JPH0424361B2 - - Google Patents

Info

Publication number
JPH0424361B2
JPH0424361B2 JP57097032A JP9703282A JPH0424361B2 JP H0424361 B2 JPH0424361 B2 JP H0424361B2 JP 57097032 A JP57097032 A JP 57097032A JP 9703282 A JP9703282 A JP 9703282A JP H0424361 B2 JPH0424361 B2 JP H0424361B2
Authority
JP
Japan
Prior art keywords
polymerization
particle size
titanium
compound
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57097032A
Other languages
Japanese (ja)
Other versions
JPS58215408A (en
Inventor
Shigemi Shiraki
Takashi Hayashi
Norio Kashiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP9703282A priority Critical patent/JPS58215408A/en
Publication of JPS58215408A publication Critical patent/JPS58215408A/en
Publication of JPH0424361B2 publication Critical patent/JPH0424361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】 本発明は、重合中における重合体の破壊が少な
く、粒度分布の狭い球状重合体の製造が可能なオ
レフインの重合方法に関する。本発明はまた炭素
数3以上のα−オレフインの重合に適用した場合
に、高立体規則性重合体の製造が可能なオレフイ
ンの重合方法に関する。なお本発明において重合
という語は単独重合のみならず共重合を含めた意
で、また重合体という語は単独重合体のみならず
共重合体を含めた意で用いることがある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for polymerizing olefins that causes less destruction of the polymer during polymerization and allows production of spherical polymers with a narrow particle size distribution. The present invention also relates to a method for polymerizing olefins that can produce highly stereoregular polymers when applied to the polymerization of α-olefins having 3 or more carbon atoms. In the present invention, the term "polymerization" is used to include not only homopolymerization but also copolymerization, and the term "polymer" is sometimes used to include not only homopolymers but also copolymers.

マグネシウムのハロゲン化合物aと有機ヒドロ
キシ化合物bとの錯体を担体に用いた高活性チタ
ン触媒成分については数多くの提案がある。例え
ば(a)と(b)の錯体に直接チタン化合物を反応させる
方法、(a)と(b)の錯体に予め有機アルミニウム化合
物やケイ素、スズなどのハロゲン化合物を反応さ
せた後、チタン化合物を反応させる方法、上記各
反応時、あるいは上記各反応の前もしくは後にエ
ステルなどを反応させる方法、上記各反応におい
てチタン化合物を反応させた後有機アルミニウム
化合物を反応させる方法、その他種々の方法が知
られている。これら各方法によつて得られるチタ
ン触媒成分と有機アルミニウム化合物触媒成分と
から形成される触媒を用いてオレフインのスラリ
ー重合や気相重合を行つた場合、少量の微粉状重
合体が生成し、重合操作や重合体の後処理に悪影
響を及ぼすことがある。このような微粉状重合体
の生成は、予め粒度調整のされた触媒を用いた場
合にでも見られることがあつた。一方、このよう
な錯体の形成段階で少量の水を存在させて微粉状
重合体生成を防止する改善方法が提案されており
(特開昭54−18889号)、一応の成果をあげている
が、この公報に具体的に開示されている方法によ
れば、高度に微粒の生成を減少させるという効果
は得られない。とくに気相重合を伴う重合プロセ
スにおいては、少量の微粉重合体の生成が操作性
に大きな影響を与えるため、より一層の改善が望
まれた。さらにこのような水の使用は、ときには
触媒活性の低下をひきおこすこともあり、その上
炭素数3以上のα−オレフインの立体規則性重合
に適用した場合には非晶性重合体生成量の無視で
きない増加をみることもあつた。
There are many proposals regarding highly active titanium catalyst components using a complex of a magnesium halide compound a and an organic hydroxy compound b as a carrier. For example, a method in which a titanium compound is directly reacted with the complex of (a) and (b), or a method in which the complex of (a) and (b) is reacted with an organoaluminum compound or a halogen compound such as silicon or tin in advance, and then a titanium compound is reacted with the complex. A method of reacting with an ester, etc. during each of the above reactions, or before or after each of the above reactions, a method of reacting an organoaluminum compound after reacting with a titanium compound in each of the above reactions, and various other methods are known. ing. When slurry polymerization or gas phase polymerization of olefin is performed using a catalyst formed from a titanium catalyst component and an organoaluminum compound catalyst component obtained by each of these methods, a small amount of finely powdered polymer is produced, and the polymerization May have adverse effects on handling and post-treatment of the polymer. The formation of such a finely divided polymer was sometimes observed even when a catalyst whose particle size had been adjusted in advance was used. On the other hand, an improvement method has been proposed in which a small amount of water is present during the formation stage of such a complex to prevent the formation of fine powder polymer (Japanese Patent Application Laid-open No. 18889/1989), and this method has achieved some results. According to the method specifically disclosed in this publication, the effect of highly reducing the generation of fine particles cannot be obtained. In particular, in polymerization processes involving gas phase polymerization, the production of a small amount of finely divided polymer has a large effect on operability, so further improvements have been desired. Furthermore, the use of such water sometimes causes a decrease in catalytic activity, and moreover, when applied to the stereoregular polymerization of α-olefins having 3 or more carbon atoms, the amount of amorphous polymer produced is ignored. In some cases, we saw an increase that could not be avoided.

本発明者らは、このような微粉重合体の生成が
重合体の生長過程における重合体粒子の破壊によ
つて起こることを見出すと共に、それをできるだ
け防止し粒子性状の優れた重合体を製造すべく注
力した結果、以下の如き改善方法を見出すに至つ
た。したがつて本発明の目的は、破壊された粒子
が少なく粒度分布の狭い球状オレフイン重合体を
高い触媒活性で製造することのできる改善方法を
提供するにある。本発明の他の目的は、炭素数3
以上のα−オレフインの立体規則性重合体を高割
合で製造することが可能な改善されたオレフイン
の重合方法を提供するにある。すなわち本発明は
(A)マグネシウムのハロゲン化合物aと有機ヒドロ
キシ化合物bとの液状混合物から造粒して得られ
る平均粒径が約5ないし約400μで幾何標準偏差
が2.1未満の粒度分布の狭い球状錯体に微分散し
た水を作用させてH2O/Mgモル比を約0.05ない
し約1としたものを担体に用いて調整したチタン
触媒成分と、(B)有機アルミニウム化合物触媒成分
とから形成される触媒の存在下に、オレフインの
重合もしくは共重合を行うことを特徴とするオレ
フインの重合方法に関する。
The present inventors have discovered that the formation of such fine polymer particles occurs due to the destruction of polymer particles during the growth process of the polymer, and have attempted to prevent this as much as possible to produce polymers with excellent particle properties. As a result of our efforts, we found the following improvement method. Accordingly, an object of the present invention is to provide an improved method capable of producing a spherical olefin polymer having a small number of broken particles and a narrow particle size distribution with high catalytic activity. Another object of the present invention is to
The object of the present invention is to provide an improved method for polymerizing olefins, which allows the production of the stereoregular polymer of α-olefins in a high proportion. That is, the present invention
(A) Finely dispersed into a spherical complex with a narrow particle size distribution having an average particle size of about 5 to about 400μ and a geometric standard deviation of less than 2.1, obtained by granulating a liquid mixture of magnesium halogen compound a and organic hydroxy compound b (B) the presence of a catalyst formed from a titanium catalyst component prepared by using a carrier with a H 2 O/Mg molar ratio of about 0.05 to about 1, and (B) an organoaluminum compound catalyst component; The present invention relates below to a method for polymerizing olefin, which is characterized by carrying out polymerization or copolymerization of olefin.

