JP5105480B2 - SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME - Google Patents
SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME Download PDFInfo
- Publication number
- JP5105480B2 JP5105480B2 JP2008055939A JP2008055939A JP5105480B2 JP 5105480 B2 JP5105480 B2 JP 5105480B2 JP 2008055939 A JP2008055939 A JP 2008055939A JP 2008055939 A JP2008055939 A JP 2008055939A JP 5105480 B2 JP5105480 B2 JP 5105480B2
- Authority
- JP
- Japan
- Prior art keywords
- ether
- solid
- compound
- vapor
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Description
本発明は、ポリマーの立体規則性および収率を高度に維持することができ、さらに微粉の少ない重合体を得ることのできるオレフィン類重合用固体触媒成分、その製造方法および触媒に関する。 The present invention relates to a solid catalyst component for polymerizing olefins, a method for producing the same, and a catalyst that can maintain a high degree of stereoregularity and yield of a polymer and can obtain a polymer with less fine powder.
従来、オレフィン類の重合においては、マグネシウム、チタン、電子供与性化合物及びハロゲンを必須成分として含有するオレフィン類重合用固体触媒成分が数多く提案されており、特にマグネシウム原料としてジエトキシマグネシウムを代表とするアルコキシマグネシウム化合物を用いて調製された固体触媒成分が、性能が高く工業的にも広く用いられている。 Conventionally, in the polymerization of olefins, many solid catalyst components for olefin polymerization containing magnesium, titanium, an electron donating compound and halogen as essential components have been proposed. In particular, diethoxymagnesium is representative as a magnesium raw material. Solid catalyst components prepared using alkoxymagnesium compounds have high performance and are widely used industrially.
例えば、特許文献1(特開昭63−3010号公報)においては、ジアルコキシマグネシウム、芳香族ジカルボン酸ジエステル、芳香族炭化水素化合物およびチタンハロゲン化物を接触して得られた生成物を、粉末状態で加熱処理することにより調製した固体触媒成分と、有機アルミニウム化合物および有機ケイ素化合物よりなるオレフィン類重合用触媒とオレフィンの重合方法が提案されている。 For example, in Patent Document 1 (Japanese Patent Laid-Open No. 63-3010), a product obtained by contacting dialkoxymagnesium, an aromatic dicarboxylic acid diester, an aromatic hydrocarbon compound and a titanium halide is in a powder state. A method for polymerizing olefins and a solid catalyst component prepared by heat treatment with olefin, an olefin polymerization catalyst comprising an organoaluminum compound and an organosilicon compound have been proposed.
また、特許文献2(特開昭62−50309号公報)においては、ジアルコキシマグネシウム、芳香族ジカルボン酸のジエステル、ハロゲン化炭化水素およびチタンハロゲン化物を接触させて得られる固体組成物に水を接触させ、次いで再び該チタンハロゲン化物を接触させて得られる触媒成分と、有機アルミニウム化合物および有機ケイ素化合物より成るオレフィン類重合用触媒と該触媒の存在下でのオレフィンの重合方法が提案されている。 In Patent Document 2 (Japanese Patent Laid-Open No. 62-50309), water is brought into contact with a solid composition obtained by contacting dialkoxymagnesium, a diester of an aromatic dicarboxylic acid, a halogenated hydrocarbon and a titanium halide. Then, a catalyst component obtained by contacting the titanium halide again, a catalyst for polymerizing olefins composed of an organoaluminum compound and an organosilicon compound, and a method for polymerizing olefins in the presence of the catalyst have been proposed.
また、特許文献3(特開平11−12316号公報)においては、マグネシウム化合物、チタン化合物及び電子供与性化合物を接触させることによって調製される、マグネシウム、チタン、電子供与性化合物及びハロゲン原子を含有する固体成分に、アルコールを接触させることにより得られることを特徴とするオレフィン類重合用固体触媒成分と、有機アルミニウム化合物および有機ケイ素化合物より成るオレフィン類重合用触媒と該触媒の存在下でのオレフィンの重合方法が提案されている。 Moreover, in patent document 3 (Unexamined-Japanese-Patent No. 11-12316), it contains magnesium, titanium, an electron-donating compound, and a halogen atom prepared by making a magnesium compound, a titanium compound, and an electron-donating compound contact. A solid catalyst component for olefin polymerization, which is obtained by bringing an alcohol into contact with a solid component; an olefin polymerization catalyst comprising an organoaluminum compound and an organosilicon compound; and an olefin in the presence of the catalyst. A polymerization method has been proposed.
また、特許文献4(特開2003−261612号公報)においては、マグネシウム化合物、チタン化合物及び電子供与性化合物を接触させることによって調製される、マグネシウム、チタン、電子供与性化合物及びハロゲン原子を含有する固体成分に、エーテルを接触させることにより得られることを特徴とするオレフィン類重合用固体触媒成分と、有機アルミニウム化合物および有機ケイ素化合物より成るオレフィン類重合用触媒と該触媒の存在下でのオレフィンの重合方法が提案されている。 Moreover, in patent document 4 (Unexamined-Japanese-Patent No. 2003-261612), it contains magnesium, titanium, an electron-donating compound, and a halogen atom prepared by contacting a magnesium compound, a titanium compound, and an electron-donating compound. A solid catalyst component for olefin polymerization, which is obtained by bringing ether into contact with a solid component, an olefin polymerization catalyst comprising an organoaluminum compound and an organosilicon compound, and an olefin in the presence of the catalyst. A polymerization method has been proposed.
上記の各従来技術は、その目的が生成重合体中に残留する塩素やチタン等の触媒残渣を除去する所謂、脱灰工程を省略し得る程の高活性を有するとともに、併せて立体規則性重合体の収率の向上や、重合時の触媒活性の持続性を高めることに注力したものであり、それぞれ優れた成果を上げているが、この種の高活性型触媒成分と有機アルミニウム化合物およびケイ素化合物に代表される電子供与性化合物とからなる組成の重合用触媒を用いてオレフィン類の重合を行うと、固体触媒成分自体の微粉および重合した際の反応熱による粒子破壊のため、生成重合体中に微粉が多く含まれ、粒度分布もブロード化する傾向があった。微粉重合体が多くなると、均一な反応の継続を妨げ、重合体移送時における配管の閉塞をもたらす等のプロセス障害の原因となり、また粒度分布が広くなると結果的に重合体の成形加工にまで好ましくない影響を及ぼすため、微粉重合体が可及的に少なく、かつ均一粒径で粒度分布の狭い重合体を希求する要因となっていた。 Each of the above prior arts has a high activity capable of omitting a so-called deashing step for removing catalyst residues such as chlorine and titanium remaining in the produced polymer, and also has a high degree of stereoregularity. These efforts are focused on improving the yield of coalescence and increasing the sustainability of the catalytic activity during polymerization, and each has achieved excellent results. This type of highly active catalyst component, organoaluminum compound and silicon Polymerization of olefins using a polymerization catalyst composed of an electron donating compound typified by a compound causes a fine polymer of the solid catalyst component itself and particle breakage due to heat of reaction when polymerized, resulting in a polymer produced There was a tendency to broaden the particle size distribution with a lot of fine powder contained therein. Increasing the amount of finely divided polymer prevents process continuation, causing blockage of piping during polymer transfer, etc., and widening the particle size distribution results in favorable polymer processing. As a result, the amount of fine powder polymer is as small as possible, and a polymer having a uniform particle size and a narrow particle size distribution has been sought.
この問題を解決する手段として、特許文献5(特開平6−287225号公報)においては、球状のジアルコキシマグネシウム、芳香族炭化水素化合物およびフタル酸ジエステルとの懸濁液を、芳香族炭化水素化合物と四塩化チタンとの混合溶液に加えて反応させ、得られた反応生成物を芳香族炭化水素化合物で洗浄し、再度四塩化チタンと反応させて得られた固体成分を乾燥させ、微粉除去処理行程を経て得られるオレフィン類重合用固体触媒成分が提案されている。 As means for solving this problem, in Patent Document 5 (Japanese Patent Laid-Open No. 6-287225), a suspension of spherical dialkoxymagnesium, aromatic hydrocarbon compound and phthalic acid diester is used as an aromatic hydrocarbon compound. It is added to the mixed solution of titanium tetrachloride and allowed to react. The resulting reaction product is washed with an aromatic hydrocarbon compound, and the solid component obtained by reacting with titanium tetrachloride again is dried to remove fine powder. A solid catalyst component for olefin polymerization obtained through a process has been proposed.
上記の提案は固体触媒成分自体の微粉を除去し、結果として生成した重合体の微粉量をある程度低減させるという効果は認められるものの、特にマイクロファインと呼ばれる超微粉重合体の発生は依然としてあり、さらなる微粉重合体発生の少ない触媒の開発が望まれていたが、上記従来技術では係る課題を解決するには充分ではなかった。
従って、本発明の目的は、オレフィンの重合に供した際、ポリマーの立体規則性および収率を高度に維持でき、しかも微粉が少なく、シャープな粒度分布を有する重合体を得ることができるオレフィン類重合触媒の成分となる固体触媒成分、その製造方法並びに触媒を提供することにある。 Therefore, an object of the present invention is to provide olefins that can maintain a high degree of polymer stereoregularity and yield when subjected to olefin polymerization, and that can obtain a polymer having a small particle size and a sharp particle size distribution. An object of the present invention is to provide a solid catalyst component as a component of a polymerization catalyst, a production method thereof, and a catalyst.
かかる実情において、本発明者は鋭意検討を重ねた結果、オレフィン類を重合した際の微粉重合体の発生量を抑制するためには、固体触媒成分を形成する際に、微粒子の生成を極力抑えること、また、そのためには、固体触媒成分生成過程で得られる固体生成物にアルコール蒸気又はエーテル蒸気と、水蒸気を接触させれば、固体生成物の粒子表面に存在する微粉を除去し、また剥離し易い粒子を除去でき、更に粒子表面の破壊強度が向上すること等を見出し、本発明を完成するに至った。 In this situation, as a result of intensive studies, the present inventor has suppressed the generation of fine particles as much as possible when forming the solid catalyst component in order to suppress the amount of fine powder polymer generated when olefins are polymerized. For that purpose, if the solid product obtained in the process of producing the solid catalyst component is brought into contact with alcohol vapor or ether vapor and water vapor, the fine powder existing on the particle surface of the solid product is removed and peeled off. As a result, the present inventors have found that the particles that can be easily removed can be removed and the fracture strength of the particle surface is improved, and the present invention has been completed.
すなわち、本発明は、マグネシウム化合物(a)、4価のチタンハロゲン化合物(b)及び、アルコール及びエーテル以外の電子供与性化合物(c)を接触し固体生成物を形成し、次いで該固体生成物にアルコール蒸気又はエーテル蒸気と、水蒸気を接触させ、該蒸気接触後の固体生成物に、さらに4価のチタンハロゲン化合物(b)を接触させて得られることを特徴とするオレフィン重合用固体触媒成分を提供するものである。 That is, the present invention contacts a magnesium compound (a), a tetravalent titanium halogen compound (b) and an electron donating compound (c) other than alcohol and ether to form a solid product, and then the solid product A solid catalyst component for olefin polymerization obtained by bringing alcohol vapor or ether vapor into contact with water vapor and then bringing the solid product after the vapor contact into contact with a tetravalent titanium halogen compound (b) Is to provide.
また、本発明は、マグネシウム化合物(a)、4価のチタンハロゲン化合物(b)及び、アルコール並びにエーテル以外の電子供与性化合物(c)を接触し固体生成物を形成し、次いで該固体生成物にアルコール蒸気又はエーテル蒸気と、水蒸気を接触させ、該蒸気接触後の固体生成物に、さらに4価のチタンハロゲン化合物(b)を接触させることを特徴とするオレフィン重合用固体触媒成分の製造方法を提供するものである。 In addition, the present invention contacts a magnesium compound (a), a tetravalent titanium halogen compound (b), and an electron donating compound (c) other than alcohol and ether to form a solid product, and then the solid product A method for producing a solid catalyst component for olefin polymerization, comprising contacting an alcohol vapor or an ether vapor with water vapor, and further contacting a tetravalent titanium halogen compound (b) with the solid product after the vapor contact Is to provide.
また、本発明は、(A)請求項1〜4に記載のオレフィン類重合用固体触媒成分、(B)下記一般式(1); R1 pAlQ3−p (1)
(式中、R1は炭素数1〜4のアルキル基を示し、Qは水素原子あるいはハロゲン原子を示し、pは0<p≦3の実数である。)で表される有機アルミニウム化合物および(C)外部電子供与性化合物によって形成されることを特徴とするオレフィン類重合用触媒を提供するものである。
Further, the present invention provides (A) a solid catalyst component for olefin polymerization according to claims 1 to 4, (B) the following general formula (1); R 1 p AlQ 3-p (1)
(Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms, Q represents a hydrogen atom or a halogen atom, and p is a real number of 0 <p ≦ 3) and ( C) An olefin polymerization catalyst characterized by being formed by an external electron donating compound.
