JPS60118703A - Polymerization of propylene - Google Patents

Polymerization of propylene

Info

Publication number
JPS60118703A
JPS60118703A JP58224344A JP22434483A JPS60118703A JP S60118703 A JPS60118703 A JP S60118703A JP 58224344 A JP58224344 A JP 58224344A JP 22434483 A JP22434483 A JP 22434483A JP S60118703 A JPS60118703 A JP S60118703A
Authority
JP
Japan
Prior art keywords
catalyst
transition metal
mesh
propylene
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58224344A
Other languages
Japanese (ja)
Other versions
JPH058205B2 (en
Inventor
Tadashi Asanuma
正 浅沼
Ichiro Fujikage
一郎 藤隠
Shigeru Kimura
茂 木村
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP58224344A priority Critical patent/JPS60118703A/en
Publication of JPS60118703A publication Critical patent/JPS60118703A/en
Publication of JPH058205B2 publication Critical patent/JPH058205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To carry out the polymerization of propylene effectively without causing the blocking of the pipings, and to remarkably improve the yield of PP per unit of the solid transition metal catalyst, by using a solid transition metal catalyst passed through a metal mesh having a specific mesh opening to separate coarse particles. CONSTITUTION:A solid transition metal catalyst (e.g. TiCl4, etc. supported on a carrier such as activated TiCl3, MgCl2, etc.) is dispersed in an inert hydrocarbon medium (e.g. hexane, heptane, benzene, xylene, etc.), and passed through a mesh having a mesh opening of 0.07-0.3mm.. A polypropylene is produced by polymerizing propylene in the presence of the catalyst prepared above under the polymerization condition (preferably normal temperature - 90 deg.C, and atmospheric pressure -50kg/cm<2>G). The weight ratio of the catalyst to the propylene is 1 to <=10,000. The filtration of the catalyst with the mesh is carried out by using a device having the stirring blades 2 furnished with a number of protrusions 3 toward the surface of the mesh 4, and the catalyst is passed through the mesh preferably after polymerizing 0.5-100g of propylene per 1g of the catalyst.

Description

【発明の詳細な説明】 本発明I′!、プロピレンの重合方法に関する。詳しく
は固体遷移金属触媒単位重量当り高収率でしかも配管の
閉塞などの問題のない重合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention I'! , relates to a method for polymerizing propylene. More specifically, the present invention relates to a polymerization method that provides a high yield per unit weight of a solid transition metal catalyst and is free from problems such as clogging of pipes.

触媒製造法の改良により固体遷移金属触媒当りのポリプ
ロピレンの収率が大幅に向上している。
Improvements in catalyst production methods have significantly increased the yield of polypropylene per solid transition metal catalyst.

中でも、特公昭39−12105号の公報で提案された
ハロゲン化金属に遷移金属ハロゲン化物を担持して得た
触媒は、遷移金属触媒当りのポリプロピレンの収率が大
幅に向上しただけでないその後の触媒製造法の改良によ
り担体を含めた固体遷移金属触媒当りの収率が大幅に向
上している。
Among them, the catalyst proposed in Japanese Patent Publication No. 39-12105, which is obtained by supporting a transition metal halide on a metal halide, not only greatly improves the yield of polypropylene per transition metal catalyst, but also improves the efficiency of subsequent catalysts. Improvements in production methods have significantly improved the yield per solid transition metal catalyst, including the support.