本発明で用いるチタン触媒成分Aを調製する担
体は、マグネシウムのハロゲン化合物aと有機ヒ
ドロキシ化合物bとの液状混合物から造粒して得
られる平均粒径が約5ないし約400μの粒度分布
の狭い球状錯体に微分散した水を作用させること
によつて得られる。
The carrier for preparing the titanium catalyst component A used in the present invention is a spherical carrier with a narrow particle size distribution and an average particle size of about 5 to about 400 μ, which is obtained by granulating a liquid mixture of a magnesium halide compound a and an organic hydroxy compound b. Obtained by treating the complex with finely dispersed water.

マグネシウムのハロゲン化合物aの具体例とし
ては、塩化マグネシウム、臭化マグネシウム、沃
化マグネシウム、弗化マグネシウムなどのマグネ
シウムハライド、エトキシ塩化マグネシウム、ブ
トキシ塩化マグネシウム、オクトキシ塩化マグネ
シウム、フエノキシ塩化マグネシウムなどのアル
コキシ(又はアリーロキシ)マグネシウムハライ
ドなどを例示することができる。これらの中では
マグネシウムハライド、とりわけ塩化マグネシウ
ムを用いるものが好ましい。
Specific examples of the magnesium halogen compound a include magnesium halides such as magnesium chloride, magnesium bromide, magnesium iodide, and magnesium fluoride; alkoxy (or Examples include (aryloxy)magnesium halide. Among these, those using magnesium halide, particularly magnesium chloride, are preferred.

有機ヒドロキシ化合物bは、アルコールあるい
はフエノールである。より具体的には、メタノー
ル、エタノール、n−プロパノール、iso−プロ
パノール、n−ブタノール、sec−ブタノール、
tert−ブタノール、n−ヘキサノール、n−オク
タノール、2−エチルヘキサノール、n−デカノ
ール、オレイルアルコール、シクロペンタノー
ル、シクロヘキサノール、ベンジンアルコールな
どのアルコール、フエノール、クレゾール、キシ
レノール、エチルフエノール、tert−ブチルフエ
ノールなどのフエノールを例示することができ
る。これらの中ではとくに炭素数2ないし7の脂
肪族アルコールの使用が好ましい。
Organic hydroxy compound b is alcohol or phenol. More specifically, methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol,
Alcohols such as tert-butanol, n-hexanol, n-octanol, 2-ethylhexanol, n-decanol, oleyl alcohol, cyclopentanol, cyclohexanol, benzine alcohol, phenol, cresol, xylenol, ethylphenol, tert-butylphenol For example, phenols such as Among these, it is particularly preferable to use aliphatic alcohols having 2 to 7 carbon atoms.

aとbの液状混合物(錯体を形成しているもの
と推定される)は、溶融又は溶解によつて液状を
呈しているもので均一溶液を形成していてもよ
く、あるいは他の溶媒中にあつて不均一溶液を呈
する物であつてもよい。このような液状混合物中
のaとbの混合割合は、(a)1モルに対し、(b)約2
ないし約8モル、とくに約2ないし約6モル、一
層好ましくは約2ないし約4であることが好まし
い。そして触媒性能の面から該混合物中に水分を
できるだけ混入させない方が好ましく、例えば(a)
1モルに対し水の共存量を0.08モル以下、とくに
0.06モル以下とするのが好ましい。
The liquid mixture of a and b (presumed to form a complex) may be in a liquid state by melting or dissolving and may form a homogeneous solution, or may be dissolved in another solvent. It may also be a material that presents a heterogeneous solution. The mixing ratio of a and b in such a liquid mixture is approximately 2 moles of (b) to 1 mole of (a).
Preferably it is from about 8 mol, especially from about 2 to about 6 mol, more preferably from about 2 to about 4 mol. From the viewpoint of catalytic performance, it is preferable not to mix water into the mixture as much as possible. For example, (a)
The coexistence amount of water should be 0.08 mol or less per 1 mol, especially
It is preferably 0.06 mol or less.

このような液状混合物から球状粒子に造粒する
には種々の方法を採用することができる。例えば
界面活性剤を含有する有機液体媒体中に溶融液状
混合物を懸濁させて急冷固化させる特開昭55−
135102号や特開昭55−135103号に開示の方法によ
れば、所望の平均粒径を有する粒度分布の狭い球
状固体錯体を製造することができる。あるいは特
開昭56−67311号に示されるように、細いパイプ
中を高速で通して、続いて急冷するという方法に
よつても製造することができる。
Various methods can be employed to granulate such a liquid mixture into spherical particles. For example, a molten liquid mixture is suspended in an organic liquid medium containing a surfactant and then rapidly solidified.
According to the methods disclosed in JP-A No. 135102 and JP-A-55-135103, it is possible to produce a spherical solid complex having a desired average particle size and a narrow particle size distribution. Alternatively, as shown in JP-A-56-67311, it can also be produced by passing it through a thin pipe at high speed and then rapidly cooling it.

これら方法で得られる固体錯体は、さらに平均
粒径や粒度分布を所望のものとするために分級を
行つてもよい。固体錯体の平均粒径は約5ないし
約400μ、好ましくは約10ないし約200μの範囲で
あり、このような粒径のものからチタン触媒成分
を調製することによつて、スラリー重合や気相重
合において操作上好適な粒径の重合体を得ること
ができる。また同様の理由でその粒度分布が狭い
ものが好ましく、例えば粒度分布の幾何標準偏差
σgが2.1未満、とくに1.95以下であることが望ま
しい。また該固定錯体は球状であることにより、
単に重合や後処理における操作性が良好であるの
みならず、重合時における粒子破壊を一層顕著に
抑制することができる。ここに球状とは、真球状
のみならず、楕円球あるいはこれに類似の形状で
あつて粒子の投影像の長径と短径の比が3以下の
ものをいう。
The solid complex obtained by these methods may be further classified to obtain a desired average particle size and particle size distribution. The average particle size of the solid complex is in the range of about 5 to about 400μ, preferably about 10 to about 200μ, and by preparing the titanium catalyst component from particles with such a particle size, slurry polymerization and gas phase polymerization can be carried out. A polymer having a particle size suitable for operation can be obtained. Further, for the same reason, it is preferable that the particle size distribution is narrow, and for example, it is preferable that the geometric standard deviation σg of the particle size distribution is less than 2.1, particularly 1.95 or less. Furthermore, since the fixed complex is spherical,
Not only is the operability in polymerization and post-treatment good, but particle destruction during polymerization can be more significantly suppressed. Here, the term spherical refers to not only a true sphere but also an elliptical sphere or a similar shape, in which the ratio of the major axis to the minor axis of the projected image of the particle is 3 or less.