また、本発明は、上記のオレフィン類重合用触媒の存在下にオレフィン類の重合を行うことを特徴とするオレフィン類重合体又は共重合体の製造方法を提供するものである。 The present invention also provides a method for producing an olefin polymer or copolymer, which comprises polymerizing olefins in the presence of the olefin polymerization catalyst.
本発明のオレフィン類重合用固体触媒成分を用いて形成された触媒を用いれば、ポリマーの立体規則性および収率を高度に維持しながら、極めて微粉の少ない重合体を得ることができる。従って、汎用ポリオレフィンを、低コストで提供し得る。 When the catalyst formed using the solid catalyst component for olefin polymerization of the present invention is used, a polymer with very little fine powder can be obtained while maintaining the high degree of stereoregularity and yield of the polymer. Therefore, general-purpose polyolefin can be provided at low cost.
本発明のオレフィン類重合用触媒のうち固体触媒成分(A)(以下、「成分(A)」ということがある。)の調製に用いられるマグネシウム化合物(以下単に「成分(a)ということがある。」としては、ジハロゲン化マグネシウム、ジアルキルマグネシウム、ハロゲン化アルキルマグネシウム、ジアルコキシマグネシウム、ジアリールオキシマグネシウム、ハロゲン化アルコキシマグネシウムあるいは脂肪酸マグネシウム等が挙げられる。これらのマグネシウム化合物の中でもジアルコキシマグネシウムが好ましく、具体的には、ジメトキシマグネシウム、ジエトキシマグネシウム、ジプロポキシマグネシウム、ジブトキシマグネシウム、エトキシメトキシマグネシウム、エトキシプロポキシマグネシウム、ブトキシエトキシマグネシウム等が挙げられ、ジエトキシマグネシウムが特に好ましい。また、これらのジアルコキシマグネシウムは、金属マグネシウムを、ハロゲンあるいはハロゲン含有金属化合物等の存在下にアルコールと反応させて得たものでもよい。また、上記のジアルコキシマグネシウムは、単独あるいは2種以上併用することもできる。 Among the olefin polymerization catalysts of the present invention, a magnesium compound (hereinafter sometimes simply referred to as “component (a)”) used for the preparation of the solid catalyst component (A) (hereinafter sometimes referred to as “component (A)”). ”Includes dihalogenated magnesium, dialkylmagnesium, halogenated alkylmagnesium, dialkoxymagnesium, diaryloxymagnesium, halogenated alkoxymagnesium, fatty acid magnesium, etc. Among these magnesium compounds, dialkoxymagnesium is preferable. In particular, dimethoxymagnesium, diethoxymagnesium, dipropoxymagnesium, dibutoxymagnesium, ethoxymethoxymagnesium, ethoxypropoxymagnesium, butoxyethoxymagnesium Diethoxymagnesium is particularly preferred, and these dialkoxymagnesium may be obtained by reacting metal magnesium with an alcohol in the presence of a halogen or a halogen-containing metal compound. Dialkoxymagnesium can be used alone or in combination of two or more.
更に、本発明において成分(A)の調製に用いられるジアルコキシマグネシウムは、顆粒状又は粉末状であり、その形状は不定形あるいは球状のものを使用し得る。例えば球状のジアルコキシマグネシウムを使用した場合、より良好な粒子形状と狭い粒度分布を有する重合体粉末が得られ、重合操作時の生成重合体粉末の取扱い操作性が向上し、生成重合体粉末に含まれる微粉に起因する閉塞等の問題が解消される。 Furthermore, the dialkoxymagnesium used for the preparation of the component (A) in the present invention is in the form of granules or powder, and the shape thereof may be indefinite or spherical. For example, when spherical dialkoxymagnesium is used, a polymer powder having a better particle shape and a narrow particle size distribution can be obtained, and the handling operability of the produced polymer powder during the polymerization operation is improved. Problems such as blockage caused by the contained fine powder are solved.
上記の球状ジアルコキシマグネシウムは、必ずしも真球状である必要はなく、楕円形状あるいは馬鈴薯形状のものを用いることもできる。具体的にその粒子の形状は、長軸径lと短軸径wとの比(l/w)が3以下であり、好ましくは1から2であり、より好ましくは1から1.5である。 The spherical dialkoxymagnesium does not necessarily need to be a true sphere, and an elliptical or potato-shaped one can also be used. Specifically, the particle shape is such that the ratio (l / w) of the major axis diameter l to the minor axis diameter w is 3 or less, preferably 1 to 2, more preferably 1 to 1.5. .
また、上記ジアルコキシマグネシウムの平均粒径は1から200μmのものが使用し得る。好ましくは5から150μmである。球状のジアルコキシマグネシウムの場合、その平均粒径は1から100μm、好ましくは5から50μmであり、更に好ましくは10から40μmである。また、その粒度については、微粉及び粗粉の少ない、粒度分布の狭いものを使用することが望ましい。具体的には、5μm以下の粒子が20%以下であり、好ましくは10%以下である。一方、100μm以上の粒子が10%以下であり、好ましくは5%以下である。更にその粒度分布をln(D90/D10)(ここで、D90は積算粒度で90%における粒径、D10は積算粒度で10%における粒径である。)で表わすと3以下であり、好ましくは2以下である。 The dialkoxymagnesium having an average particle size of 1 to 200 μm can be used. Preferably it is 5 to 150 μm. In the case of spherical dialkoxymagnesium, the average particle diameter is 1 to 100 μm, preferably 5 to 50 μm, and more preferably 10 to 40 μm. As for the particle size, it is desirable to use one having a small particle size distribution and a small amount of fine powder and coarse powder. Specifically, the particle size of 5 μm or less is 20% or less, preferably 10% or less. On the other hand, the particle size of 100 μm or more is 10% or less, preferably 5% or less. Further, when the particle size distribution is expressed by ln (D90 / D10) (where D90 is the cumulative particle size and the particle size at 90%, D10 is the cumulative particle size and the particle size at 10%), it is preferably 3 or less, preferably 2 or less.
上記の如き球状のジアルコキシマグネシウムの製造方法は、例えば特開昭58−41832号公報、特開昭62−51633号公報、特開平3−74341号公報、特開平4−368391号公報、特開平8−73388号公報などに例示されている。 For example, JP-A-58-41832, JP-A-62-51633, JP-A-3-74341, JP-A-4-368391, JP-A-4-36891 can be used for producing spherical dialkoxymagnesium as described above. It is illustrated in the 8-73388 gazette etc.
本発明における成分(A)の調製に用いられる4価のチタンハロゲン化合物(b)(以下「成分(b)」ということがある。)は、一般式Ti(OR2)mCl4−m(式中、R2は炭素数1〜4のアルキル基を示し、mは0または1〜3の整数である。)で表されるチタンハライドもしくはアルコキシチタンハライド群から選択される化合物の1種あるいは2種以上である。 The tetravalent titanium halogen compound (b) (hereinafter sometimes referred to as “component (b)”) used for the preparation of the component (A) in the present invention is represented by the general formula Ti (OR 2 ) m Cl 4-m ( In the formula, R 2 represents an alkyl group having 1 to 4 carbon atoms, and m is an integer of 0 or 1 to 3). 2 or more types.
具体的には、チタンハライドとしてチタンテトラクロライド、チタンテトラブロマイド、チタンテトラアイオダイド等のチタンテトラハライド、アルコキシチタンハライドとしてメトキシチタントリクロライド、エトキシチタントリクロライド、プロポキシチタントリクロライド、n−ブトキシチタントリクロライド、ジメトキシチタンジクロライド、ジエトキシチタンジクロライド、ジプロポキシチタンジクロライド、ジ−n−ブトキシチタンジクロライド、トリメトキシチタンクロライド、トリエトキシチタンクロライド、トリプロポキシチタンクロライド、トリ−n−ブトキシチタンクロライド等が例示される。このうち、チタンテトラハライドが好ましく、特に好ましくはチタンテトラクロライドである。これら4価のチタンハロゲン化合物は単独あるいは2種以上併用することもできる。 Specifically, titanium tetrachloride such as titanium tetrachloride, titanium tetrabromide and titanium tetraiodide as titanium halide, methoxytitanium trichloride, ethoxytitanium trichloride, propoxytitanium trichloride, n-butoxytitanium trichloride as alkoxytitanium halide. Examples include chloride, dimethoxy titanium dichloride, diethoxy titanium dichloride, dipropoxy titanium dichloride, di-n-butoxy titanium dichloride, trimethoxy titanium chloride, triethoxy titanium chloride, tripropoxy titanium chloride, tri-n-butoxy titanium chloride. The Of these, titanium tetrahalide is preferable, and titanium tetrachloride is particularly preferable. These tetravalent titanium halogen compounds can be used alone or in combination of two or more.
本発明における固体触媒成分(A)の調製に用いられるアルコール及びエーテル以外の電子供与性化合物(以下、単に成分(c)ということがある。)は、酸素原子あるいは窒素原子を含有するアルコール及びエーテル以外の有機化合物であり、例えばフェノール類、エステル類、ケトン類、酸ハライド類、アルデヒド類、アミン類、アミド類、ニトリル類、イソシアネート類、Si−O−C結合およびSi−N−C結合を含む有機ケイ素化合物等が挙げられ、1種又は2種以上を組合せて使用することができる。 The electron-donating compound other than the alcohol and ether used for the preparation of the solid catalyst component (A) in the present invention (hereinafter sometimes simply referred to as component (c)) is an alcohol or ether containing an oxygen atom or a nitrogen atom. Other organic compounds such as phenols, esters, ketones, acid halides, aldehydes, amines, amides, nitriles, isocyanates, Si—O—C bonds and Si—N—C bonds. Examples thereof include organic silicon compounds and the like, which can be used alone or in combination of two or more.
具体的には、ギ酸メチル、酢酸エチル、酢酸ビニル、酢酸プロピル、酢酸オクチル、酢酸シクロヘキシル、プロピオン酸エチル、酪酸エチル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸ブチル、安息香酸オクチル、安息香酸シクロヘキシル、安息香酸フェニル、p−トルイル酸メチル、p−トルイル酸エチル、アニス酸メチル、アニス酸エチル等のモノカルボン酸エステル類、マレイン酸ジエチル、マレイン酸ジブチル、アジピン酸ジメチル、アジピン酸ジエチル、アジピン酸ジプロピル、アジピン酸ジブチル、アジピン酸ジイソデシル、アジピン酸ジオクチル、フタル酸ジエステル等のジカルボン酸エステル類、アセトン、メチルエチルケトン、メチルブチルケトン、アセトフェノン、ベンゾフェノン等のケトン類、フタル酸ジクロライド、テレフタル酸ジクロライド等の酸ハライド類、アセトアルデヒド、プロピオンアルデヒド、オクチルアルデヒド、ベンズアルデヒド等のアルデヒド類、メチルアミン、エチルアミン、トリブチルアミン、ピペリジン、アニリン、ピリジン等のアミン類、オレイン酸アミド、ステアリン酸アミド等のアミド類、アセトニトリル、ベンゾニトリル、トルニトリル等のニトリル類、イソシアン酸メチル、イソシアン酸エチル等のイソシアネート類、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニルアルキルアルコキシシラン、シクロアルキルアルコキシシラン、シクロアルキルアルキルアルコキシシラン等のSi−O−C結合を含む有機ケイ素化合物、(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)シラン、アルキルアミノシラン等のSi−N−C結合を含む有機ケイ素化合物を挙げることができる。 Specifically, methyl formate, ethyl acetate, vinyl acetate, propyl acetate, octyl acetate, cyclohexyl acetate, ethyl propionate, ethyl butyrate, methyl benzoate, ethyl benzoate, propyl benzoate, butyl benzoate, octyl benzoate, Monocarboxylic acid esters such as cyclohexyl benzoate, phenyl benzoate, methyl p-toluate, ethyl p-toluate, methyl anisate, ethyl anisate, diethyl maleate, dibutyl maleate, dimethyl adipate, diethyl adipate Dicarboxylates such as dipropyl adipate, dibutyl adipate, diisodecyl adipate, dioctyl adipate, diester phthalate, ketones such as acetone, methyl ethyl ketone, methyl butyl ketone, acetophenone, benzophenone, Acid halides such as taric acid dichloride, terephthalic acid dichloride, aldehydes such as acetaldehyde, propionaldehyde, octylaldehyde, benzaldehyde, amines such as methylamine, ethylamine, tributylamine, piperidine, aniline, pyridine, oleic acid amide, stearin Amides such as acid amides, Nitriles such as acetonitrile, benzonitrile and tolunitrile, isocyanates such as methyl isocyanate and ethyl isocyanate, phenylalkoxysilane, alkylalkoxysilane, phenylalkylalkoxysilane, cycloalkylalkoxysilane, cycloalkyl Organosilicon compounds containing Si—O—C bonds such as alkylalkoxysilanes, (alkylamino) alkoxysilanes, alkyl (a Kiruamino) alkoxysilane, alkyl (alkyl) silane, and organic silicon compound containing Si-N-C bond, such as alkylamino silane.