しかしながら、重合して得られるポリプロピレン粒子は
固体遷移金属触媒当りの収率の向上にともない従来技術
の場合におけるより大きくなるため固体遷移金属触媒当
りの収率が今では問題とな又 らなかった粗傳ポリマー粒子の問題が触媒1g当り1.
0.000q以上もポリプロピレンを得る場合では、種
々の問題が生じて来た。即ち、一般にポリオレフィンの
重合は溶液粘度の問題、重合熱の除去の問題から液状媒
体中或は気相媒体中でスラリー状態で行なわれる。スラ
リー状態での重合に於て、ポリオレフィンは粒子状で存
在するため粒子の巨大なもの或は微小なものはない方が
好ましく中でも巨大な粒子が存在すると重合槽とか配管
とかの装置の狭い部分に溜り場合によっては閉塞する問
題があった。この閉塞はポリオレフィンの重合のように
連続で製造するプロセスにおいてはプラント全体の停止
にもつながる重大な問題である。
However, as the yield per solid transition metal catalyst has improved, the polypropylene particles obtained by polymerization have become larger than in the case of the prior art. The problem with polymer particles is 1.0% per gram of catalyst.
When obtaining polypropylene of 0.000q or more, various problems have arisen. That is, polyolefin polymerization is generally carried out in a slurry state in a liquid medium or a gaseous medium due to problems with solution viscosity and removal of polymerization heat. In polymerization in a slurry state, polyolefin exists in the form of particles, so it is preferable that there are no large or small particles, especially if there are large particles, they may get stuck in narrow parts of equipment such as polymerization tanks and piping. There was a problem of accumulation and blockage in some cases. This blockage is a serious problem in continuous production processes such as polyolefin polymerization, which can lead to the shutdown of the entire plant.

本発明者らは上記問題を解決する方法について鋭意検討
した結果特定の処理を行った固体遷移金属触媒を用(・
ることによって上記問題が解決できることを見出し本発
明を完成した。
The present inventors have conducted intensive studies on methods to solve the above problems, and have used solid transition metal catalysts that have been subjected to specific treatments.
The inventors have discovered that the above problem can be solved by doing this, and have completed the present invention.

本発明の目的は、特には粗大ポリプロピレン粒子 子によるトラブルの壱いプロピレンの重合方法を提供す
ることにある。
An object of the present invention is to provide a method for polymerizing propylene which is particularly free from troubles caused by coarse polypropylene particles.

移金属触媒を不活性炭化水素媒体中に分散した状態で網
目の開きが(’lJ17mmより小さくなく0.3mm
藺 より大きくない金銅を通過させた後に重合に用いること
な特徴とするポリプロピレンの重合方法に関する。
When the transfer metal catalyst is dispersed in an inert hydrocarbon medium, the mesh opening is 0.3 mm (not smaller than 17 mm).
This invention relates to a method for polymerizing polypropylene, which is characterized in that it is used for polymerization after passing through gold-copper no larger than a straw.

本発明において固体遷移金属触媒としては公知の活性形
の三塩化チタン、或は塩化マグネシウムなどの担体に担
持した塩化チタンなどの触媒が挙げられ特に限定はない
が、触媒粒子の大きさの制御が比較的困難な粉砕或は共
粉砕の工程をその製造プロセス中に含む触媒に適用する
とその効果がs″・ 決 四塩化チタンをム状の還元剤、例えば有機アルミニウム
で還元して三塩化チタンを得る方法、或は担体として溶
解した担体原料、例えば有機マグネシウムとかアルコー
ルと錯化したハロゲン化マグネシウムを適当な沈澱剤で
沈澱させて担体を得る方法では沈澱させる工程で得られ
る固体遷移金属触媒の粒子の大きさをかなり均一に制御
することが可能であるためこの問題は比較的小さい。し
かしながら、粉砕又は共粉砕工程を触媒製造プロセス中
に含む触媒はもちろん粒子径を制御して製造した固体遷
移金属触媒であっても連続でプロピレンを重合してポリ
プロピレンを得るプロセスに触媒を導入する時、立体規
則性の向上、或は得られるポリプロピレン粒子のかさ比
重を高くたもっために予じめ少量のプロピレンを重合(
以下予重合と略記する)した後に行う場合では(例えば
特公昭52−39871)理由は明確でないが触媒当り
10000り/g−固体遷移金属触媒以上の収率でポリ
プロピレンな得る場合には、巨大ポリプロピレン粒子が
問題となる。
In the present invention, the solid transition metal catalyst may be a known active form of titanium trichloride or a catalyst such as titanium chloride supported on a carrier such as magnesium chloride, and is not particularly limited. Applying a relatively difficult process of pulverization or co-pulverization to a catalyst that is included in the manufacturing process will improve its effectiveness. Alternatively, in the method of obtaining a carrier by precipitating a carrier raw material dissolved as a carrier, such as organomagnesium or magnesium halide complexed with alcohol, with an appropriate precipitant, particles of the solid transition metal catalyst obtained in the precipitation step are used. This problem is relatively small since it is possible to control the size of the particles fairly uniformly. However, solid transition metals produced by controlling the particle size as well as catalysts that include a grinding or co-grinding step in the catalyst manufacturing process. When introducing a catalyst into the process of continuously polymerizing propylene to obtain polypropylene, a small amount of propylene is added in advance to improve the stereoregularity or to increase the bulk specific gravity of the resulting polypropylene particles. Polymerize (
(hereinafter abbreviated as prepolymerization) (for example, Japanese Patent Publication No. 52-39871), the reason is not clear, but if polypropylene is obtained with a yield of 10,000 parts per gram of solid transition metal catalyst or higher, giant polypropylene is produced. Particles are a problem.