前期の如くにして得られる球状錯体に微分散し
た少量の水を作用させることによつて担体を調製
する。この際、前期方法によつて得た球状錯体を
そのまま原料に用いてもよく、あるいは化学的あ
るいは物理的な手段によつて予めb成分を部分的
に除去したものを用いてもよい。ここに微分散し
た水とは、液体媒体中に非常に小さい微粒子(例
えば約1.0μ以下程度の粒径)となつて分散した水
あるいは気体媒体中に約20モル%以下程度の割合
でガス状で含有されている水分をいう。このよう
な状態の水を作用させる方法の一つは、不活性溶
媒(例えば炭化水素)に、少量の水(例えば0.2
ないし6g/程度)を加えて少量の界面活性剤
の存在下又は不存在下、強力に攪拌して水の微分
散液を形成させておき、これと球状錯体の不活性
溶媒の懸濁液を混合させる方法である。他の方法
は、球状錯体の不活性溶媒懸濁液に水分含有気体
を吹込む方法である。水処理は、処理物中の水分
量がH2O/Mgモル比で約0.05ないし約1、とく
に約0.1ないし約0.6、となるように行う。水分量
が前期範囲より多くなると触媒活性の低下が無視
できなくなり、あるいは炭素数3以上のα−オレ
フインの立体規則性重合に用いる場合には、立体
規則性指数の低下が少なからず起こるので好まし
くない、また水を作用させる場合に、水粒子が大
きい状態で作用させると、粒子の破壊や凝集が起
こるので好ましくない。さらに水を後で作用させ
る方法は、前期錯体を形成させる段階で作用させ
る方法に比較して重合体の破壊が少なくしかも触
媒性能も優れている。
A carrier is prepared by allowing a small amount of finely dispersed water to act on the spherical complex obtained as in the previous step. At this time, the spherical complex obtained by the above method may be used as a raw material as it is, or it may be used after partially removing component b by chemical or physical means. Finely dispersed water here refers to water that is dispersed as very small particles (for example, particle size of about 1.0μ or less) in a liquid medium, or water that is dispersed in a gaseous medium at a rate of about 20 mol% or less. refers to the moisture contained in One way to use water in this state is to add a small amount of water (e.g. 0.2
to about 6 g/m) and stir vigorously in the presence or absence of a small amount of surfactant to form a fine dispersion of water, and then mix this with a suspension of the spherical complex in an inert solvent. This is a method of mixing. Another method is to blow a water-containing gas into a suspension of the spherical complex in an inert solvent. The water treatment is carried out such that the water content in the treated material is in a H 2 O/Mg molar ratio of about 0.05 to about 1, particularly about 0.1 to about 0.6. If the water content is higher than the above range, the decrease in catalyst activity cannot be ignored, or when used for the stereoregular polymerization of α-olefins having 3 or more carbon atoms, the stereoregularity index will decrease to a considerable extent, which is undesirable. Furthermore, when water is applied, it is not preferable to apply the reaction while the water particles are large, as this may cause destruction or agglomeration of the particles. Furthermore, the method in which water is applied later causes less destruction of the polymer and has better catalytic performance than the method in which water is applied in the early stage of forming the complex.

かくして得られた担体からチタン触媒成分を製
造するには種々の方法を採用することができる。
Various methods can be employed to produce the titanium catalyst component from the carrier thus obtained.

例えば、特公昭46−34092号、特願昭43−96490
号のように前記担体に直接チタン化合物を反応さ
せる方法;特公昭50−32270号、特開昭53−21092
号のように、前記担体に周期律表第1族ないし第
3族金属の有機金属化合物を反応させた後チタン
化合物を反応させる方法;特開昭49−72383号、
特開昭49−88983号のように、前記担体にケイ素
又はスズのハロゲン化合物又は有機化合物とチタ
ン化合物とを逐次的に又は同時に反応させる方
法;特開昭51−28189号のように、前記担体に有
機酸エステルおよび周期律表第1族ないし第3族
金属の有機金属化合物を反応させた後、チタン化
合物を反応させる方法;特開昭51−92885号のよ
うに、前記担体に有機酸エステルおよびケイ素又
はスズのハロゲン化合物又は有機化合物を反応さ
せた後、チタン化合物を反応させる方法;特開昭
51−127185号に示すように、前記各方法で得られ
たチタン化合物触媒成分に、さらにチタン化合物
と周期律第1ないし第3族金属の有機金属化合物
を反応させる方法;特開昭52−307888号のよう
に、前記各方法で得られたチタン化合物成分に電
子供与体およびチタン化合物を反応させる方法;
などを採用することができる。担持反応は、担体
を前記例示の如き予備処理したのち、もしくは予
備処理なしに、担体反応条件下に液相をなすチタ
ン化合物中に懸濁させるか、又は該担体を前記例
示の如き予備処理したのち、もしくは予備処理な
しに、チタン化合物を溶解した不活性溶媒中に懸
濁させることによつて行うことができる。担持反
応は、たとえば約0ないし約200℃、好適には約
30ないし約150℃で行うことができる。担持反応
はまた、チタン化合物の過剰の存在下に行うのが
好ましく、たとえば担体中Mg1グラム原子当り、
チタン化合物を約0.1ないし約100モル、より好ま
しくは約1ないし約50モル存在させるのが適当で
ある。担持反応は2段階以上に分けて行うことが
できる。担持反応に使用されるチタン化合物とし
ては、担持反応条件下に液状を呈すか又は担体反
応において溶媒をもちいる場合には、その溶媒に
可溶であるものが好ましい。具体的には、式Ti
(OR)oX4-o(式中、Rは炭化水素基、Xはハロゲ
ン、0≦n≦4)で示されるチタン化合物が例示
できる。上記Rの例としては、C5〜C8のシクロ
アルキル基、C2〜C18のアルキル基、C6〜C15のア
リール基などが例示できる。又、上記xの例とし
ては、塩素、臭素、沃素などが例示できる。好ま
しいものは四ハロゲン化チタンであり、とくに四
塩化チタンがもつとも好ましい。
For example, Special Publication No. 46-34092, Special Patent Application No. 96490 (1973)
A method of directly reacting a titanium compound with the carrier as described in Japanese Patent Publication No. 50-32270, Japanese Patent Publication No. 53-21092
JP-A-49-72383, a method in which the support is reacted with an organometallic compound of a metal from Group 1 to Group 3 of the periodic table and then reacted with a titanium compound;
As in JP-A No. 49-88983, a method in which the carrier is reacted with a silicon or tin halide or an organic compound and a titanium compound sequentially or simultaneously; as in JP-A-51-28189, the support is A method of reacting an organic acid ester with an organic metal compound of Group 1 to Group 3 metal of the periodic table and then reacting with a titanium compound; and a method of reacting a titanium compound after reacting a halogen compound or an organic compound of silicon or tin; JP-A-Sho
As shown in No. 51-127185, a method in which the titanium compound catalyst component obtained by each of the above methods is further reacted with an organometallic compound of a metal in Groups 1 to 3 of the periodic table; JP-A-52-307888 A method of reacting an electron donor and a titanium compound with the titanium compound component obtained by each of the above methods;
etc. can be adopted. The support reaction is carried out by pre-treating the carrier as exemplified above or without pre-treating, suspending the carrier in a titanium compound forming a liquid phase under the carrier reaction conditions, or pre-treating the carrier as exemplified above. This can be carried out afterwards or without pretreatment by suspending the titanium compound in an inert solvent. The loading reaction may be carried out, for example, at about 0°C to about 200°C, preferably at about 200°C.
It can be carried out at 30 to about 150°C. The support reaction is also preferably carried out in the presence of an excess of titanium compound, for example per gram atom of Mg in the support.
Suitably, the titanium compound is present in an amount of about 0.1 to about 100 moles, more preferably about 1 to about 50 moles. The loading reaction can be carried out in two or more stages. The titanium compound used in the support reaction is preferably one that is liquid under the support reaction conditions or, if a solvent is used in the support reaction, soluble in the solvent. Specifically, the formula Ti
Examples include titanium compounds represented by (OR) o X 4-o (wherein R is a hydrocarbon group, X is a halogen, and 0≦n≦4). Examples of the above R include a C5 to C8 cycloalkyl group, a C2 to C18 alkyl group, and a C6 to C15 aryl group. Furthermore, examples of x include chlorine, bromine, and iodine. Preferred is titanium tetrahalide, and titanium tetrachloride is particularly preferred.