上記の電子供与性化合物のうち、エステル類、とりわけ芳香族ジカルボン酸ジエステルが好ましく用いられ、特にフタル酸ジエステル及び置換フタル酸ジエステルが重合時の対水素活性を向上させる点で好適である。このうち、フタル酸ジエステルの具体例としては、フタル酸ジメチル、フタル酸ジエチル、フタル酸ジ−n−プロピル、フタル酸ジ−iso−プロピル、フタル酸ジ−n−ブチル、フタル酸ジ−iso−ブチル、フタル酸エチルメチル、フタル酸メチル(iso−プロピル)、フタル酸エチル(n−プロピル)、フタル酸エチル(n−ブチル)、フタル酸エチル(iso−ブチル)、フタル酸ジ−n−ペンチル、フタル酸ジ−iso−ペンチル、フタル酸ジ−neo−ペンチル、フタル酸ジヘキシル、フタル酸ジ−n−ヘプチル、フタル酸ジ−n−オクチル、フタル酸ビス(2,2−ジメチルヘキシル)、フタル酸ビス(2−エチルヘキシル)、フタル酸ジ−n−ノニル、フタル酸ジ−iso−デシル、フタル酸ビス(2,2−ジメチルヘプチル)、フタル酸n−ブチル(iso−ヘキシル)、フタル酸n−ブチル(2−エチルヘキシル)、フタル酸n−ペンチルヘキシル、フタル酸n−ペンチル(iso−ヘキシル)、フタル酸iso−ペンチル(ヘプチル)、フタル酸n−ペンチル(2−エチルヘキシル)、フタル酸n−ペンチル(iso−ノニル)、フタル酸iso−ペンチル(n−デシル)、フタル酸n−ペンチルウンデシル、フタル酸iso−ペンチル(iso−ヘキシル)、フタル酸n−ヘキシル(2,2−ジメチルヘキシル)、フタル酸n−ヘキシル(2−エチルヘキシル)、フタル酸n−ヘキシル(iso−ノニル)、フタル酸n−ヘキシル(n−デシル)、フタル酸n−ヘプチル(2−エチルヘキシル)、フタル酸n−ヘプチル(iso−ノニル)、フタル酸n−ヘプチル(neo−デシル)、フタル酸2−エチルヘキシル(iso−ノニル)が例示され、これらの1種あるいは2種以上が使用される。 Of the above-mentioned electron donating compounds, esters, particularly aromatic dicarboxylic acid diesters are preferably used, and phthalic acid diesters and substituted phthalic acid diesters are particularly preferred in terms of improving hydrogen activity during polymerization. Among these, specific examples of phthalic acid diesters include dimethyl phthalate, diethyl phthalate, di-n-propyl phthalate, di-iso-propyl phthalate, di-n-butyl phthalate, di-iso-phthalate. Butyl, ethyl methyl phthalate, methyl phthalate (iso-propyl), ethyl phthalate (n-propyl), ethyl phthalate (n-butyl), ethyl phthalate (iso-butyl), di-n-pentyl phthalate Di-iso-pentyl phthalate, di-neo-pentyl phthalate, dihexyl phthalate, di-n-heptyl phthalate, di-n-octyl phthalate, bis (2,2-dimethylhexyl) phthalate, phthalate Bis (2-ethylhexyl) acid, di-n-nonyl phthalate, di-iso-decyl phthalate, bis (2,2-dimethylheptyl phthalate) ), N-butyl phthalate (iso-hexyl), n-butyl phthalate (2-ethylhexyl), n-pentylhexyl phthalate, n-pentyl phthalate (iso-hexyl), iso-pentyl phthalate (heptyl) ), N-pentyl (2-ethylhexyl) phthalate, n-pentyl phthalate (iso-nonyl), iso-pentyl phthalate (n-decyl), n-pentylundecyl phthalate, iso-pentyl phthalate (iso) -Hexyl), n-hexyl phthalate (2,2-dimethylhexyl), n-hexyl phthalate (2-ethylhexyl), n-hexyl phthalate (iso-nonyl), n-hexyl phthalate (n-decyl) N-heptyl phthalate (2-ethylhexyl), n-heptyl phthalate (iso-nonyl), n-phthalate Heptyl (neo-decyl) are exemplified phthalate 2-ethylhexyl (an iso-nonyl) is, these one or more kinds are used.
また、置換フタル酸ジエステルとしては、下記一般式(3);
(R3)lC6H4(COOR4)(COOR5) (3)
(式中、R5は炭素数1〜8のアルキル基又はハロゲン原子を示し、R4およびR5は炭素数1〜12のアルキル基を示し、R4とR5は同一であっても異なってもよく、また、置換基R3の数lは1又は2であり、lが2のとき、R3は同一であっても異なってもよい。)で表わされるものが好ましい。
Moreover, as substituted phthalic acid diester, following General formula (3);
(R 3 ) 1 C 6 H 4 (COOR 4 ) (COOR 5 ) (3)
(In the formula, R 5 represents an alkyl group having 1 to 8 carbon atoms or a halogen atom, R 4 and R 5 represent an alkyl group having 1 to 12 carbon atoms, and R 4 and R 5 are the same or different. The number 1 of the substituent R 3 may be 1 or 2, and when 1 is 2, the R 3 may be the same or different.
上記一般式(3)において、R3の炭素数1〜8のアルキル基は、具体的にはメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、2,2−ジメチルブチル基、2,2−ジメチルペンチル基、イソオクチル基、2,2−ジメチルヘキシル基であり、R3のハロゲン原子はフッ素原子、塩素原子、臭素原子、ヨウ素原子である。R3は好ましくはメチル基、臭素原子又はフッ素原子であり、より好ましくはメチル基または臭素原子である。 In the general formula (3), the alkyl group having 1 to 8 carbon atoms of R 3 is specifically a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl. Group, n-pentyl group, isopentyl group, neopentyl group, n-hexyl group, isohexyl group, 2,2-dimethylbutyl group, 2,2-dimethylpentyl group, isooctyl group, 2,2-dimethylhexyl group, The halogen atom of R 3 is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. R 3 is preferably a methyl group, a bromine atom or a fluorine atom, more preferably a methyl group or a bromine atom.
上記一般式(3)において、R4およびR5はメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ペンチル基、イソペンチル基、ネオペンチル基、n−ヘキシル基、イソヘキシル基、2,2−ジメチルブチル基、2,2−ジメチルペンチル基、またはイソオクチル基、2,2−ジメチルヘキシル基、n−ノニル基、イソノニル基、n−デシル基、イソデシル基、n−ドデシル基である。この中でもエチル基、n−ブチル基、イソブチル基、t−ブチル基、ネオペンチル基、イソヘキシル基、イソオクチル基が好ましく、エチル基、n−ブチル基、ネオペンチル基が特に好ましい。また、置換基R3の数lは1又は2であり、lが2のとき、R3は同一でもあっても異なってもよい。lが1の場合、R3は上記一般式(3)の置換フタル酸ジエステルの3位、4位又は5位の位置の水素原子と置換し、lが2の場合、R3は4位および5位の位置の水素原子と置換すると好ましい。 In the general formula (3), R 4 and R 5 are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, isopentyl group, neopentyl group. Group, n-hexyl group, isohexyl group, 2,2-dimethylbutyl group, 2,2-dimethylpentyl group, or isooctyl group, 2,2-dimethylhexyl group, n-nonyl group, isononyl group, n-decyl group , Isodecyl group and n-dodecyl group. Among these, an ethyl group, an n-butyl group, an isobutyl group, a t-butyl group, a neopentyl group, an isohexyl group, and an isooctyl group are preferable, and an ethyl group, an n-butyl group, and a neopentyl group are particularly preferable. The number l of the substituent R 3 is 1 or 2, and when 1 is 2, the R 3 may be the same or different. When l is 1, R 3 is substituted with a hydrogen atom at the 3-position, 4-position or 5-position of the substituted phthalic diester of the above general formula (3), and when l is 2, R 3 is at the 4-position and Substitution with a hydrogen atom at the 5-position is preferred.
上記一般式(3)で表される置換フタル酸ジエステルとしては、4−メチルフタル酸ジエチル、4−メチルフタル酸ジ−n−ブチル、4−メチルフタル酸ジイソブチル、4−ブロモフタル酸ジネオペンチル、4−ブロモフタル酸ジエチル、4−ブロモフタル酸ジ−n−ブチル、4−ブロモフタル酸ジイソブチル、4−メチルフタル酸ジネオペンチル、4,5−ジメチルフタル酸ジネオペンチル、4−メチルフタル酸ジネオペンチル、4−エチルフタル酸ジネオペンチル、4−メチルフタル酸−t−ブチルネオペンチル、4−エチルフタル酸−t−ブチルネオペンチル、4,5−ジメチルフタル酸ジネオペンチル、4,5−ジエチルフタル酸ジネオペンチル、4,5−ジメチルフタル酸−t−ブチルネオペンチル、4,5−ジエチルフタル酸−t−ブチルネオペンチル、3−フルオロフタル酸ジネオペンチル、3−クロロフタル酸ジネオペンチル、4−クロロフタル酸ジネオペンチル、4−ブロモフタル酸ジネオペンチルが挙げられる。 Examples of the substituted phthalic diester represented by the general formula (3) include diethyl 4-methylphthalate, di-n-butyl 4-methylphthalate, diisobutyl 4-methylphthalate, dineopentyl 4-bromophthalate, and diethyl 4-bromophthalate. Di-n-butyl 4-bromophthalate, diisobutyl 4-bromophthalate, dineopentyl 4-methylphthalate, dineopentyl 4,5-dimethylphthalate, dineopentyl 4-methylphthalate, dineopentyl 4-ethylphthalate, 4-methylphthalate-t -Butyl neopentyl, 4-ethyl phthalate-t-butyl neopentyl, 4,5-dimethylphthalate dineopentyl, 4,5-diethyl phthalate dineopentyl, 4,5-dimethyl phthalate-t-butyl neopentyl, 4, 5-Diethylphthalic acid- - butyl neopentyl, 3-fluoro-phthalic acid dineopentyl, 3-chlorophthalic acid dineopentyl, 4-chlorophthalic acid dineopentyl, include 4-bromophthalic acid dineopentyl.
なお、上記のエステル類は、2種以上組み合わせて用いることも好ましく、その際用いられるエステルのアルキル基の炭素数合計が他のエステルのそれと比べ、その差が4以上になるように該エステル類を組み合わせることが望ましい。 The above esters are preferably used in combination of two or more, and the esters are used so that the total carbon number of the alkyl group of the ester used is 4 or more compared to that of other esters. It is desirable to combine.
本発明においては、上記成分(a)、(b)、及び(c)を、芳香族炭化水素化合物(d)(以下単に「成分(d)」ということがある。)の存在下で接触させることによって固体生成物を調製する方法が調製方法の好ましい態様であるが、この成分(d)としては具体的にはトルエン、キシレン、エチルベンゼンなどの沸点が50〜150℃の芳香族炭化水素化合物が好ましく用いられる。また、これらは単独で用いても、2種以上混合して使用してもよい。 In the present invention, the components (a), (b), and (c) are contacted in the presence of the aromatic hydrocarbon compound (d) (hereinafter sometimes referred to simply as “component (d)”). The method of preparing the solid product by this is a preferred embodiment of the preparation method. Specifically, as this component (d), an aromatic hydrocarbon compound having a boiling point of 50 to 150 ° C. such as toluene, xylene, ethylbenzene and the like is specifically mentioned. Preferably used. Moreover, these may be used independently or may be used in mixture of 2 or more types.
本発明における固体触媒成分(A)の調製においては、上記成分の他、更に、ポリシロキサン(以下単に「成分(e)」ということがある。)を使用することが好ましく、ポリシロキサンを用いることにより生成ポリマーの立体規則性あるいは結晶性を向上させることができ、さらには生成ポリマーの微粉を低減することが可能となる。ポリシロキサンは、主鎖にシロキサン結合(−Si−O−結合)を有する重合体であるが、シリコーンオイルとも総称され、25℃における粘度が0.02〜100cm2/s(2〜10000センチストークス)、より好ましくは0.03〜5cm2/sを有する、常温で液状あるいは粘稠状の鎖状、部分水素化、環状あるいは変性ポリシロキサンである。 In the preparation of the solid catalyst component (A) in the present invention, it is preferable to use a polysiloxane (hereinafter sometimes simply referred to as “component (e)”) in addition to the above components. As a result, the stereoregularity or crystallinity of the produced polymer can be improved, and further the fine powder of the produced polymer can be reduced. Polysiloxane is a polymer having a siloxane bond (—Si—O— bond) in the main chain, and is also collectively referred to as silicone oil, and has a viscosity at 25 ° C. of 0.02 to 100 cm 2 / s ( 2 to 10,000 centistokes). ), More preferably 0.03 to 5 cm 2 / s, a liquid or viscous chain, partially hydrogenated, cyclic or modified polysiloxane at room temperature.