本発明において、上記の固体遷移金属触媒或は予重合し
た固体遷移金属触媒は不活性炭化水素媒体(例えばヘキ
サン、ヘプタン、デカンなどの脂肪族炭化水素、ベンゼ
ン、トルエン、キシレンなどの芳香族炭化水素又はこれ
らの混合物が挙げろ悶 れる)中に分散した状態で合羽を通過させる。全期 鋼の]」開きは0.07關より小さくなく0.3mmよ
り大きくないことが必要で、これ以下では、通過させる
のが困難なだけではなく得られた固体遷移金属触媒を用
(・て重合すると微細なポリプロピレンが多くなり好ま
しくない。又これ以上では触媒の巨大粒子を排除するこ
とができなくなる。
In the present invention, the above solid transition metal catalyst or prepolymerized solid transition metal catalyst is used in an inert hydrocarbon medium (e.g., aliphatic hydrocarbons such as hexane, heptane, decane, etc., aromatic hydrocarbons such as benzene, toluene, xylene, etc.). or a mixture of these is passed through the coat in a dispersed state. The opening of full-stage steel must be less than 0.07 mm and not larger than 0.3 mm; if it is less than this, it will not only be difficult to pass through, but also the resulting solid transition metal catalyst will not be used. If the polymerization is carried out in such a manner, the amount of fine polypropylene increases, which is undesirable.In addition, if the polymerization exceeds this point, it becomes impossible to eliminate the large particles of the catalyst.

制 この全率を通過させる操作は、予重合した後に重合プロ
セスに触媒を導入する方法でポリプロピレンを得る場合
眞は、予重合の前に該操作を行うよりは、予重合の後に
行う方が効果的である。なぜなら前述のように予重合の
操作で巨大粒子の原因となる触媒が生ずるからである。
When polypropylene is obtained by introducing a catalyst into the polymerization process after prepolymerization, it is actually more effective to perform the operation to pass the total rate of control after prepolymerization than to perform the operation before prepolymerization. It is true. This is because, as mentioned above, the prepolymerization operation generates a catalyst that causes giant particles.

洲 上記の金銅を通過させる操作は、例えば通常の祠 金属触媒の分散液が通過する配管の一部に金網を覇ζ 平面に向けて有する攪拌羽根を設けた装置を用い蕪す る方が好ましい。なぜなら全率上に多量の固体遷突起を
設けた羽根は例えば数mm間隔で金属の線をうめこんだ
ワイヤーブラシのようなものを攪拌軸に固定したもので
充分であるがポリマー中に削れた一部が混入して製品ポ
リプロピレンの品質に悪影響を与える苓れがあるのでポ
リプロピレンの樹脂を用いるのも1つの方法である。
For the above-mentioned operation of passing the gilt copper, it is preferable to use a device in which, for example, a part of the piping through which the dispersion of a common grain metal catalyst passes is provided with a stirring blade having a wire mesh facing the plane. This is because a blade with a large number of solid transects on the entire surface, such as a wire brush with metal wires embedded at intervals of several millimeters, fixed to the stirring shaft is sufficient, but the blades are not cut into the polymer. One method is to use a polypropylene resin because some of the resin may be mixed in and have a negative effect on the quality of the polypropylene product.