チタン化合物の担持に先立つて担体を電子供与
体、周期律表第1ないし第3族の有機金属化合
物、ケイ素又はスズのハロゲン化合物又は有機化
合物などで予備処理する方法の詳細は、先に例示
の各公報に記載されている通りであり、例えば、
不活性剤溶媒中で担体を懸濁させながら約0℃な
いし約150℃程度の温度で処理を行うことができ
る。
Details of the method of pre-treating the carrier with an electron donor, an organometallic compound of Groups 1 to 3 of the periodic table, a halogen compound of silicon or tin, or an organic compound prior to supporting the titanium compound can be found in the example given above. As stated in each publication, for example,
The treatment can be carried out at a temperature of about 0°C to about 150°C while suspending the carrier in an inert solvent.

チタン触媒成分の好適なものはチタン触媒成分
1g当りチタンを約3ないし約120mg、好ましくは
約5ないし約60mg含んでいる。また、ハロゲン/
チタン(原子比)は好ましくは6以上、より好ま
しくは約10ないし約50の範囲にある。上記触媒成
分は、マグネシウム、ハロゲン、チタンを必須成
分として含み、この他、場合によつては有機酸エ
ステルのような電子供与体が含まれることがあ
る。
The preferred titanium catalyst component is titanium catalyst component.
It contains from about 3 to about 120 mg of titanium per gram, preferably from about 5 to about 60 mg. Also, halogen/
The titanium (atomic ratio) is preferably 6 or more, more preferably in the range of about 10 to about 50. The above catalyst component contains magnesium, halogen, and titanium as essential components, and may also contain an electron donor such as an organic acid ester depending on the case.

本発明においては以上のようにして得られるチ
タン触媒成分Aと有機アルミニウム化合物触媒成
分Bとから形成される触媒の存在下にオレフイン
の重合もしくは共重合を行うものである。
In the present invention, olefin is polymerized or copolymerized in the presence of a catalyst formed from the titanium catalyst component A and the organoaluminum compound catalyst component B obtained as described above.

B成分はアルミニウムに直結する炭化水素基を
有するもので、アルキルアルミニウム化合物、ア
ルカリ金属アルキルアルミニウム化合物、アルキ
ルアルミニウムヒドリド、アルキルアルミニウム
ハライド、アルキルアルミニウムアルコキシドな
どを例示できる。これらの中で好適な化合物は、
A(C2H53、A(CH33、A(C3H73
A(C4H93、A(C12H253などのトリアル
キルまたはトリアルケルアルミニウム、(C2H52
AOA(C2H52、(C4H92AOA(C4H9
2、(C2H52AN(C6H5)A(C2H52のよう
な酸素や窒素原子を介してA原子が多数個連な
つた構造のアルキルアルミニウム化合物、(C2
H52AH、(C4H92AHのようなジアルキル
アルミニウムヒドリド、(C2H52AC、(C
2H52AI、(C4H92ACなどのジアルキ
ルアルミニウムハライド、(C2H52A(OC2
H5)、(C2H52A(OC6H5)のようなジアルキ
ルアルミニウムアルコキシドまたはフエノキシ
ド、あるいはこれらの混合物であり、もつとも好
適なものはトリアルキルアルミニウム又はこれと
アルキルアルミニウムハライドの混合物である。
Component B has a hydrocarbon group directly bonded to aluminum, and examples thereof include alkyl aluminum compounds, alkali metal alkyl aluminum compounds, alkyl aluminum hydrides, alkyl aluminum halides, and alkyl aluminum alkoxides. Among these, preferred compounds are:
A(C 2 H 5 ) 3 , A(CH 3 ) 3 , A(C 3 H 7 ) 3 ,
Trialkyl or trialkel aluminum such as A(C 4 H 9 ) 3 , A(C 12 H 25 ) 3 , (C 2 H 5 ) 2
AOA (C 2 H 5 ) 2 , (C 4 H 9 ) 2 AOA (C 4 H 9 )
2 , (C 2 H 5 ) 2 AN (C 6 H 5 ) A (C 2 H 5 ) 2, an alkyl aluminum compound having a structure in which many A atoms are linked via oxygen or nitrogen atoms, (C 2
Dialkyl aluminum hydrides such as H 5 ) 2 AH, (C 4 H 9 ) 2 AH, (C 2 H 5 ) 2 AC, (C
Dialkyl aluminum halides such as 2H 5 ) 2 AI, (C 4 H 9 ) 2 AC, (C 2 H 5 ) 2 A (OC 2
H 5 ), (C 2 H 5 ) 2 A(OC 6 H 5 ), dialkyl aluminum alkoxides or phenoxides, or mixtures thereof, most preferably trialkylaluminum or mixtures thereof with alkyl aluminum halides. It is.