鎖状ポリシロキサンとしては、ジメチルポリシロキサン、メチルフェニルポリシロキサンが、部分水素化ポリシロキサンとしては、水素化率10〜80%のメチルハイドロジェンポリシロキサンが、環状ポリシロキサンとしては、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、2,4,6−トリメチルシクロトリシロキサン、2,4,6,8−テトラメチルシクロテトラシロキサンが、また変性ポリシロキサンとしては、高級脂肪酸基置換ジメチルシロキサン、エポキシ基置換ジメチルシロキサン、ポリオキシアルキレン基置換ジメチルシロキサンが例示される。これらの中で、デカメチルシクロペンタシロキサン、及びジメチルポリシロキサンが好ましく、デカメチルシクロペンタシロキサンが特に好ましい。 As the chain polysiloxane, dimethylpolysiloxane and methylphenylpolysiloxane are used. As the partially hydrogenated polysiloxane, methylhydrogen polysiloxane having a hydrogenation rate of 10 to 80% is used. As the cyclic polysiloxane, hexamethylcyclotrimethyl is used. Siloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, 2,4,6-trimethylcyclotrisiloxane, 2,4,6,8-tetramethylcyclotetrasiloxane, and modified polysiloxanes include higher fatty acid groups. Examples thereof include substituted dimethylsiloxane, epoxy group-substituted dimethylsiloxane, and polyoxyalkylene group-substituted dimethylsiloxane. Among these, decamethylcyclopentasiloxane and dimethylpolysiloxane are preferable, and decamethylcyclopentasiloxane is particularly preferable.
本発明では上記成分(a)、(b)および(c)、また必要に応じて成分(d)または成分(e)を接触させ固体生成物を形成させるが、以下に、本発明の固体生成物の調製方法について述べる。具体的には、マグネシウム化合物(a)を、4価のチタンハロゲン化合物(b)または芳香族炭化水素化合物(d)に懸濁させ、フタル酸ジエステルなどの電子供与性化合物(c)及び/または4価のチタンハロゲン化合物(b)を接触して固体成分を得る方法が挙げられる。該方法において、球状のマグネシウム化合物を用いることにより、球状でかつ粒度分布のシャープな固体生成物や固体触媒成分を得ることができ、また球状のマグネシウム化合物を用いなくとも、例えば噴霧装置を用いて溶液あるいは懸濁液を噴霧・乾燥させる、いわゆるスプレードライ法により粒子を形成させることにより、同様に球状でかつ粒度分布のシャープな固体生成物を得ることができる。 In the present invention, the above components (a), (b) and (c) and, if necessary, the component (d) or the component (e) are contacted to form a solid product. A method for preparing the product will be described. Specifically, a magnesium compound (a) is suspended in a tetravalent titanium halogen compound (b) or an aromatic hydrocarbon compound (d), and an electron donating compound (c) such as phthalic acid diester and / or Examples include a method of obtaining a solid component by contacting a tetravalent titanium halogen compound (b). In this method, a spherical solid compound having a sharp particle size distribution and a solid catalyst component can be obtained by using a spherical magnesium compound, and without using a spherical magnesium compound, for example, using a spray device. By forming particles by a so-called spray drying method in which a solution or suspension is sprayed and dried, a solid product having a spherical shape and a sharp particle size distribution can be obtained.
各成分の接触は、不活性ガス雰囲気下、水分等を除去した状況下で、撹拌機を具備した容器中で、撹拌しながら行われる。接触温度は、各成分の接触時の温度であり、反応させる温度と同じ温度でも異なる温度でもよい。接触温度は、単に接触させて撹拌混合する場合や、分散あるいは懸濁させて変性処理する場合には、室温付近の比較的低温域であっても差し支えないが、接触後に反応させて生成物を得る場合には、40〜130℃の温度域が好ましい。反応時の温度が40℃未満の場合は充分に反応が進行せず、結果として調製された固体成分の性能が不充分となり、130℃を超えると使用した溶媒の蒸発が顕著になるなどして、反応の制御が困難になる。なお、反応時間は1分以上、好ましくは10分以上、より好ましくは30分以上である。 The contact of each component is performed with stirring in a container equipped with a stirrer in an inert gas atmosphere and in a state where moisture and the like are removed. The contact temperature is a temperature at the time of contact of each component, and may be the same temperature as the reaction temperature or a different temperature. The contact temperature may be a relatively low temperature range around room temperature when the mixture is simply brought into contact with stirring and mixed, or dispersed or suspended for modification, but the product is allowed to react after contact. When obtaining, the temperature range of 40-130 degreeC is preferable. If the temperature during the reaction is less than 40 ° C., the reaction does not proceed sufficiently, resulting in insufficient performance of the prepared solid component, and if it exceeds 130 ° C., the evaporation of the solvent used becomes remarkable. , It becomes difficult to control the reaction. The reaction time is 1 minute or longer, preferably 10 minutes or longer, more preferably 30 minutes or longer.
本発明の好ましい固体生成物の調製方法としては、成分(a)を成分(d)に懸濁させ、次いで成分(b)を接触させた後に成分(c)及び成分(d)を接触させ、反応させることにより固体生成物を調製する方法、あるいは、成分(a)を成分(d)に懸濁させ、次いで成分(c)を接触させた後に成分(b)を接触させ、反応させることにより固体生成物を調製する方法を挙げることができる。またこのように調製した固体生成物に再度または複数回成分(b)、または成分(b)および成分(c)を接触させることによって、最終的な固体触媒成分の性能を向上させることができる。この際、芳香族炭化水素化合物(d)の存在下に行うことが望ましい。 A preferred method for preparing a solid product of the present invention is to suspend component (a) in component (d), then contact component (b), and then contact component (c) and component (d), A method of preparing a solid product by reacting, or by suspending component (a) in component (d) and then contacting component (c), then contacting component (b) and reacting Mention may be made of the method of preparing the solid product. Moreover, the performance of the final solid catalyst component can be improved by bringing the component (b) or the component (b) and the component (c) into contact with the solid product thus prepared again or multiple times. At this time, it is desirable to carry out in the presence of the aromatic hydrocarbon compound (d).
上記のようにして得られた固体生成物に、アルコール蒸気又はエーテル蒸気と、水蒸気(以下、成分(e)ということがある。)を接触させる。アルコール蒸気又はエーテル蒸気は、アルコール蒸気とエーテル蒸気の併用を含む。従って、成分(e)は、水蒸気とアルコール蒸気、水蒸気とエーテル蒸気、水蒸気とアルコール蒸気とエーテル蒸気の3形態の蒸気を言う。これにより、固体生成物の粒子表面に存在する微粉が除去され、また剥離し易い粒子が除去される。また、更に固体生成物の粒子表面の破壊強度が向上する。従って、オレフィン類を重合した際に生成する微粉重合体の生成量を顕著に抑制できる。 The solid product obtained as described above is brought into contact with alcohol vapor or ether vapor and water vapor (hereinafter sometimes referred to as component (e)). The alcohol vapor or ether vapor includes a combination of alcohol vapor and ether vapor. Therefore, component (e) refers to three forms of steam: water vapor and alcohol vapor, water vapor and ether vapor, water vapor, alcohol vapor and ether vapor. Thereby, the fine powder which exists in the particle | grain surface of a solid product is removed, and the particle | grains which are easy to peel are removed. Furthermore, the breaking strength of the particle surface of the solid product is further improved. Therefore, the amount of fine powder polymer produced when olefins are polymerized can be remarkably suppressed.
アルコールとしては常温で比較的蒸気圧の高いものが好ましく、メチルアルコール、エチルアルコール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、2-ブタノール、t−ブチルアルコール、アリルアルコール、t−ペンチルアルコール、イソアミルアルコール、ネオアミルアルコール、2−ペンタノール、3,3−ジメチル−2−ブタノール、2−ブテン-1-オール、2−クロロエタノール、2−メチル-1-ブタノール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、4−メチル−2−ペンタノール、1−ペンタノール、2−エチルブタノール、1−ヘキサノール、2−ヘキサノール、4−ヘプタノール、シクロヘキサノール、3−クロロ−1−プロパノール、2−エチル−1−ヘキサノール、1−オクタノール、エチレングリコール、イソアミルアルコールなどが挙げられ、好ましくはメタノールおよびエタノールである。これらのアルコールは1種または2種以上組み合わせて用いることができる。 As the alcohol, those having a relatively high vapor pressure at normal temperature are preferable, and methyl alcohol, ethyl alcohol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, 2-butanol, t-butyl alcohol, allyl alcohol, t-pentyl alcohol, Isoamyl alcohol, neoamyl alcohol, 2-pentanol, 3,3-dimethyl-2-butanol, 2-buten-1-ol, 2-chloroethanol, 2-methyl-1-butanol, 2-methyl-1-butanol 3-methyl-1-butanol, 4-methyl-2-pentanol, 1-pentanol, 2-ethylbutanol, 1-hexanol, 2-hexanol, 4-heptanol, cyclohexanol, 3-chloro-1-propanol 2-ethyl-1-hexa Lumpur, 1-octanol, ethylene glycol, isoamyl alcohol and the like, preferably methanol and ethanol. These alcohols can be used alone or in combination of two or more.
エーテルとしては常温で比較的蒸気圧の高いものが好ましく、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジイソブチルエーテル、ジアミルエーテル、ジイソアミルエーテル、ジネオペンチルエーテル、ジヘキシルエーテル、ジオクチルエーテル、ジアリルエーテル、メチルブチルエーテル、メチルイソアミルエーテル、エチルプロピルエーテル、エチル1−プロペニルエーテル、エチルイソプロピルエーテル、エチルイソブチルエーテル、エチルイソペンチルエーテル、アリルメチルエーテル、アリルエチルエーテル、イソプロペニルメチルエーテル、イソペンチルメチルエーテル、エチレングリコールジメチルエーテル、クロロメチルエチルエーテル、クロロメチルメチルエーテル、ジグリシジルエーテル、1,2−ジクロロエチルエチルエーテル、ジビニルエーテル、ビニルエチルエーテル、ビニルメチルエーテル、ビス(1−クロロエチル)エーテル、ビス(2−クロロエチル)エーテル、ビス(クロロメチル)エーテル、モノクロロジエチルエーテル等が挙げられ、好ましくはジエチルエーテルである。これらのエーテルは1種または2種以上組み合わせて用いることができる。 The ether preferably has a relatively high vapor pressure at room temperature, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diisobutyl ether, diamyl ether, diisoamyl ether, dineopentyl ether, dihexyl ether, dioctyl ether, Diallyl ether, methyl butyl ether, methyl isoamyl ether, ethyl propyl ether, ethyl 1-propenyl ether, ethyl isopropyl ether, ethyl isobutyl ether, ethyl isopentyl ether, allyl methyl ether, allyl ethyl ether, isopropenyl methyl ether, isopentyl methyl ether , Ethylene glycol dimethyl ether, chloromethyl ethyl ether, chloromethyl methyl ether, diglycy Ether, 1,2-dichloroethyl ethyl ether, divinyl ether, vinyl ethyl ether, vinyl methyl ether, bis (1-chloroethyl) ether, bis (2-chloroethyl) ether, bis (chloromethyl) ether, monochlorodiethyl ether, etc. Preferably, it is diethyl ether. These ethers can be used alone or in combination of two or more.
本発明では成分(e)を直接、固体生成物と接触させてもよいが、アルコール蒸気又はエーテル蒸気と、水蒸気を、窒素ガスやアルゴンガスのような不活性ガスに含有させ、この不活性ガスを固体生成物に接触させることが、得られた固体触媒成分の活性の向上や得られる微粉量の抑制のためには好ましい方法である。また、成分(e)と固体生成物の接触は、アルコール蒸気又はエーテル蒸気と、水蒸気を別々に固体生成物と接触させてもよく、また、アルコール蒸気又はエーテル蒸気と、水蒸気を一度に混合し、この混合物を固体生成物と接触させてもよい。 In the present invention, the component (e) may be directly brought into contact with the solid product, but alcohol vapor or ether vapor and water vapor are contained in an inert gas such as nitrogen gas or argon gas, and this inert gas is used. Is in contact with the solid product in order to improve the activity of the obtained solid catalyst component and to suppress the amount of fine powder obtained. In addition, the contact between the component (e) and the solid product may be performed by bringing the alcohol vapor or ether vapor and water vapor separately into contact with the solid product, or mixing the alcohol vapor or ether vapor and the water vapor at a time. The mixture may be contacted with a solid product.