こうして得られた固体遷移金属触媒を用いての重合方法
については格別限定はなく公知σつ重合方法が採用でき
る。即ち、不活性炭化水素様イ本中で行なう溶媒重合法
、液状のプロピレンを1本とする塊状重合法、或は液状
の媒体が実質的に存在しない気相重合法が採用でき、重
合温度(末常温〜90’C1圧力は常圧〜5 a kg
7c留−ゲー・ジである。
There are no particular limitations on the polymerization method using the solid transition metal catalyst thus obtained, and any known σ polymerization method can be employed. That is, a solvent polymerization method in which an inert hydrocarbon-like medium is used, a bulk polymerization method using one liquid propylene, or a gas phase polymerization method in which a liquid medium is substantially absent can be employed, and the polymerization temperature ( End of normal temperature ~ 90'C1 pressure is normal pressure ~ 5 a kg
It is a 7c gauge.

本発明に於てポリプロピレンとは、プロピレン単独の重
合のみならずエチレン、)゛テンー1、ヘキセン−1な
どの他のオレフィンとθつランタ゛ム共重合体或はブロ
ック共重合体を含む。
In the present invention, polypropylene includes not only the polymerization of propylene alone, but also ethylene, θ-random copolymers or block copolymers with other olefins such as ethylene-1 and hexene-1.

本発明の方法を用いることによって粗大粒子によるトラ
ブルがなくポリプロピレンを効率的に製造することが可
能となり工業的に極めてイ曲f直カスある。
By using the method of the present invention, it is possible to efficiently produce polypropylene without problems caused by coarse particles, and industrially it is extremely easy to produce polypropylene.

以下に実施例を挙げ本発明をさらに具体的に説明オる。The present invention will be explained in more detail with reference to Examples below.

実施例1,2比較例1 イ)チタン触媒の製造 水分Q、4wt%含有する塩化マグネシウム309、オ
ル:/酢酸エチル4.sw 】、2−ジクロロエタン3
” ラミf径12 mmのステンレス製ボール80個入
れた内容積600Jの粉砕用ポットに入れ40時間粉砕
した。次いで共粉砕物31を500ff!7の丸底フラ
スコに入れ四塩化チタン150dをυ(」え80℃で1
時間攪拌下で処理し次いで300 Ml O) n−ヘ
プタンで固体部分を5回洗浄しさらにI]−へブタンを
抜き出した後四塩化チタン150づを加え80℃で1時
間攪拌下で処理した。さらに固体部分を30(1−のn
−ヘプタンで7回洗浄しさらにn−へブタン150 f
dを加え固体遷移金属触媒スラリーとした。
Examples 1 and 2 Comparative Example 1 a) Production of titanium catalyst Moisture Q, 4 wt% of magnesium chloride 309, ol:/ethyl acetate 4. sw ], 2-dichloroethane 3
” It was placed in a grinding pot with an internal volume of 600 J containing 80 stainless steel balls with a diameter of 12 mm, and ground for 40 hours. The co-ground product 31 was then placed in a 500 ff!7 round bottom flask, and 150 d of titanium tetrachloride was mixed with υ ( "1 at 80℃
The mixture was treated with stirring for an hour, and then the solid portion was washed five times with 300 MlO) n-heptane, and after I]-hebutane was extracted, 150 g of titanium tetrachloride was added and the mixture was treated with stirring at 80 DEG C. for 1 hour. Furthermore, the solid part is 30 (n of 1-
- Washed with heptane 7 times and further washed with n-heptane 150 f.
d was added to form a solid transition metal catalyst slurry.

スラリーの一部を抜き出しそのまま重合反応に用いた(
比較例1\又残部より固体遷移金属触媒として10りを
取り出し予重合に用いた(実施例汐4 容器にスラリーを入れ差圧を利用して通過させることに
より効率よく通過させることができた。
A part of the slurry was extracted and used as it was for the polymerization reaction (
Comparative Example 1\ Also, from the remainder, 10 ml was taken out as a solid transition metal catalyst and used for prepolymerization (Example Shio 4) By putting the slurry in a container and passing it through using differential pressure, it was possible to pass it efficiently.