重合に用いるオレフインの例としては、エチレ
ン、プロピレン、1−ブテン、4−メチル−1−
ペンテン、1−オクテンなどの如きC2〜C10のオ
レフインをあげることができる。これらは単独重
合のみならずランダム共重合、プロツク共重合を
行うことができる。共重合に際しては、共役ジエ
ンや非共役ジエンのような多不飽和化合物を共重
合成分に選ぶことができる。例えばプロピレンの
共重合を行う場合、全組成物の約60ないし約90重
量%に等しい単独重合体量を得るまでプロピレン
を重合し、その工程に続いてプロピレン−エチレ
ン混合物またはエチレンを重合する方法を採るこ
とができる。あるいはプロピレンとエチレンの混
合物を、約10モル%以下の割合でエチレンを含有
する共重合体を得るために重合することもでき
る。
Examples of olefins used in polymerization include ethylene, propylene, 1-butene, 4-methyl-1-
Mention may be made of C2 to C10 olefins such as pentene, 1-octene, and the like. These polymers can be subjected to not only homopolymerization but also random copolymerization and block copolymerization. In copolymerization, polyunsaturated compounds such as conjugated dienes and non-conjugated dienes can be selected as copolymerization components. For example, when copolymerizing propylene, the propylene is polymerized to an amount of homopolymer equal to about 60 to about 90% by weight of the total composition, followed by a process of polymerizing a propylene-ethylene mixture or ethylene. You can take it. Alternatively, mixtures of propylene and ethylene can be polymerized to obtain copolymers containing up to about 10 mole percent ethylene.

重合は、液相、気相の何れの相においても行う
ことができる。液相重合を行う場合は、ヘキサ
ン、ヘプタン、灯油のような不活性溶媒を反応媒
体としてもよいが、オレフンイそれ自信を反応媒
体とすることもできる。液相重合を行う場合、液
相1当り、チタン触媒成分をチタン原子に換算
して約0.0001ないし約1ミリモルに、またチタン
1モルに対し、有機アルミニウム化合物触媒成分
中のA原子が約1ないし約1000モル、好ましく
は約5ないし約500モルとなるようにするのが好
ましい。また気相重合を行う場合は、流動層や攪
拌流動層等を用いる方法を採用でき、触媒成分と
してチタン触媒成分は、例えばポリエチレン、ポ
リプロピレン、ガラスビーズ、シリカの如き固体
もしくはヘキサン、オレフイン等に希釈すること
により、また有機アルミニウム化合物触媒成分は
ヘキサン、オレフイン等に希釈し、又は希釈せず
そのまま重合器内に添加する一方、場合によつて
はさらに水素などを気体状で重合器中に供給する
ことにより重合を行うことができる。触媒等の使
用割合は、液相重合の場合と同様である。
Polymerization can be carried out in either liquid phase or gas phase. When carrying out liquid phase polymerization, an inert solvent such as hexane, heptane or kerosene may be used as the reaction medium, but olefin itself may also be used as the reaction medium. When performing liquid phase polymerization, the titanium catalyst component is about 0.0001 to about 1 mmol in terms of titanium atoms per liquid phase, and the amount of A atom in the organoaluminum compound catalyst component is about 1 to about 1 mmol per mole of titanium. Preferably, the amount is about 1000 moles, preferably about 5 to about 500 moles. In addition, when performing gas phase polymerization, a method using a fluidized bed or an agitated fluidized bed can be adopted, and the titanium catalyst component can be diluted with solids such as polyethylene, polypropylene, glass beads, silica, or hexane, olefin, etc. By doing so, the organoaluminum compound catalyst component is diluted with hexane, olefin, etc., or added to the polymerization vessel as it is without dilution, and in some cases, hydrogen or the like is further supplied in gaseous form into the polymerization vessel. Polymerization can be carried out by The proportions of catalysts, etc. used are the same as in the case of liquid phase polymerization.

オレフインの重合温度は、一般には約20ないし
約200℃、好ましくは約20℃ないし生成するポリ
オレフインの融点以下の温度、とくに好ましくは
約40ないし約120℃である。そして重合は大気圧
ないし約100Kg/cm2Gで行うことができ、加圧条
件下とくには約2〜約50Kg/cm2G程度の条件下で
行うのが好ましい。
The polymerization temperature of the olefin is generally from about 20 to about 200°C, preferably from about 20°C to a temperature below the melting point of the polyolefin to be produced, particularly preferably from about 40 to about 120°C. The polymerization can be carried out at atmospheric pressure to about 100 kg/cm 2 G, preferably under pressurized conditions, particularly about 2 to about 50 kg/cm 2 G.

オレフインを重合するに際し、分子量の調節
は、重合温度、触媒のモル比などの重合条件を変
えることによつてある程度実施できるが、重合系
内に水素を添加するのが効果的である。さらに炭
素数3以上のα−オレフインの重合において、立
体規則性制御などのため、アルコール、エーテ
ル、エステル、アミン、酸無水物、ケトン、カル
ボン酸アミド、リン化合物、ポリシロキサン、ア
ルコキシシラン化合物のような電子供与体を共存
させてもよい。これらは、有機アルミニウム化合
物触媒成分或いはルイス酸、例えばAX3との
付加化合物の形で使用することもできる。
When polymerizing olefins, the molecular weight can be controlled to some extent by changing polymerization conditions such as polymerization temperature and catalyst molar ratio, but it is effective to add hydrogen into the polymerization system. Furthermore, in the polymerization of α-olefins having 3 or more carbon atoms, alcohols, ethers, esters, amines, acid anhydrides, ketones, carboxylic acid amides, phosphorus compounds, polysiloxanes, alkoxysilane compounds, etc. An electron donor may also be present. They can also be used in the form of organoaluminum compound catalyst components or addition compounds with Lewis acids, such as AX 3 .