好適な接触方法としては、不活性ガス雰囲気の容器に固体生成物を充填し、この容器内に予めアルコール蒸気又はエーテル蒸気と、水蒸気を混合した混合蒸気を含有させた窒素などの不活性ガスを所定量充填し接触する方法、または不活性ガス雰囲気の容器に固体生成物を充填し、さらに不活性有機溶媒を充填し懸濁液を形成し、この懸濁液中に予めアルコール蒸気又はエーテル蒸気と、水蒸気を混合した混合蒸気を含有させた窒素などの不活性ガスを所定量吹き込むことにより接触する方法が挙げられる。不活性ガスに該蒸気を含有させる際、不活性ガス中にアルコール又はエーテルと、水分の各々が飽和するように含有させることが望ましく、そのときの不活性ガスの温度における飽和水蒸気量、飽和アルコール量あるいは飽和エーテル量を測定することによって、固体生成物と接触する成分(e)を定量することができる。該蒸気は水、アルコール又はエーテルを加熱又は減圧することにより得ることができる。容器内に固体生成物を充填し、アルコール又はエーテルと水の混合液を含んだ溶媒を加えて攪拌する方法では固体生成物の粒子表面の破壊強度は向上せず、重合の際、マクロファインと呼ばれる超微粒子重合体の生成を抑制することはできない。 As a suitable contact method, an inert gas atmosphere vessel is filled with a solid product, and an inert gas such as nitrogen containing a mixture vapor obtained by mixing alcohol vapor or ether vapor with water vapor is contained in the vessel. A method in which a predetermined amount is filled and contacted, or a container in an inert gas atmosphere is filled with a solid product, and further, an inert organic solvent is filled to form a suspension, in which alcohol vapor or ether vapor is previously added. And a method of contacting by injecting a predetermined amount of an inert gas such as nitrogen containing mixed steam mixed with water vapor. When the vapor is contained in the inert gas, it is desirable that the inert gas contains alcohol or ether and water so that each of the water is saturated. The saturated water vapor amount and saturated alcohol at the temperature of the inert gas at that time By measuring the amount or the amount of saturated ether, the component (e) in contact with the solid product can be quantified. The steam can be obtained by heating or depressurizing water, alcohol or ether. The method of filling a container with a solid product, adding a solvent containing a mixture of alcohol or ether and water, and stirring does not improve the fracture strength of the particle surface of the solid product. The generation of the so-called ultrafine particle polymer cannot be suppressed.
固体生成物と該蒸気を含んだ不活性ガスとの接触条件は、−20〜150℃、好ましくは10〜130℃、特に好ましくは30〜110℃である。このとき、成分(e)を含有する不活性ガスの露点より高い温度で接触させることが望ましく、特に成分(e)を飽和させた不活性ガスを用いる際は、露点より高い温度に設定し、不活性ガスの供給管や接触する容器内で成分(e)が結露しないように注意する。また、不活性ガスに成分(e)のミストなどの液状で存在させないことが好ましい。接触時間は1分〜10時間、好ましくは10分〜5時間、特に好ましくは30分〜3時間である。また、上記固体生成物と接触する成分(e)は、固体生成物1gに対して、成分(e)は0.0001g〜0.5g、好ましくは0.005g〜0.5g、特に好ましくは0.001g〜0.2gである。 The contact condition between the solid product and the inert gas containing the vapor is -20 to 150 ° C, preferably 10 to 130 ° C, particularly preferably 30 to 110 ° C. At this time, it is desirable to contact at a temperature higher than the dew point of the inert gas containing the component (e), particularly when using an inert gas saturated with the component (e), set the temperature higher than the dew point, Be careful not to condense the component (e) in the inert gas supply pipe or the container in contact. Further, it is preferable that the inert gas is not present in a liquid state such as a mist of the component (e). The contact time is 1 minute to 10 hours, preferably 10 minutes to 5 hours, particularly preferably 30 minutes to 3 hours. The component (e) in contact with the solid product is 0.0001 g to 0.5 g, preferably 0.005 g to 0.5 g, particularly preferably 0, relative to 1 g of the solid product. 0.001 g to 0.2 g.
また、上記固体生成物に水分と、アルコール化合物及びエーテル化合物を接触させる前、接触中、あるいは接触の後、界面活性剤を固体生成物に接触させてもよい。界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤、非イオン性界面活性剤、フッ素系界面活性剤および反応性界面活性剤から選ばれる1種または2種以上を使用することができる。 Further, the surfactant may be brought into contact with the solid product before, during or after contacting the moisture, alcohol compound and ether compound with the solid product. As the surfactant, one or two selected from cationic surfactants, anionic surfactants, amphoteric surfactants, nonionic surfactants, fluorosurfactants and reactive surfactants. More than seeds can be used.
具体的には、カチオン性界面活性剤としては、脂肪族の1〜3級アミン塩、脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリウム塩等が挙げられる。また、アニオン性界面活性剤としては、脂肪酸石けん、N−アシルアミノ酸またはその塩、ポリオキシエチレンアルキルエーテルカルボン酸塩等のカルボン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホコハク酸エステル塩、スルホコハク酸アルキル二塩、アルキルスルホ酢酸塩等のスルホン酸塩、硫酸化油、高級アルコール硫酸エステル塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、モノグリサルフェート等の硫酸エステル塩、ポリオキシエチレンアルキルエーテルリン酸塩、ポリオキシエチレンフェニルエーテルリン酸塩、アルキルリン酸塩等のリン酸エステル塩等が挙げられる。 Specifically, examples of the cationic surfactant include aliphatic primary to tertiary amine salts, aliphatic quaternary ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolium salts, and the like. Examples of the anionic surfactant include fatty acid soaps, N-acylamino acids or salts thereof, carboxylates such as polyoxyethylene alkyl ether carboxylates, alkylbenzenesulfonates, alkylnaphthalenesulfonates, dialkylsulfosuccinates. Salts, sulfonates such as alkyl disulphates of sulfosuccinates, alkylsulfoacetates, sulfated oils, higher alcohol sulfates, polyoxyethylene alkyl ether sulfates, polyoxyethylene alkyl phenyl ether sulfates, monoglyculates, etc. Examples thereof include phosphoric acid ester salts such as sulfate ester salts, polyoxyethylene alkyl ether phosphates, polyoxyethylene phenyl ether phosphates, and alkyl phosphates.
また、両イオン性界面活性剤としては、カルボキシベタイン型、アミノ化ルボン酸塩、イニダジリニウムベタイン、レシチン、アルキルアミンオキサイド等が挙げられる。また、非イオン性界面活性剤としては、アルキル基の炭素数が1〜18のポリオキシエチレンモノまたはジアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体等のエーテル型、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンひまし油、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリオキシエチレン脂肪酸アルカノールアミド硫酸塩等のエーテルエステル類、ポリエチレングルコール脂肪酸エステル、エチレングリコール脂肪酸エステル、脂肪酸モノグリセリド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル等のエステル型、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン等の含窒素型等が挙げられる。 Examples of the amphoteric surfactant include carboxybetaine type, aminated rubonate, inidazilinium betaine, lecithin, alkylamine oxide and the like. Examples of the nonionic surfactant include polyoxyethylene mono- or dialkyl ethers having 1 to 18 carbon atoms in the alkyl group, polyoxyethylene secondary alcohol ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene sterol ethers, Ether type such as polyoxyethylene lanolin derivative, polyoxyethylene glycerin fatty acid ester, polyoxyethylene castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, polyoxyethylene fatty acid alkanolamide sulfate, and other ether esters, Polyethylene glycol fatty acid ester, ethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester , Propylene glycol fatty acid esters, ester type such as sucrose fatty acid esters, fatty acid alkanolamides, polyoxyethylene fatty acid amides, nitrogen-containing type such as polyoxyethylene alkyl amines, and the like.
また、フッ素系界面活性剤としては、フルオロアルキルカルボン酸、パーフルオロアルキルカルボン酸、N−パーフルオロオクタンスルホニルグルタミン酸ジナトリウム等が挙げられる。また、反応性界面活性剤としては、ポリオキシエチレンアリルグリシジルノニルフェニルエーテル、ポリオキシエチレンプロペニルフェニルエーテル等が挙げられる。 Examples of the fluorosurfactant include fluoroalkyl carboxylic acid, perfluoroalkyl carboxylic acid, and N-perfluorooctanesulfonyl glutamate disodium. Examples of the reactive surfactant include polyoxyethylene allyl glycidyl nonyl phenyl ether and polyoxyethylene propenyl phenyl ether.
上記の界面活性剤は、単独での使用の他、2種以上の組み合わせで使用することもできる。これらの中でも特に、HLB(親水親油バランス)価が通常3〜20である非イオン性界面活性剤が好ましく用いられ、処理方法によって異なるが、使用する溶媒に十分溶解するような非イオン界面活性剤を選択することが望ましい。例えば、アルコール類、エーテル類、アセトン等の極性有機溶媒中で処理する場合は、HLB価が10〜20の親水性の非イオン界面活性剤が好ましく用いられる。またヘキサン、ヘプタン等の炭化水素などの有機溶媒中で処理する場合には、HLB価が3から15のやや親油性の非イオン界面活性剤が好ましく用いられる。 The above surfactants can be used alone or in combination of two or more. Among these, nonionic surfactants having an HLB (hydrophilic / lipophilic balance) value of usually 3 to 20 are preferably used, and nonionic surfactants that are sufficiently soluble in the solvent to be used vary depending on the treatment method. It is desirable to select an agent. For example, when processing in polar organic solvents, such as alcohol, ethers, and acetone, the hydrophilic nonionic surfactant whose HLB value is 10-20 is used preferably. Moreover, when processing in organic solvents, such as hydrocarbons, such as hexane and heptane, the slightly lipophilic nonionic surfactant whose HLB value is 3 to 15 is used preferably.
上記のように固体生成物にアルコール蒸気又はエーテル蒸気と、水蒸気を接触させた後、再度成分(b)を接触させ固体触媒成分(A)を得る。成分(b)だけではなく、成分(b)および成分(c)を再度接触させることも望ましい。この際、固体生成物の調製と同様に芳香族炭化水素化合物(d)に懸濁させた状態で行うことが望ましい。このように再度接触することによって、活性などの固体触媒成分の性能を向上させることができる。 As mentioned above, after making alcohol vapor | steam or ether vapor | steam and water vapor | steam contact a solid product, a component (b) is contacted again and a solid catalyst component (A) is obtained. It is also desirable to contact not only component (b) but also component (b) and component (c) again. At this time, it is desirable to carry out the suspension in the aromatic hydrocarbon compound (d) as in the preparation of the solid product. Thus, by contacting again, the performance of the solid catalyst component such as activity can be improved.
さらに上記のように再度成分(b)または成分(b)および成分(c)と接触させた場合、この固体触媒成分に再度、不活性溶媒中で界面活性剤を接触させ懸濁液を形成し、その後該懸濁液中の溶媒を除去することもできる。固体生成物にアルコール蒸気又はエーテル蒸気と、水蒸気を含んだ不活性ガスを接触させた後、再度成分(b)を接触させた固体触媒成分(A)は、不活性ガス接触後の固体生成物と同様に、依然として粒子表面に存在する微粉や剥離し易い粒子は少ないままである。また、固体触媒成分の粒子表面の破壊強度も高いままである。従って、オレフィン類を重合した際に生成する微粉重合体の生成量を顕著に抑制できる。 Further, when the component (b) or the component (b) and the component (c) are contacted again as described above, the solid catalyst component is again contacted with a surfactant in an inert solvent to form a suspension. Thereafter, the solvent in the suspension can be removed. The solid catalyst component (A) obtained by contacting the solid product with alcohol vapor or ether vapor and an inert gas containing water vapor and then contacting the component (b) again is the solid product after contact with the inert gas. Similarly, the number of fine particles still existing on the particle surface and particles that are easily peeled off remain small. Moreover, the fracture strength of the particle surface of the solid catalyst component remains high. Therefore, the amount of fine powder polymer produced when olefins are polymerized can be remarkably suppressed.