口)予重合 A)イ)で得た固体遷移金属触媒109を用いて行つた
。充分に乾燥し窒素で置換した内容積21のオートクレ
ーブに乾燥し窒素置換したI]−へブタン11.ジエチ
ルアルミニウムクロライド42゜7m11)ルイル酸メ
チル2〇−上記の固体遷移金属触媒を金銅を用いずその
まま109入れ、次いでプロピレンを30り装入した。
(a) Prepolymerization A) This was carried out using the solid transition metal catalyst 109 obtained in a). I]-hebutane, which had been thoroughly dried and purged with nitrogen, was placed in an autoclave with an internal volume of 21. Diethylaluminum chloride 42°7ml 11) Methyl ruylate 20 - The above solid transition metal catalyst was charged as it was without using gold copper, and then 30ml of propylene was charged.

上記操作中内温は20℃に保った。The internal temperature was maintained at 20° C. during the above operation.

(予重合スラリーA) 13)イ)で金網を通過させて得た固体遷移金属触媒5
ノを用いこれに合せて他の物量を−4−べて半量として
他は A)と同様に予重合した。(予重合スラリー13
) ハ)Φ合反応 十分に乾・1栗し窒素で置換した内容積51のオー)・
クレープを準(,1ii−、l−る。十分に乾燥した2
00献のフラスコレこ乾燥し窒素置換した+1−へブタ
ン50++17!及び次のそhぞれの条件で触媒を混合
したI))エチルアルミニウムクロライド0.128m
1゜トルイル酸メチル(’1.(’1(ifT4 )リ
エチルアルミ図 ニウム(1、(18mll細光1瓜過させていない固体
遷移金属触媒30m9(比較例−j)。
(Prepolymerized slurry A) 13) Solid transition metal catalyst 5 obtained by passing through a wire mesh in a)
Prepolymerization was carried out in the same manner as in A) except that the amounts of the other substances were reduced to half by -4-. (Prepolymerization slurry 13
) C) Φ combination reaction thoroughly dried and replaced with nitrogen, with an internal volume of 51 mm).
Prepare the crepe (, 1ii-, l-. Thoroughly dry 2
This flask was dried and nitrogen-substituted +1-hebutane 50++17! and I)) Ethyl aluminum chloride 0.128m mixed with catalyst under each of the following conditions.
1° Methyl toluate ('1. ('1 (ifT4)) ethylaluminum (1, (18 ml) 30 ml of unfiltered solid transition metal catalyst (Comparative Example-j).

iI)ジエチルアルミニウムクロライドO−128m、
(、]・ルイル酸メチル0.06m1 ) +1エチル
了ルLi輯 ミニラム0.08d金増を通過させた固体遷移金属触媒
30■(実施例−1−A)。
iI) diethylaluminum chloride O-128m,
30 ml of solid transition metal catalyst (Example 1-A) passed through 0.06 ml of methyl ruylate + 1 ethyl chloride and 0.08 d of gold.

1ii)予重合スラIJ [3を固体遷移金属触媒とし
て30mg、トリエチルアルミニウム+1 、08 m
l (実て30mg)リエチルアルミニウム0 、08
m1 (実施例2)。
1ii) Prepolymerization slurry IJ [30 mg as solid transition metal catalyst, triethyl aluminum +1, 08 m
l (actually 30mg) ethylaluminum 0,08
m1 (Example 2).

上記I)〜iV)の触媒スラリーを用いてそれぞれ51
のオートクレーブに触媒スラリーを入れ、次いでプロピ
レン1.5に9、水素0.5 Ml入れ、オートクレー
ブを加熱することにより内温75゛Cで21L’j間重
合した。次いで未反応のプロピレンをJJI出しイ尋ら
れたポリプロピレンパウダーを取り出し60℃で10時
間乾燥した後秤欲した。
Using the catalyst slurries of I) to iV) above, each
The catalyst slurry was placed in an autoclave, and then 1.5 ml of propylene and 0.5 ml of hydrogen were added, and the autoclave was heated to conduct polymerization for 21 L'j at an internal temperature of 75°C. Next, unreacted propylene was removed from JJI, and the resulting polypropylene powder was taken out, dried at 60° C. for 10 hours, and then weighed.