本発明によれば重合中における重合体の破砕が
少なく、従つて、微粒重合体の生成が少なく、粒
度分布の狭い嵩比重の高い球形状のオレフイン重
合体が得られるため、重合後の重合体の後処理が
極めて簡略化されるか、あるいは多くの場合全く
必要でない利点がある。従つて、溶媒を全く使用
しない気相重合においても重合プロセス上の問題
例えば、流動状態の均一化、あるいは、微粉状重
合体生成によるプロセス上の制約、重合体粉末の
プロセス内での輸送などに大きな改善が得られ、
無溶媒重合でそのまま製品となりうる重合体を得
ることが可能である。
According to the present invention, there is less crushing of the polymer during polymerization, and therefore, a spherical olefin polymer with a narrow particle size distribution and high bulk specific gravity can be obtained with less generation of fine polymer particles. The advantage is that post-processing is greatly simplified or, in many cases, not required at all. Therefore, even in gas phase polymerization that does not use any solvent, there are problems in the polymerization process, such as uniformity of the fluid state, process constraints due to the formation of finely divided polymer, and transportation of polymer powder within the process. A big improvement was made,
It is possible to obtain a polymer that can be used as a product as it is by solventless polymerization.

実施例 1 内容積30リツトルの容器に、無水の塩化マグネ
シウム1Kg、エタノール1.4Kg、デカン15.5Kg、
ソルビタンジステアレート39gを窒素雰囲気下に
仕込み、よく攪拌しながら130℃まで昇温した。
圧力は6Kg/cm2ゲージとなるよう窒素ガスにて調
整しながらさらに3時間攪拌を続けた。内溶液を
底部の排出口からよく保温された排出ラインと、
その先端に内径1mm長さ1メートルの乳化パイプ
を通じて突出させた。この液状物をあらかじめノ
ルマルデカン50リツトルを入れた容器200リツト
ルの冷却ジヤケツト付の攪拌容器の気相部に導入
し25℃に急冷した。約1時間の運転後冷却容器へ
の供給を停止、さらに30分間冷却を続けた。
Example 1 In a container with an internal volume of 30 liters, 1 kg of anhydrous magnesium chloride, 1.4 kg of ethanol, 15.5 kg of decane,
39 g of sorbitan distearate was charged under a nitrogen atmosphere, and the temperature was raised to 130° C. with thorough stirring.
Stirring was continued for an additional 3 hours while adjusting the pressure to 6 kg/cm 2 gauge with nitrogen gas. A well-insulated discharge line for discharging the internal solution from the bottom discharge port,
An emulsifying pipe with an inner diameter of 1 mm and a length of 1 meter was protruded from its tip. This liquid material was introduced into the gas phase of a 200 liter stirring vessel equipped with a cooling jacket, into which 50 liters of normal decane had been previously charged, and rapidly cooled to 25°C. After approximately 1 hour of operation, the supply to the cooling vessel was stopped and cooling continued for an additional 30 minutes.

冷却された液状物は、粒径範囲5〜400ミクロ
ンの球状固体担体を含むデカンスラリーとなつ
た。
The cooled liquid became a decane slurry containing spherical solid supports ranging in size from 5 to 400 microns.

このスラリーを目開き105ミクロンのステンレ
ス製金網で窒素雰囲気下に、デカンで洗浄しなが
ら分級した。粗粒をカツトされたふるい下のスラ
リーを再度53ミクロンの金網で分級し網上の固形
分として500gk真球状の担体を得た。担体中のエ
タノールと塩化マグネシウムのモル比は3.0で水
分と塩化マグネシウムのモル比は0.026であつた。
また、担体の平均粒径は75μmで粒径の幾何標準
偏差は1.29であつた。
This slurry was classified using a stainless steel wire mesh with an opening of 105 microns under a nitrogen atmosphere while being washed with decane. The slurry under the sieve from which coarse particles had been cut was classified again using a 53 micron wire mesh to obtain a 500 gk true spherical carrier as the solid content on the mesh. The molar ratio of ethanol to magnesium chloride in the carrier was 3.0, and the molar ratio of water to magnesium chloride was 0.026.
Further, the average particle size of the carrier was 75 μm, and the geometric standard deviation of the particle size was 1.29.

なお、粒度分布の測定は、島津製作所製の遠心
沈降式粒度分布測定装置「SA−CP2」を用いて、
溶媒をデカンとして各粒度毎の重量分率を求め
た。さらに、その積み下げ累積粒度を対数確率紙
にプロツトし、得られた直線から下記式に従つて
幾何標準偏差を求めた。
The particle size distribution was measured using a centrifugal sedimentation type particle size distribution measuring device "SA-CP2" manufactured by Shimadzu Corporation.
The weight fraction for each particle size was determined using decane as the solvent. Furthermore, the cumulative grain size of the unloaded grains was plotted on logarithmic probability paper, and the geometric standard deviation was determined from the obtained straight line according to the following formula.

幾何標準偏差(σg)=累積分率15.87%の粒径/
平均粒径 (=平均粒径/累積分率84.13%の粒径) これとは別に、0.46gの水と500c.c.のデカン及び
ソルビタントリステアレート0.1gを入れた混合物
を窒素雰囲気中で強力に15分間攪拌し透明な液体
を得た。これを50gの担体を含む1のデカン懸
濁液に攪拌下添加し、10分間攪拌後、濾過乾燥
し、粉末の球状担体を得た。その担体中の水分と
塩化マグネシウムのモル比は0.144であつた。
Geometric standard deviation (σg) = particle size at cumulative fraction 15.87%/
Average particle size (= average particle size/particle size at cumulative fraction 84.13%) Separately, a mixture of 0.46 g of water, 500 c.c. of decane, and 0.1 g of sorbitan tristearate was prepared in a nitrogen atmosphere. Stir vigorously for 15 minutes to obtain a clear liquid. This was added to the decane suspension of 1 containing 50 g of carrier under stirring, and after stirring for 10 minutes, it was filtered and dried to obtain a powdery spherical carrier. The molar ratio of water to magnesium chloride in the carrier was 0.144.

次に1のガラスフラスコに500c.c.の四塩化チ
タンを入れ攪拌しながら25gの上記球状担体を入
れ、次いでジイソブチルフタレートを16ミリモル
添加し30分間攪拌し、120℃まで昇温して、1.5時
間さらに攪拌した。静置分離後上澄液を捨て、新
しい130℃の四塩化チタン500c.c.を加えて、2時間
攪拌し、固体部をろ過により回収し、ヘキサンに
てよく洗浄の後乾燥した。
Next, put 500 c.c. of titanium tetrachloride into the glass flask No. 1, add 25 g of the above spherical carrier while stirring, then add 16 mmol of diisobutyl phthalate, stir for 30 minutes, raise the temperature to 120°C, and add 25 g of the above spherical carrier. Stirred for an additional hour. After standing to separate, the supernatant was discarded, and 500 c.c. of fresh titanium tetrachloride at 130°C was added, stirred for 2 hours, and the solid portion was collected by filtration, thoroughly washed with hexane, and then dried.

2のオートクレーブにヘキサン0.75を装入
し、プロピレン雰囲気下トリエチルアルミニウム
3.75mmol、ジフエニルメトキシシラン0.5mmol
および前記Ti含有固体触媒をTi原子換算で
0.0225mg−原子装入した。
2 autoclave was charged with 0.75% hexane, and triethylaluminum was added under a propylene atmosphere.
3.75mmol, diphenylmethoxysilane 0.5mmol
and the above Ti-containing solid catalyst in terms of Ti atoms.
0.0225 mg-atom charge.