以上を踏まえ、本願における固体触媒成分(A)の特に好ましい調製方法としては、ジアルコキシマグネシウム(a)を沸点50〜150℃の芳香族炭化水素化合物(d)に懸濁させ、次いでこの懸濁液に4価のチタンハロゲン化合物(b)を接触させた後、反応処理を行う。この際、該懸濁液に4価のチタンハロゲン化合物(b)を接触させる前又は接触した後に、フタル酸ジエステルなどの電子供与性化合物(c)の1種あるいは2種以上を、−20〜130℃で接触させ、反応処理を行い、固体生成物(1)を得る。この際、電子供与性化合物の1種あるいは2種以上を接触させる前または後に、低温で熟成反応を行なうことが望ましい。この固体生成物(1)を常温で液体の炭化水素化合物で洗浄(中間洗浄)した後、再度4価のチタンハロゲン化合物(b)を、芳香族炭化水素化合物の存在下に、−20〜100℃で接触させ、反応処理を行い、固体生成物(2)を得る。なお必要に応じ、中間洗浄及び反応処理を更に複数回繰り返してもよい。次いで固体生成物(2)を、常温で液体の炭化水素化合物で洗浄し、洗浄した固体生成物(2)を芳香族炭化水素化合物中に懸濁させ、この懸濁液中にアルコール又はエーテルと、水分、好適にはアルコール、エーテル及び水分を飽和させた窒素ガスを吹きこみ、攪拌しながら固体生成物(2)に成分(e)を接触させる。その後、デカンテーションにより常温で液体の炭化水素化合物で洗浄した後、4価のチタンハロゲン化合物(b)を、芳香族炭化水素化合物の存在下に、−20〜100℃で接触させ、反応処理を行い、最終的に炭化水素化合物で洗浄し固体触媒成分(A)を得る。 Based on the above, a particularly preferred method for preparing the solid catalyst component (A) in the present application is to suspend dialkoxymagnesium (a) in an aromatic hydrocarbon compound (d) having a boiling point of 50 to 150 ° C. After bringing the tetravalent titanium halogen compound (b) into contact with the liquid, a reaction treatment is performed. At this time, before or after the tetravalent titanium halogen compound (b) is brought into contact with the suspension, one or more electron donating compounds (c) such as phthalic acid diesters are added at −20 to 20 A contact treatment is performed at 130 ° C. to carry out a reaction treatment to obtain a solid product (1). In this case, it is desirable to carry out the aging reaction at a low temperature before or after contacting one or more electron donating compounds. After washing this solid product (1) with a hydrocarbon compound that is liquid at room temperature (intermediate washing), the tetravalent titanium halogen compound (b) is again added in the presence of the aromatic hydrocarbon compound in the range of -20 to 100. The mixture is contacted at 0 ° C. and subjected to a reaction treatment to obtain a solid product (2). If necessary, intermediate cleaning and reaction treatment may be repeated a plurality of times. Next, the solid product (2) is washed with a hydrocarbon compound that is liquid at room temperature, and the washed solid product (2) is suspended in an aromatic hydrocarbon compound, and alcohol or ether and Blowing water, preferably alcohol, ether and nitrogen gas saturated with water, the component (e) is brought into contact with the solid product (2) while stirring. Thereafter, after washing with a liquid hydrocarbon compound at room temperature by decantation, the tetravalent titanium halogen compound (b) is brought into contact at −20 to 100 ° C. in the presence of the aromatic hydrocarbon compound to carry out the reaction treatment. And finally washed with a hydrocarbon compound to obtain the solid catalyst component (A).
固体触媒成分(A)を調製する際の各成分の使用量比は、調製法により異なるため一概には規定できないが、例えばマグネシウム化合物(a)1モル当たり、4価のチタンハロゲン化合物(b)が0.5〜100モル、好ましくは0.5〜50モル、より好ましくは1〜10モルであり、電子供与性化合物(c)が0.01〜10モル、好ましくは0.01〜1モル、より好ましくは0.02〜0.6モルであり、芳香族炭化水素化合物(d)が0.001〜500モル、好ましくは0.001〜100モル、より好ましくは0.005〜10モルでである。 The amount of each component used in preparing the solid catalyst component (A) varies depending on the preparation method and cannot be specified unconditionally. For example, a tetravalent titanium halogen compound (b) per mole of the magnesium compound (a) Is 0.5 to 100 mol, preferably 0.5 to 50 mol, more preferably 1 to 10 mol, and the electron donating compound (c) is 0.01 to 10 mol, preferably 0.01 to 1 mol. More preferably, it is 0.02 to 0.6 mol, and the aromatic hydrocarbon compound (d) is 0.001 to 500 mol, preferably 0.001 to 100 mol, more preferably 0.005 to 10 mol. It is.
また、本発明における固体触媒成分(A)中のチタン、マグネシウム、ハロゲン原子、電子供与性化合物の含有量は特に規定されないが、好ましくは、チタンが0.5〜8.0重量%、好ましくは1.0〜6.0重量%、より好ましくは1.5〜4.0重量%、マグネシウムが10〜70重量%、より好ましくは10〜50重量%、特に好ましくは15〜40重量%、更に好ましくは15〜25重量%、ハロゲン原子が20〜85重量%、より好ましくは30〜85重量%、特に好ましくは40〜80重量%、更に好ましくは45〜75重量%、また電子供与性化合物が合計0.5〜30重量%、より好ましくは合計1〜25重量%、特に好ましくは合計2〜20重量%である。 Further, the content of titanium, magnesium, a halogen atom, and an electron donating compound in the solid catalyst component (A) in the present invention is not particularly defined, but preferably 0.5 to 8.0% by weight of titanium, preferably 1.0 to 6.0 wt%, more preferably 1.5 to 4.0 wt%, magnesium is 10 to 70 wt%, more preferably 10 to 50 wt%, particularly preferably 15 to 40 wt%, and further Preferably 15 to 25% by weight, halogen atom 20 to 85% by weight, more preferably 30 to 85% by weight, particularly preferably 40 to 80% by weight, still more preferably 45 to 75% by weight, and the electron donating compound is The total is 0.5 to 30% by weight, more preferably 1 to 25% by weight, and particularly preferably 2 to 20% by weight.
上記方法で得られた固体触媒成分は、レーザー回折式粒度分布測定装置で測定された平均粒径が10〜150μm、2μm以下の微粒子が全体粒子の0.1重量%以下、好ましくは0重量%、BET法で測定された比表面積が5〜10000m2/g、見かけ嵩密度が0.1以上である。 The solid catalyst component obtained by the above method has a mean particle size of 10 to 150 μm and a particle size of 2 μm or less as measured with a laser diffraction particle size distribution analyzer of 0.1% by weight or less, preferably 0% by weight. The specific surface area measured by the BET method is 5 to 10,000 m 2 / g, and the apparent bulk density is 0.1 or more.
本発明のオレフィン類重合用触媒を形成する際に用いられる有機アルミニウム化合物(B)としては、上記一般式(1)で表される化合物を用いることができる。このような有機アルミニウム化合物(B)の具体例としては、トリエチルアルミニウム、ジエチルアルミニウムクロライド、トリ−iso−ブチルアルミニウム、ジエチルアルミニウムブロマイド、ジエチルアルミニウムハイドライドが挙げられ、1種あるいは2種以上が使用できる。好ましくは、トリエチルアルミニウム、トリ−iso−ブチルアルミニウムである。 As the organoaluminum compound (B) used in forming the olefin polymerization catalyst of the present invention, a compound represented by the above general formula (1) can be used. Specific examples of such an organoaluminum compound (B) include triethylaluminum, diethylaluminum chloride, tri-iso-butylaluminum, diethylaluminum bromide and diethylaluminum hydride, and one or more can be used. Triethylaluminum and tri-iso-butylaluminum are preferable.
本発明のオレフィン類重合用触媒を形成する際に用いられる外部電子供与性化合物(C)(以下、「成分(C)」ということがある。)としては前記した固体触媒成分の調製に用いることのできる電子供与性化合物と同じもの、更にアルコール類及びエーテル類が用いられる。アルコール類としては、メタノール、エタノール、n−プロパノール、2−エチルヘキサノール等が挙げられ、エーテル類としては、メチルエーテル、エチルエーテル、プロピルエーテル、ブチルエーテル、アミルエーテル、ジフェニルエーテル、9,9−ビス(メトキシメチル)フルオレン、2−イソプロピル−2−イソペンチル−1,3―ジメトキシプロパン等が挙げられる。成分(C)の中でもエーテル類、エステル類又は有機ケイ素化合物が好ましい。エーテル類の中、1,3ジエーテルが好ましく、特に9,9−ビス(メトキシメチル)フルオレン、2−イソプロピル−2−イソペンチル−1,3―ジメトキシプロパンが好ましい。また、エステル類の中、安息香酸メチル、安息香酸エチルが好ましい。 The external electron donating compound (C) (hereinafter sometimes referred to as “component (C)”) used in forming the olefin polymerization catalyst of the present invention is used for the preparation of the solid catalyst component described above. The same electron donating compounds that can be used, and alcohols and ethers are used. Examples of alcohols include methanol, ethanol, n-propanol, and 2-ethylhexanol. Examples of ethers include methyl ether, ethyl ether, propyl ether, butyl ether, amyl ether, diphenyl ether, and 9,9-bis (methoxy). Methyl) fluorene, 2-isopropyl-2-isopentyl-1,3-dimethoxypropane and the like. Among the components (C), ethers, esters or organosilicon compounds are preferable. Among the ethers, 1,3 diether is preferable, and 9,9-bis (methoxymethyl) fluorene and 2-isopropyl-2-isopentyl-1,3-dimethoxypropane are particularly preferable. Of the esters, methyl benzoate and ethyl benzoate are preferred.
上記の有機ケイ素化合物としては、下記一般式(2)
R6 qSi(NR7R8)r(OR9)4−(q+r) (2)
(式中、qは0、1〜4の整数、rは0、1〜4の整数、但し、q+rは0〜4の整数、R6、R7又はR8は水素原子、炭素数1〜12の直鎖または分岐状アルキル基、置換又は未置換のシクロアルキル基、フェニル基、ビニル基、アリル基、アラルキル基のいずれかで、ヘテロ原子を含有してもよく、同一または異なっていてもよい。R9は炭素数1〜4のアルキル基、シクロアルキル基、フェニル基、ビニル基、アリル基、アラルキル基を示し、ヘテロ原子を含有してもよく、同一または異なってもよく、R7とR8は結合して環状を形成してもよい。)で表される化合物が挙げられる。
As said organosilicon compound, following General formula (2)
R 6 q Si (NR 7 R 8 ) r (OR 9 ) 4- (q + r) (2)
(In the formula, q is an integer of 0, 1 to 4, r is an integer of 0, 1 to 4, provided that q + r is an integer of 0 to 4, R 6 , R 7 or R 8 is a hydrogen atom, a carbon number of 1 to Any of 12 linear or branched alkyl groups, substituted or unsubstituted cycloalkyl groups, phenyl groups, vinyl groups, allyl groups, aralkyl groups, which may contain heteroatoms, and may be the same or different R 9 represents an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group, a phenyl group, a vinyl group, an allyl group, or an aralkyl group, may contain a hetero atom, may be the same or different, and R 7 And R 8 may combine to form a ring.).
一般式(2)中、R6は炭素数1〜10の直鎖又は分岐状のアルキル基、炭素数5〜8のシクロアルキル基が好ましく、特に炭素数1〜8の直鎖又は分岐状のアルキル基、炭素数5〜8のシクロアルキル基が好ましい。また、R7又はR8は炭素数1〜10の直鎖又は分岐状のアルキル基、炭素数5〜8のシクロアルキル基が好ましく、特に炭素数1〜8の直鎖又は分岐状のアルキル基、炭素数5〜8のシクロアルキル基が好ましい。また、R7とR8が結合して環状を形成する(NR7R8)はパーヒドロキノリノ基、パーヒドロイソキノリノ基が好ましい。また、R9は炭素数1〜6の直鎖又は分岐状のアルキル基が好ましく、特に炭素数1〜4の直鎖又は分岐状のアルキル基が好ましい。 In general formula (2), R 6 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 5 to 8 carbon atoms, and particularly a linear or branched group having 1 to 8 carbon atoms. An alkyl group and a cycloalkyl group having 5 to 8 carbon atoms are preferred. R 7 or R 8 is preferably a linear or branched alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 5 to 8 carbon atoms, particularly a linear or branched alkyl group having 1 to 8 carbon atoms. And a cycloalkyl group having 5 to 8 carbon atoms is preferred. In addition, R 7 and R 8 are combined to form a ring (NR 7 R 8 ), preferably a perhydroquinolino group or a perhydroisoquinolino group. R 9 is preferably a linear or branched alkyl group having 1 to 6 carbon atoms, and particularly preferably a linear or branched alkyl group having 1 to 4 carbon atoms.
このような有機ケイ素化合物としては、フェニルアルコキシシラン、アルキルアルコキシシラン、フェニルアルキルアルコキシシラン、シクロアルキルアルコキシシラン、シクロアルキルアルキルアルコキシシラン、(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)アルコキシシラン、アルキル(アルキルアミノ)シラン、アルキルアミノシラン等を挙げることができる。 Examples of such organosilicon compounds include phenylalkoxysilane, alkylalkoxysilane, phenylalkylalkoxysilane, cycloalkylalkoxysilane, cycloalkylalkylalkoxysilane, (alkylamino) alkoxysilane, alkyl (alkylamino) alkoxysilane, alkyl ( Alkylamino) silane, alkylaminosilane and the like.