得られたパウダーについて極限粘度数(以1・−ηと略
記135℃テトラリン溶液で測定)沸騰n−II ヘプタ/抽出残率(以下比と略記ソックスレー抽出器で
沸騰I〕−へブタンで6時間抽出し抽出残ポリマー重量 −Xll”in%として算出)かさ 抽出前ポリマー取計 比重及び粒度分布(米国タイラーメッシュ)を測定した
結果は表に示す。
Regarding the obtained powder, the intrinsic viscosity (hereinafter abbreviated as 1・-η, measured in a tetralin solution at 135°C) boiling n-II hepta/extraction residue (hereinafter abbreviated as ratio boiling I in a Soxhlet extractor) -hebutane for 6 hours The results of measuring the specific gravity and particle size distribution (Tyler mesh, USA) of the polymer before bulk extraction (calculated as extracted residual polymer weight - Xll''in%) are shown in the table.

【図面の簡単な説明】[Brief explanation of drawings]

咄 図面は、本発明の実施に用いる金網を備えた触媒を通過
させる装置の一例を断面図により示したものである。 1、は攪拌用モーター 2、は突起伺攪拌羽根 3は突起 廟 4は金網 5は固体遷移金属触媒の導入口 6は固体遷移金属触媒の排出口 特許出願人 三井東圧化学株式会社
The drawing is a cross-sectional view of an example of a device for passing a catalyst equipped with a wire mesh used in the practice of the present invention. 1, Stirring motor 2, Protrusion stirring blade 3, Protrusion 4, Wire mesh 5, Solid transition metal catalyst inlet 6, Solid transition metal catalyst outlet Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)固体遷移金属触媒1g当り100009以上のプロ
ピレンを重合する条件下でポリプロピレンを製造する方
法に於て、固体遷移金属触媒を不活性炭化水素媒体中に
分散した状態で網目の開きが0.07東より小さくなく
0.3mmより大きくない金網を通過させた後に重合に
用いることを特徴とするポリプロピレンの重合方法 2)固体遷移金属触媒12当り0.5〜1009のプロ
ピレンを重合させた後金網を通過させることを特徴とす
る特許請求の範囲第1項記載の方法
[Claims] 1) In a method for producing polypropylene under conditions in which 100,009 or more propylene is polymerized per 1 g of a solid transition metal catalyst, the solid transition metal catalyst is dispersed in an inert hydrocarbon medium and Polypropylene polymerization method characterized in that it is used for polymerization after passing through a wire mesh with an opening of not less than 0.07 mm and not larger than 0.3 mm. 2) 0.5 to 1009 propylene per 12 solid transition metal catalysts. The method according to claim 1, which comprises passing through a wire mesh after polymerization.
JP58224344A 1983-11-30 1983-11-30 Polymerization of propylene Granted JPS60118703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58224344A JPS60118703A (en) 1983-11-30 1983-11-30 Polymerization of propylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58224344A JPS60118703A (en) 1983-11-30 1983-11-30 Polymerization of propylene

Publications (2)

Publication Number Publication Date
JPS60118703A true JPS60118703A (en) 1985-06-26
JPH058205B2 JPH058205B2 (en) 1993-02-01

Family

ID=16812286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58224344A Granted JPS60118703A (en) 1983-11-30 1983-11-30 Polymerization of propylene

Country Status (1)

Country Link
JP (1) JPS60118703A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222564A (en) * 2009-02-27 2010-10-07 Sumitomo Chemical Co Ltd Prepolymerized catalyst for olefin polymerization and method for manufacturing olefin polymer
JP2010222563A (en) * 2009-02-27 2010-10-07 Sumitomo Chemical Co Ltd Method for manufacturing prepolymerized catalyst for olefin polymerization and method for manufacturing olefin polymer
US8431659B2 (en) 2009-02-27 2013-04-30 Sumitomo Chemical Company, Limited Prepolymerized catalyst for olefin polymerization, method of producing this prepolymerized catalyst and method of producing olefin polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171292A (en) * 1974-11-13 1976-06-19 Exxon Research Engineering Co
JPS5238590A (en) * 1975-09-18 1977-03-25 Montedison Spa Catalyst component for polymerizing olefin into spherical form
JPS5330681A (en) * 1976-09-02 1978-03-23 Mitsui Petrochem Ind Ltd Preparation of polyalpha-olefin
JPS56155209A (en) * 1980-03-24 1981-12-01 Ici Ltd Preparation of solid particulate substance, olefin polymerization catalyst containing it and olefin polymerization
JPS58195354A (en) * 1982-05-11 1983-11-14 Toshiba Corp Automatic incoming transfer system
JPS5930806A (en) * 1982-06-24 1984-02-18 ベペ・シミイ・ソシエテ・アノニム Manufacture of polyolefin