水素400Nmを添加後、系を60℃に昇温し、
プロピレンで全圧7.0Kg/cm2Gに昇圧し、プロピ
レン圧を維持しながら4時間重合を行つた。重合
終了後、重合体を含むスラリーをろ過したとこ
ろ、硬い球状白色粉末状重合体653gを得、その
沸騰n−ヘプタン抽出残率は97.4%、見掛比重は
0.41g/mlであつた。またポリマーの平均粒径は
1400μ、対数標準偏差0.50であり、420μ以下の微
粉の重量百分率は4.8パーセントであつた。また、
生成した球状のポリマー粒子は固く、破砕品は非
常に少なかつた。
After adding 400Nm of hydrogen, the system was heated to 60℃,
The total pressure was increased to 7.0 Kg/cm 2 G using propylene, and polymerization was carried out for 4 hours while maintaining the propylene pressure. After the polymerization was completed, the slurry containing the polymer was filtered to obtain 653 g of a hard, spherical white powder polymer, with a boiling n-heptane extraction residue of 97.4% and an apparent specific gravity of
It was 0.41g/ml. Also, the average particle size of the polymer is
1400μ, logarithmic standard deviation 0.50, and the weight percentage of fine powder of 420μ or less was 4.8%. Also,
The spherical polymer particles produced were hard and there were very few crushed particles.

比較例 1 実施例1において、分級後の担体への水分の添
加をしないで、同様の四塩化チタンによる処理を
行い、同じ方法でプロピレン重合をしたところ重
合したポリマー量は698gで見掛比重は0.38、n−
ヘプタン抽出残率は97.2%と実施例1に近い性能
を示したものの、生成ポリマー粒子は軟かく、指
で容易に破壊される程度であつた。また、粒子の
破砕も多く、420μ以下の粒子の重量百分率は7.8
パーセントに増加した。
Comparative Example 1 In Example 1, the same treatment with titanium tetrachloride was carried out without adding water to the carrier after classification, and propylene polymerization was carried out in the same manner. The amount of polymerized polymer was 698 g, and the apparent specific gravity was 0.38, n-
Although the heptane extraction residual rate was 97.2%, which was close to that of Example 1, the produced polymer particles were soft and could be easily broken with fingers. In addition, many particles are crushed, and the weight percentage of particles smaller than 420μ is 7.8
increased to %.

実施例 2 実施例1で用いたと同様の手順で球状担体への
水分添加量を水と塩化マグネシウムのモル比で
0.47とした以外は全く同様の方法でポリプロピレ
ンを得た。重合量は、630gで、n−ヘプタン抽
出残率は97.3%、ポリマー粒子は固く、割れも少
なく、見掛比重は0.41で、420μ以下の粒子割合は
3.9%であつた。
Example 2 Using the same procedure as used in Example 1, the amount of water added to the spherical carrier was determined by the molar ratio of water and magnesium chloride.
Polypropylene was obtained in exactly the same manner except that the value was 0.47. The amount of polymerization was 630g, the residual rate of n-heptane extraction was 97.3%, the polymer particles were hard and had few cracks, the apparent specific gravity was 0.41, and the proportion of particles below 420μ was
It was 3.9%.

比較例 2 実施例1で塩化マグネシウムに添加するエタノ
ールにあらかじめ水を添加して、乳化造粒を行い
球状担体を得た。この球状担体は、実施1のもの
と同じ平均粒径および幾何標準偏差を有してい
た。担体中の水と塩化マグネシウムのモル比は
0.305であつた。分級していない四塩化チタン処
理、プロピレン重合処理は実施例1と同様にし
て、ポリプロピレンの粒子を得た。得られたポリ
プロピレンは450gに減少していた上、n−ヘプ
タン抽出残率は93.8%と低く、見掛比重は0.31と
悪化し、粒子が軟かく、特に風せん状の粒子や偏
平物も見受けられ420μ以下の割合も6%と多か
つた。
Comparative Example 2 Water was added in advance to the ethanol added to magnesium chloride in Example 1, and emulsion granulation was performed to obtain a spherical carrier. This spherical support had the same average particle size and geometric standard deviation as that of Example 1. The molar ratio of water and magnesium chloride in the carrier is
It was 0.305. The unclassified titanium tetrachloride treatment and propylene polymerization treatment were carried out in the same manner as in Example 1 to obtain polypropylene particles. The obtained polypropylene had decreased to 450 g, the n-heptane extraction residue was low at 93.8%, the apparent specific gravity was 0.31, and the particles were soft, with some wind-shaped particles and flat particles being observed. However, the proportion of 420μ or less was also high at 6%.

比較例 3 実施例1において冷却された液状物として、粒
系範囲5−400ミクロンの球状固体担体を含むデ
カンスラリーを調製するまでは同様の方法を用い
た。このスラリーを105ミクロンのステンレス製
金網で窒素雰囲気下に、デカンで洗浄しながら分
級し、網上品として粗粒を得た。さらに、105ミ
クロンの金網の通過スラリーを53ミクロンの金網
で網上品と網下品とに分級して全体を3つの粒度
に分割した。53ミクロン以上で、かつ105ミクロ
ン以下の中間粒度成分については、そのスラリー
の約3分の1を取り、再度、105ミクロン網上品、
53クミロン網下品と混合した。このスラリーの粒
度分布を測定したところ、平均粒径78ミクロン、
幾何標準偏差2.53であつた。このスラリーを沈降
濃縮し、50gの担体を含む1リツトルのデカン懸
濁液を調整した。この懸濁液にたいし、実施例1
と同様の方法でデカンに分散させた水を接触させ
た。その以後の操作も実施例1と同様の操作を行
い、チタン触媒成分を調整した。その触媒成分を
用いて実施例1と同様にして、プロピレン重合を
行い、420gのポリマー粒子を得た。
Comparative Example 3 A similar method was used in Example 1 to prepare a decane slurry containing spherical solid supports in the particle size range of 5-400 microns as the cooled liquid. This slurry was classified using a 105 micron stainless steel wire mesh in a nitrogen atmosphere while being washed with decane to obtain coarse particles as a wire mesh. Furthermore, the slurry that passed through the 105 micron wire mesh was classified into upper and lower mesh components using a 53 micron wire mesh, and the entire slurry was divided into three particle sizes. For intermediate particle size components of 53 microns or more and 105 microns or less, take about one-third of the slurry and refill with a 105 micron mesh particle.
53 Cumilon mixed with netheria. When the particle size distribution of this slurry was measured, the average particle size was 78 microns.
The geometric standard deviation was 2.53. This slurry was sedimented and concentrated to prepare a 1 liter suspension in decane containing 50 g of carrier. For this suspension, Example 1
Water dispersed in decane was brought into contact with it in the same manner as above. The subsequent operations were the same as in Example 1 to adjust the titanium catalyst component. Using the catalyst component, propylene polymerization was carried out in the same manner as in Example 1 to obtain 420 g of polymer particles.