式中、rが0の有機ケイ素化合物を具体的に例示すると、トリメチルメトキシシラン、トリメチルエトキシシラン、トリ−n−プロピルメトキシシラン、トリ−n−プロピルエトキシシラン、トリ−n−ブチルメトキシシラン、トリ−iso−ブチルメトキシシラン、トリ−t−ブチルメトキシシラン、トリ−n−ブチルエトキシシラン、トリシクロヘキシルメトキシシラン、トリシクロヘキシルエトキシシラン、シクロヘキシルジメチルメトキシシラン、シクロヘキシルジエチルメトキシシラン、シクロヘキシルジエチルエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジ−n−プロピルジメトキシシラン、ジ−iso−プロピルジメトキシシラン、ジ−n−プロピルジエトキシシラン、ジ−iso−プロピルジエトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−iso−ブチルジメトキシシラン、ジ−t−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、n−ブチルメチルジメトキシシラン、ビス(2 −エチルヘキシル)ジメトキシシラン、ビス(2 −エチルヘキシル)ジエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、ビス(3 −メチルシクロヘキシル)ジメトキシシラン、ビス(4 −メチルシクロヘキシル)ジメトキシシラン、ビス(3,5 −ジメチルシクロヘキシル)ジメトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルシクロペンチルジエトキシシラン、シクロヘキシルシクロペンチルジプロポキシシラン、3 −メチルシクロヘキシルシクロペンチルジメトキシシラン、4 −メチルシクロヘキシルシクロペンチルジメトキシシラン、3,5 −ジメチルシクロヘキシルシクロペンチルジメトキシシラン、3 −メチルシクロヘキシルシクロヘキシルジメトキシシラン、4 −メチルシクロヘキシルシクロヘキシルジメトキシシラン、3,5 −ジメチルシクロヘキシルシクロヘキシルジメトキシシラン、シクロペンチルメチルジメトキシシラン、シクロペンチルメチルジエトキシシラン、シクロペンチルエチルジエトキシシラン、シクロペンチル(iso−プロピル)ジメトキシシラン、シクロペンチル(iso−ブチル)ジメトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルエチルジエトキシシラン、シクロヘキシル(n−プロピル)ジメトキシシラン、シクロヘキシル(iso−プロピル)ジメトキシシラン、シクロヘキシル(n−プロピル)ジエトキシシラン、シクロヘキシル(iso−ブチル)ジメトキシシラン、シクロヘキシル(n−ブチル)ジエトキシシラン、シクロヘキシル(n−ペンチル)ジメトキシシラン、シクロヘキシル(n−ペンチル)ジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、フェニルメチルジメトキシシラン、フェニルメチルジエトキシシラン、フェニルエチルジメトキシシラン、フェニルエチルジエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n−プロピルトリメトキシシラン、iso−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、iso−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、iso−ブチルトリメトキシシラン、t−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、2-エチルヘキシルトリメトキシシラン、2-エチルヘキシルトリエトキシシラン、シクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランが挙げられる。 In the formula, specific examples of the organosilicon compound in which r is 0 include trimethylmethoxysilane, trimethylethoxysilane, tri-n-propylmethoxysilane, tri-n-propylethoxysilane, tri-n-butylmethoxysilane, tri -Iso-butylmethoxysilane, tri-t-butylmethoxysilane, tri-n-butylethoxysilane, tricyclohexylmethoxysilane, tricyclohexylethoxysilane, cyclohexyldimethylmethoxysilane, cyclohexyldiethylmethoxysilane, cyclohexyldiethylethoxysilane, dimethyldimethoxy Silane, dimethyldiethoxysilane, di-n-propyldimethoxysilane, di-iso-propyldimethoxysilane, di-n-propyldiethoxysilane, di-iso-propyldi Toxisilane, di-n-butyldimethoxysilane, di-iso-butyldimethoxysilane, di-t-butyldimethoxysilane, di-n-butyldiethoxysilane, n-butylmethyldimethoxysilane, bis (2-ethylhexyl) dimethoxysilane Bis (2-ethylhexyl) diethoxysilane, dicyclopentyldimethoxysilane, dicyclopentyldiethoxysilane, dicyclohexyldimethoxysilane, dicyclohexyldiethoxysilane, bis (3-methylcyclohexyl) dimethoxysilane, bis (4-methylcyclohexyl) dimethoxysilane Bis (3,5-dimethylcyclohexyl) dimethoxysilane, cyclohexylcyclopentyldimethoxysilane, cyclohexylcyclopentyldiethoxysilane, cyclohexyl Pentyldipropoxysilane, 3-methylcyclohexylcyclopentyldimethoxysilane, 4-methylcyclohexylcyclopentyldimethoxysilane, 3,5-dimethylcyclohexylcyclopentyldimethoxysilane, 3-methylcyclohexylcyclohexyldimethoxysilane, 4-methylcyclohexylcyclohexyldimethoxysilane, 3,5 -Dimethylcyclohexylcyclohexyldimethoxysilane, cyclopentylmethyldimethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylethyldiethoxysilane, cyclopentyl (iso-propyl) dimethoxysilane, cyclopentyl (iso-butyl) dimethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldi Ethoxysilane, cyclo Xylethyldimethoxysilane, cyclohexylethyldiethoxysilane, cyclohexyl (n-propyl) dimethoxysilane, cyclohexyl (iso-propyl) dimethoxysilane, cyclohexyl (n-propyl) diethoxysilane, cyclohexyl (iso-butyl) dimethoxysilane, cyclohexyl ( n-butyl) diethoxysilane, cyclohexyl (n-pentyl) dimethoxysilane, cyclohexyl (n-pentyl) diethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, phenylmethyldimethoxysilane, phenylmethyldiethoxysilane, phenylethyldimethoxy Silane, phenylethyldiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysila , Ethyltriethoxysilane, n-propyltrimethoxysilane, iso-propyltrimethoxysilane, n-propyltriethoxysilane, iso-propyltriethoxysilane, n-butyltrimethoxysilane, iso-butyltrimethoxysilane, t -Butyltrimethoxysilane, n-butyltriethoxysilane, 2-ethylhexyltrimethoxysilane, 2-ethylhexyltriethoxysilane, cyclopentyltrimethoxysilane, cyclopentyltriethoxysilane, cyclohexyltrimethoxysilane, cyclohexyltriethoxysilane, vinyltrimethoxy Silane, vinyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, tetramethoxysilane, tetraethoxysilane, tetrapropoxy Examples thereof include orchid and tetrabutoxysilane.
上記の中でも、ジ−n−プロピルジメトキシシラン、ジ−iso−プロピルジメトキシシラン、ジ−n−ブチルジメトキシシラン、ジ−iso−ブチルジメトキシシラン、ジ−t−ブチルジメトキシシラン、ジ−n−ブチルジエトキシシラン、t−ブチルトリメトキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、シクロヘキシルメチルジメトキシシラン、シクロヘキシルメチルジエトキシシラン、シクロヘキシルエチルジメトキシシラン、シクロヘキシルエチルジエトキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、シクロペンチルメチルジメトキシシラン、シクロペンチルメチルジエトキシシラン、シクロペンチルエチルジエトキシシラン、シクロヘキシルシクロペンチルジメトキシシラン、シクロヘキシルシクロペンチルジエトキシシラン、3−メチルシクロヘキシルシクロペンチルジメトキシシラン、4−メチルシクロヘキシルシクロペンチルジメトキシシラン、3,5−ジメチルシクロヘキシルシクロペンチルジメトキシシランが好ましい。 Among the above, di-n-propyldimethoxysilane, di-iso-propyldimethoxysilane, di-n-butyldimethoxysilane, di-iso-butyldimethoxysilane, di-t-butyldimethoxysilane, di-n-butyldi Ethoxysilane, t-butyltrimethoxysilane, dicyclohexyldimethoxysilane, dicyclohexyldiethoxysilane, cyclohexylmethyldimethoxysilane, cyclohexylmethyldiethoxysilane, cyclohexylethyldimethoxysilane, cyclohexylethyldiethoxysilane, dicyclopentyldimethoxysilane, dicyclopentyldiethoxy Silane, cyclopentylmethyldimethoxysilane, cyclopentylmethyldiethoxysilane, cyclopentylethyldiethoxysilane, cyclohexylsilane B pentyl dimethoxy silane, cyclohexyl cyclopentyl distearate triethoxysilane, 3-methyl-cyclohexyl cyclopentyl dimethoxy silane, 4-methylcyclohexyl cyclopentyl dimethoxysilane, 3,5-dimethyl-cyclohexyl cyclopentyl dimethoxysilane is preferable.
式中、rが1〜4の有機ケイ素化合物としては、(アルキルアミノ)トリアルキルシラン、(アルキルアミノ)ジアルキルシクロアルキルシラン、(アルキルアミノ)アルキルジシクロアルキルシラン、(アルキルアミノ)トリシクロアルキルシラン、(アルキルアミノ)(ジアルキルアミノ)ジアルキルシラン、(アルキルアミノ)(ジアルキルアミノ)ジシクロアルキルシラン、ビス(アルキルアミノ)ジアルキルシラン、ビス(アルキルアミノ)アルキルシクロアルキルシラン、ビス(アルキルアミノ)ジシクロアルキルシラン、ビス(アルキルアミノ)(ジアルキルアミノ)アルキルシラン、ビス(アルキルアミノ)(ジアルキルアミノ)シクロアルキルシラン、ジ(アルキルアミノ)ジアルキルシラン、ジ(アルキルアミノ)アルキルシクロアルキルシラン、ジ(アルキルアミノ)ジシクロアルキルシラン、ジ(シクロアルキルアミノ)ジアルキルシラン、ジ(シクロアルキルアミノ)アルキルシクロアルキルシラン、ジ(シクロアルキルアミノ)ジシクロアルキルシラン、トリス(アルキルアミノ)アルキルシラン、トリス(アルキルアミノ)シクロアルキルシラン、トリ(アルキルアミノ)アルキルシラン、トリ(アルキルアミノ)シクロアルキルシラン、トリ(シクロアルキルアミノ)アルキルシラン、トリ(シクロアルキルアミノ)シクロアルキルシラン、テトラキス(アルキルアミノ)シラン、トリス(アルキルアミノ)ジアルキルアミノシラン、トリス(シクロアルキルアミノ)ジアルキルアミノシラン、ビス(ジアルキルアミノ)ビス(アルキルアミノ)シラン、ジアルキルアミノトリス(アルキルアミノ)シラン、ビス(パ−ヒドロイソキノリノ)ビス(アルキルアミノ)シラン、ビス(パーヒドロキノリノ)ビス(アルキルアミノ)シラン、ビス(シクロアルキルアミノ)ビス(アルキルアミノ)シラン、テトラ(アルキルアミノ)シラン、トリ(アルキルアミノ)ジアルキルアミノシラン、トリ(シクロアルキルアミノ)ジアルキルアミノシラン、ジ(ジアルキルアミノ)ジ(アルキルアミノ)シラン、ジアルキルアミノトリ(アルキルアミノ)シラン、ジ(アルキル置換パ−ヒドロイソキノリノ)ジ(アルキルアミノ)シラン、ジ(アルキル置換パーヒドロキノリノ)ジ(アルキルアミノ)シラン、ジ(シクロアルキルアミノ)ジ(アルキルアミノ)シラン、アルキル(ジアルキルアミノ)(アルキルアミノ)アルコキシシラン、シクロアルキル(ジアルキルアミノ)(アルキルアミノ)アルコキシシラン、ビニル(ジアルキルアミノ)(アルキルアミノ)アルコキシシラン、アリル(ジアルキルアミノ)(アルキルアミノ)アルコキシシラン、アラルキル(ジアルキルアミノ)(アルキルアミノ)アルコキシシラン、ジアルキル(アルキルアミノ)アルコキシシラン等を挙げることができる。 In the formula, as the organosilicon compound in which r is 1 to 4, (alkylamino) trialkylsilane, (alkylamino) dialkylcycloalkylsilane, (alkylamino) alkyldicycloalkylsilane, (alkylamino) tricycloalkylsilane , (Alkylamino) (dialkylamino) dialkylsilane, (alkylamino) (dialkylamino) dicycloalkylsilane, bis (alkylamino) dialkylsilane, bis (alkylamino) alkylcycloalkylsilane, bis (alkylamino) dicyclo Alkylsilane, bis (alkylamino) (dialkylamino) alkylsilane, bis (alkylamino) (dialkylamino) cycloalkylsilane, di (alkylamino) dialkylsilane, di (alkylamino) al Dicycloalkylsilane, di (alkylamino) dicycloalkylsilane, di (cycloalkylamino) dialkylsilane, di (cycloalkylamino) alkylcycloalkylsilane, di (cycloalkylamino) dicycloalkylsilane, tris (alkylamino) ) Alkylsilane, Tris (alkylamino) cycloalkylsilane, Tri (alkylamino) alkylsilane, Tri (alkylamino) cycloalkylsilane, Tri (cycloalkylamino) alkylsilane, Tri (cycloalkylamino) cycloalkylsilane, Tetrakis (Alkylamino) silane, tris (alkylamino) dialkylaminosilane, tris (cycloalkylamino) dialkylaminosilane, bis (dialkylamino) bis (alkylamino) Lan, dialkylaminotris (alkylamino) silane, bis (per-hydroisoquinolino) bis (alkylamino) silane, bis (perhydroquinolino) bis (alkylamino) silane, bis (cycloalkylamino) bis (alkylamino) ) Silane, tetra (alkylamino) silane, tri (alkylamino) dialkylaminosilane, tri (cycloalkylamino) dialkylaminosilane, di (dialkylamino) di (alkylamino) silane, dialkylaminotri (alkylamino) silane, di ( Alkyl-substituted per-hydroisoquinolino) di (alkylamino) silane, di (alkyl-substituted perhydroquinolino) di (alkylamino) silane, di (cycloalkylamino) di (alkylamino) silane, alkyl (dialkylamino) ) (Alkylamino) alkoxysilane, cycloalkyl (dialkylamino) (alkylamino) alkoxysilane, vinyl (dialkylamino) (alkylamino) alkoxysilane, allyl (dialkylamino) (alkylamino) alkoxysilane, aralkyl (dialkylamino) (Alkylamino) alkoxysilane, dialkyl (alkylamino) alkoxysilane and the like can be mentioned.
