウムと有機化合物を共粉砕して得た
相体にハロゲン化チタンを担持して担体付遷移金属触媒
を製造する方法に於て、担体として共粉砕物を分級し微
粒はそのまま・・ロゲン化チタンを担持し、粗粒はハロ
ゲン化炭化水素を添加して共粉砕した後ハロゲン化チタ
ンを担持することを特徴とする担体付遷移金属触媒の製
造方法。
In the method of manufacturing a supported transition metal catalyst by supporting titanium halide on a phase obtained by co-pulverizing magnesium halide and an organic compound, the co-pulverized product is classified as a carrier, and the fine particles are left as they are... 1. A method for producing a supported transition metal catalyst, characterized in that the coarse particles are co-pulverized with the addition of a halogenated hydrocarbon and then supported on the titanium halide.
JP18587283A 1983-10-06 1983-10-06 Production of supported transition metal catalyst Granted JPS6079016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18587283A JPS6079016A (en) 1983-10-06 1983-10-06 Production of supported transition metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18587283A JPS6079016A (en) 1983-10-06 1983-10-06 Production of supported transition metal catalyst

Publications (2)

Publication Number Publication Date
JPS6079016A true JPS6079016A (en) 1985-05-04
JPH0471086B2 JPH0471086B2 (en) 1992-11-12

Family

ID=16178351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18587283A Granted JPS6079016A (en) 1983-10-06 1983-10-06 Production of supported transition metal catalyst

Country Status (1)

Country Link
JP (1) JPS6079016A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586804A (en) * 1978-12-26 1980-07-01 Mitsui Petrochem Ind Ltd Preparation of ethylene copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586804A (en) * 1978-12-26 1980-07-01 Mitsui Petrochem Ind Ltd Preparation of ethylene copolymer

Also Published As

Publication number Publication date
JPH0471086B2 (en) 1992-11-12

Similar Documents

Publication Publication Date Title
JP2598881B2 (en) Method for producing solid Ziegler catalyst using multifunctional, swivelable and tiltable reactor and apparatus therefor
EP0452916B1 (en) Process for producing polyolefins
US4298718A (en) Catalysts for the polymerization of olefins
CN101679533B (en) Monomer recycle process for fluid phase in-line blending of polymers
CN101679556B (en) Super-solution homogeneous propylene polymerization
JPS61502061A (en) Gas fluidized bed ternary copolymerization method of olefin
US4253984A (en) Catalyst component for use in the polymerization of α-olefins and a method of using the same
US2727023A (en) Ethylene polymerization
JPS6079016A (en) Production of supported transition metal catalyst
CS264327B2 (en) Process for preparing solid catalyst for the polymerization of olefines
JPS6088010A (en) Polymerization of olefin
JPS6088011A (en) Polymerization of olefin
JPH02232207A (en) Continuous polymerization of propylene
JPS60130606A (en) Polymerization of olefin
JPS6099105A (en) Polymerization of olefin
JP2501557B2 (en) Method for producing propylene copolymer
JPS60118703A (en) Polymerization of propylene
JPS6160085B2 (en)
JPS5840568B2 (en) Method for polymerizing ethylene or α-olefins
JPS60252608A (en) Recovery of diluent
JPH072795B2 (en) Magnesium halide for transition metal catalyst carrier
JP2019038932A (en) Polyethylene powder and molded article thereof
JP2811325B2 (en) Catalyst component for olefin polymerization
JPH0745544B2 (en) Olefin Polymerization Method
JPS61106609A (en) Catalyst component for olefin polymerization