生成した球状のポリマー粒子は固いものと、多
数の破砕片、柔らかい粒子の混合物であり、見掛
比重は0.32であつた。また、n−ヘプタン抽出残
率は93.9%と低かつた。
The spherical polymer particles produced were a mixture of hard particles, many crushed pieces, and soft particles, and had an apparent specific gravity of 0.32. Further, the n-heptane extraction residual rate was as low as 93.9%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本願発明の方法に従つたオレフイン
重合触媒の調整及びそれをオレフインの重合に使
用する過程を模式的に示すフローチヤートであ
る。
FIG. 1 is a flowchart schematically showing the preparation of an olefin polymerization catalyst and its use in olefin polymerization according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 (A)ハロゲン化マグネシウムaとアルコールb
との液状混合物から造粒して得られる平均粒径が
5ないし400μで幾何標準偏差が2.1未満の粒度分
布の狭い球状錯体に、気体または液体に微分散し
た水を作用させてH2O/Mgモル比を0.05ないし
1としたものを担体に用いて液状状態もしくは溶
媒可溶性の一般式Ti(OR)oX4-o(式中、Rは炭化
水素基、Xはハロゲン、0≦n<4)で表わされ
るハロゲン含有チタン化合物を担持させて調製し
たチタン触媒成分と、(B)有機アルミニウム化合物
触媒成分とから形成される触媒の存在下に、オレ
フインの重合もしくは共重合を行うことを特徴と
するオレフインの重合方法。
1 (A) Magnesium halide a and alcohol b
H 2 O/ Ti(OR) o X 4-o (wherein, R is a hydrocarbon group, X is a halogen, 0≦n< The method is characterized in that olefin polymerization or copolymerization is carried out in the presence of a catalyst formed from a titanium catalyst component prepared by supporting a halogen-containing titanium compound represented by 4) and (B) an organoaluminum compound catalyst component. A method for polymerizing olefin.
JP9703282A 1982-06-08 1982-06-08 Polymerization of olefin Granted JPS58215408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9703282A JPS58215408A (en) 1982-06-08 1982-06-08 Polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9703282A JPS58215408A (en) 1982-06-08 1982-06-08 Polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS58215408A JPS58215408A (en) 1983-12-14
JPH0424361B2 true JPH0424361B2 (en) 1992-04-24

Family

ID=14181134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9703282A Granted JPS58215408A (en) 1982-06-08 1982-06-08 Polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS58215408A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588559B1 (en) * 1985-10-11 1988-03-11 Bp Chimie Sa PROCESS FOR POLYMERIZATION OR COPOLYMERIZATION OF ALPHA-OLEFINS IN THE PRESENCE OF AN IMPROVED ZIEGLER-NATTA CATALYST SYSTEM
FR2628110B1 (en) * 1988-03-03 1994-03-25 Bp Chimie CATALYST FOR POLYMERIZATION OF ZIEGLER-NATTA-TYPE OLEFINS, SUPPORTED ON SPHERICAL MAGNESIUM CHLORIDE PARTICLES, AND PROCESS FOR PREPARING THE SAME
JP5105480B2 (en) * 2008-03-06 2012-12-26 東邦チタニウム株式会社 SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME
JP5208544B2 (en) * 2008-03-06 2013-06-12 東邦チタニウム株式会社 SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME, AND CATALYST
CN104628900B (en) * 2013-11-08 2017-05-10 中国石油天然气股份有限公司 Preparation method and application of spherical magnesium halide carrier
CN111051359A (en) * 2017-08-29 2020-04-21 格雷斯公司 Olefin polymerization catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418889A (en) * 1977-07-13 1979-02-13 Mitsui Petrochem Ind Ltd Polymerization or copolymerization of ethylene
JPS55135102A (en) * 1979-04-11 1980-10-21 Mitsui Petrochem Ind Ltd Production of carrier for olefin polymerization catalyst
JPS55135103A (en) * 1979-04-11 1980-10-21 Mitsui Petrochem Ind Ltd Production of carrier for olefin polymerization catalyst
JPS5667311A (en) * 1979-11-08 1981-06-06 Mitsui Petrochem Ind Ltd Production of carrier for olefin polymerization catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5418889A (en) * 1977-07-13 1979-02-13 Mitsui Petrochem Ind Ltd Polymerization or copolymerization of ethylene
JPS55135102A (en) * 1979-04-11 1980-10-21 Mitsui Petrochem Ind Ltd Production of carrier for olefin polymerization catalyst
JPS55135103A (en) * 1979-04-11 1980-10-21 Mitsui Petrochem Ind Ltd Production of carrier for olefin polymerization catalyst
JPS5667311A (en) * 1979-11-08 1981-06-06 Mitsui Petrochem Ind Ltd Production of carrier for olefin polymerization catalyst

Also Published As

Publication number Publication date
JPS58215408A (en) 1983-12-14

Similar Documents

Publication Publication Date Title
CN1036595C (en) Components and catalysts for the polymerization of olefins
JPH04293912A (en) Production of stereoregular polyolefin
JPS6123205B2 (en)
JP2007512416A (en) Spray dried mixed metal Ziegler catalyst composition
KR910005663B1 (en) Catalysis for olefin polymerization
JPH0655786B2 (en) Method for producing olefin polymer
JPH0424361B2 (en)
CN110546170B (en) Catalyst components for the polymerization of olefins
KR101783596B1 (en) Catalyst components for the polymerization of olefins
JP4885130B2 (en) Method for producing catalyst component for olefin polymerization
JPH04114007A (en) Production of stereoregular polyolefin
JP3130171B2 (en) Solid catalyst component for polymerization of olefins and polymerization method
JP2717723B2 (en) Method for producing polyolefin
JPH0617400B2 (en) Olefin Polymerization Method
JPS64403B2 (en)
JPH0575766B2 (en)
JPH0575764B2 (en)
RU2303605C1 (en) Polyethylene production process
JP3330186B2 (en) Solid catalyst component for polymerization of olefins and polymerization method
JPH0149287B2 (en)
JPH0617403B2 (en) Method for producing polyolefin
KR930010653B1 (en) Process for the preparation of titanic catalyst for alpha-olefinic polymerization and process for the preparation of alpha-olefinic polymer therefor
JPH0575765B2 (en)
JP2811325B2 (en) Catalyst component for olefin polymerization
JPS61211308A (en) Production of polyolefin