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5171292A (en) * 1974-11-13 1976-06-19 Exxon Research Engineering Co
JPS5238590A (en) * 1975-09-18 1977-03-25 Montedison Spa Catalyst component for polymerizing olefin into spherical form
JPS5330681A (en) * 1976-09-02 1978-03-23 Mitsui Petrochem Ind Ltd Preparation of polyalpha-olefin
JPS56155209A (en) * 1980-03-24 1981-12-01 Ici Ltd Preparation of solid particulate substance, olefin polymerization catalyst containing it and olefin polymerization
JPS58195354A (en) * 1982-05-11 1983-11-14 Toshiba Corp Automatic incoming transfer system
JPS5930806A (en) * 1982-06-24 1984-02-18 ベペ・シミイ・ソシエテ・アノニム Manufacture of polyolefin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010222564A (en) * 2009-02-27 2010-10-07 Sumitomo Chemical Co Ltd Prepolymerized catalyst for olefin polymerization and method for manufacturing olefin polymer
JP2010222563A (en) * 2009-02-27 2010-10-07 Sumitomo Chemical Co Ltd Method for manufacturing prepolymerized catalyst for olefin polymerization and method for manufacturing olefin polymer
US8431659B2 (en) 2009-02-27 2013-04-30 Sumitomo Chemical Company, Limited Prepolymerized catalyst for olefin polymerization, method of producing this prepolymerized catalyst and method of producing olefin polymer

Also Published As

Publication number Publication date
JPH058205B2 (en) 1993-02-01

Similar Documents

Publication Publication Date Title
SU1457813A3 (en) Method of producing polypropylene
JPH07501478A (en) Method for producing solid Ziegler catalyst using multifunctional, swirlable and tiltable reactor, and apparatus thereof
JPS63258907A (en) Alpha-olefin polymerizing catalyst system containing suitable regulating component
US7323525B2 (en) Process for the production of propylene copolymers
JPS59145204A (en) Manufacture of carried ziegler catalyst useful for alpha-olefin polymerization
JPS5841283B2 (en) Method for producing propylene polymer or copolymer
JP2011528384A (en) Polyethylene manufacturing process
JPS60118703A (en) Polymerization of propylene
JP2002506468A (en) Continuous production of propylene polymer
JP5401282B2 (en) Propylene-based polymer production method and propylene-based block copolymer
EP0485006B1 (en) Solid catalyst for use in stereospecific x-olefin polymerization, process of preparation and polymerization process using the same
FR2505341A1 (en) PROCESS FOR THE PRODUCTION OF POLYOLEFINS BY USING A CATALYST COMPRISING A SOLID CATALYST COMPONENT AND AN ORGANOMETALLIC COMPOUND
JPH0424361B2 (en)
JP2009292882A (en) Method for producing propylene-based block copolymer
JPS6088011A (en) Polymerization of olefin
JPS59219311A (en) Polymerization of olefin
JPS5919567B2 (en) Improved method for producing ethylene polymers
JP2537220B2 (en) Olefin Polymerization Method
JPS58225105A (en) Preparation of improved ethylenic polymer
JP2537221B2 (en) Method for producing catalyst component for olefin polymerization
CN115710324A (en) Catalyst and preparation method and application thereof
JPS6088010A (en) Polymerization of olefin
JPH0347644B2 (en)
JPS5896612A (en) Benzoic acid ester-halogenated titanium ligand complex catalyst and preparation of alpha- monoolefin homopolymer and copolymer therewith
JPH0745544B2 (en) Olefin Polymerization Method