該有機ケイ素化合物(C)は1種あるいは2種以上組み合わせて用いることができる。また、これらの外部電子供与性化合物は、1種あるいは2種以上組み合わせて用いることができる。 The organosilicon compound (C) can be used alone or in combination of two or more. These external electron donating compounds can be used alone or in combination of two or more.
次に本発明のオレフィン類重合用触媒は、前記したオレフィン類重合用固体触媒成分(A)、成分(B)、および成分(C)を含有し、該触媒の存在下にオレフィン類の重合もしくは共重合を行う。オレフィン類としては、エチレン、プロピレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ビニルシクロヘキサン等であり、これらのオレフィン類は1種あるいは2種以上併用することができる。とりわけ、エチレン、プロピレンおよび1−ブテンが好適に用いられる。特に好ましくはプロピレンである。プロピレンの重合の場合、他のオレフィン類との共重合を行うこともできる。共重合されるオレフィン類としては、エチレン、1−ブテン、1−ペンテン、4−メチル−1−ペンテン、ビニルシクロヘキサン等であり、これらのオレフィン類は1種あるいは2種以上併用することができる。とりわけ、エチレンおよび1−ブテンが好適に用いられる。 Next, the catalyst for olefin polymerization of the present invention contains the above-described solid catalyst component (A), component (B), and component (C) for olefin polymerization, and polymerization of olefins in the presence of the catalyst. Copolymerization is performed. Examples of olefins include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, and vinylcyclohexane. These olefins can be used alone or in combination of two or more. In particular, ethylene, propylene and 1-butene are preferably used. Particularly preferred is propylene. In the case of polymerization of propylene, copolymerization with other olefins can also be performed. Examples of olefins to be copolymerized include ethylene, 1-butene, 1-pentene, 4-methyl-1-pentene, vinylcyclohexane, and the like, and these olefins can be used alone or in combination of two or more. In particular, ethylene and 1-butene are preferably used.
各成分の使用量比は、本発明の効果に影響を及ぼすことのない限り任意であり、特に限定されるものではないが、通常有機アルミニウム化合物(B)は固体触媒成分(A)中のチタン原子1モル当たり、1〜2000モル、好ましくは50〜1000モルの範囲で用いられる。有機ケイ素化合物(C)は、(B)成分1モル当たり、0.002〜10モル、好ましくは0.01〜2モル、特に好ましくは0.01〜0.5モルの範囲で用いられる。 The amount of each component used is arbitrary as long as it does not affect the effect of the present invention, and is not particularly limited. Usually, the organoaluminum compound (B) is titanium in the solid catalyst component (A). It is used in the range of 1 to 2000 mol, preferably 50 to 1000 mol, per mol of atoms. The organosilicon compound (C) is used in an amount of 0.002 to 10 mol, preferably 0.01 to 2 mol, particularly preferably 0.01 to 0.5 mol, per 1 mol of the component (B).
各成分の接触順序は任意であるが、重合系内にまず有機アルミニウム化合物(B)を装入し、次いで有機ケイ素化合物(C)を接触させ、更にオレフィン類重合用固体触媒成分(A)を接触させることが望ましい。 The order of contact of each component is arbitrary, but the organoaluminum compound (B) is first charged into the polymerization system, then the organosilicon compound (C) is contacted, and the solid catalyst component (A) for olefin polymerization is further added. It is desirable to contact.
本発明における重合方法は、有機溶媒の存在下でも不存在下でも行うことができ、またプロピレン等のオレフィン単量体は、気体および液体のいずれの状態でも用いることができる。重合温度は200℃以下、好ましくは100℃以下であり、重合圧力は10MPa以下、好ましくは5MPa以下である。また、連続重合法、バッチ式重合法のいずれでも可能である。更に重合反応を1段で行ってもよいし、2段以上で行ってもよい。 The polymerization method in the present invention can be carried out in the presence or absence of an organic solvent, and the olefin monomer such as propylene can be used in any state of gas and liquid. The polymerization temperature is 200 ° C. or lower, preferably 100 ° C. or lower, and the polymerization pressure is 10 MPa or lower, preferably 5 MPa or lower. Moreover, any of a continuous polymerization method and a batch type polymerization method is possible. Furthermore, the polymerization reaction may be performed in one stage or in two or more stages.
更に、本発明においてオレフィン類重合用固体触媒成分(A)、成分(B)、および成分(C)を含有する触媒を用いてオレフィンを重合するにあたり(本重合ともいう。)、触媒活性、立体規則性および生成する重合体の粒子性状等を一層改善させるために、本重合に先立ち予備重合を行うことが望ましい。予備重合の際には、本重合と同様のオレフィン類あるいはスチレン等のモノマーを用いることができる。 Furthermore, in polymerizing olefins using the catalyst containing the solid catalyst component (A), the component (B), and the component (C) for olefin polymerization in the present invention (also referred to as main polymerization), the catalyst activity and the steric properties are determined. In order to further improve the regularity and the particle properties of the polymer to be produced, it is desirable to perform prepolymerization prior to the main polymerization. In the prepolymerization, the same olefins as in the main polymerization or monomers such as styrene can be used.
予備重合を行うに際して、各成分およびモノマーの接触順序は任意であるが、好ましくは、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内にまず成分(B)を装入し、次いでオレフィン類重合用固体触媒成分(A)を接触させた後、プロピレン等のオレフィンおよび/または1種あるいは2種以上の他のオレフィン類を接触させる。成分(C)を組み合わせて予備重合を行う場合は、不活性ガス雰囲気あるいはオレフィンガス雰囲気に設定した予備重合系内にまず成分(B)を装入し、次いで成分(C)を接触させ、更にオレフィン類重合用固体触媒成分(A)を接触させた後、プロピレン等のオレフィンおよび/または1種あるいはその他の2種以上のオレフィン類を接触させる方法が望ましい。 In carrying out the prepolymerization, the order of contacting the respective components and monomers is arbitrary, but preferably, the component (B) is first charged into the prepolymerization system set to an inert gas atmosphere or an olefin gas atmosphere, and then the olefin. After contacting the solid catalyst component (A) for homopolymerization, an olefin such as propylene and / or one or more other olefins are contacted. When the prepolymerization is performed by combining the component (C), the component (B) is first charged into the prepolymerization system set to an inert gas atmosphere or an olefin gas atmosphere, and then the component (C) is contacted. A method of contacting an olefin such as propylene and / or one or other two or more olefins after contacting the solid catalyst component (A) for olefin polymerization is desirable.
本発明によって形成されるオレフィン類重合用触媒の存在下で、オレフィン類の重合を行った場合、従来の触媒を使用した場合に比べ、得られるポリマーは微粉が極めて少なく、また粒径の大きさが揃ったシャープな粒度分布を有し、かつポリマーの立体規則性および収率を高度に維持することができる。本発明のオレフィン類重合用触媒は、特に気相法によるポリオレフィンの製造プロセスに非常に有利である。 When the olefins are polymerized in the presence of the olefin polymerization catalyst formed according to the present invention, the resulting polymer has very little fine powder and a large particle size compared to the conventional catalyst. And a high degree of stereoregularity and yield of the polymer. The catalyst for olefin polymerization of the present invention is very advantageous particularly for a polyolefin production process by a gas phase method.
(実施例)
次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。
(Example)
EXAMPLES Next, although an Example is given and this invention is demonstrated more concretely, this is only an illustration and does not restrict | limit this invention.
〔固体触媒成分(A)の調製〕
窒素ガスで十分置換され、攪拌器および還流冷却器を具備した容量500ミリリッターの丸底フラスコにジエトキシマグネシウム10g、トルエン50mlおよびフタル酸ジ−n−ブチル2.4mlを投入して懸濁液を形成した。一方、窒素ガスで十分に置換され、攪拌機を具備した容量500mlの丸底フラスコに四塩化チタン30mlおよびトルエン20mlを装入して、混合溶液を形成しておき、この混合溶液中に上記懸濁液を添加した。その後、混合溶液を昇温し、90℃で2時間攪拌しながら反応させた。反応終了後、得られた固体生成物を90℃のトルエン100mlで3回洗浄し、次いで新たに四塩化チタン30mlおよびトルエン70mlを加え、112℃に昇温し、2時間攪拌しながら反応させた。その後デカンテーションにて上澄液を除去した後、40℃のn−ヘプタン100mlで5回洗浄し、乾燥した。次に窒素ガスで十分に置換され、攪拌機を具備した容量500mlの丸底フラスコに生成した固体物10g、トルエン70mlを加え、懸濁液を得た。窒素雰囲気下、この懸濁液に0.03g-(水分-ジブチルエーテル-エタノール)/g-固体物になるように水分、ジブチルエーテル及びエタノールの混合飽和窒素ガスをバブリングさせて固体生成物と水を接触させた。接触温度は25℃、接触時間は5分であった。バブリングを停止した後、接触後の懸濁液に四塩化チタン30mlを加え、112℃に昇温し、2時間攪拌しながら反応させた。その後デカンテーションにて上澄液を除去した後、40℃のn−ヘプタン100mlで5回洗浄し固体触媒成分を得た。なお、この固体触媒成分中のチタン含有率を測定したところ、3.1重量%であった。
[Preparation of solid catalyst component (A)]
Suspension in which 10 g of diethoxymagnesium, 50 ml of toluene and 2.4 ml of di-n-butyl phthalate were charged into a 500-milliliter round bottom flask which was sufficiently replaced with nitrogen gas and equipped with a stirrer and a reflux condenser. Formed. On the other hand, 30 ml of titanium tetrachloride and 20 ml of toluene were charged into a 500 ml round bottom flask which was sufficiently replaced with nitrogen gas and equipped with a stirrer to form a mixed solution, and the above suspension was suspended in this mixed solution. The liquid was added. Thereafter, the mixed solution was heated and reacted at 90 ° C. with stirring for 2 hours. After completion of the reaction, the obtained solid product was washed with 100 ml of toluene at 90 ° C. three times, then 30 ml of titanium tetrachloride and 70 ml of toluene were newly added, and the temperature was raised to 112 ° C. and reacted for 2 hours with stirring. . Thereafter, the supernatant was removed by decantation, washed 5 times with 100 ml of 40 ° C. n-heptane and dried. Next, 10 g of solid material and 70 ml of toluene were added to a 500 ml round bottom flask which was sufficiently replaced with nitrogen gas and equipped with a stirrer to obtain a suspension. Under a nitrogen atmosphere, this suspension was bubbled with a mixed saturated nitrogen gas of water, dibutyl ether and ethanol so as to be 0.03 g- (water-dibutyl ether-ethanol) / g-solid, so that the solid product and water Was brought into contact. The contact temperature was 25 ° C. and the contact time was 5 minutes. After stopping the bubbling, 30 ml of titanium tetrachloride was added to the suspension after contact, and the temperature was raised to 112 ° C., and the reaction was carried out with stirring for 2 hours. Thereafter, the supernatant was removed by decantation and then washed 5 times with 100 ml of n-heptane at 40 ° C. to obtain a solid catalyst component. In addition, it was 3.1 weight% when the titanium content rate in this solid catalyst component was measured.
〔重合用触媒の形成及び重合〕
窒素ガスで十分に乾燥し、次いでプロピレンガスで置換された内容積1800mlの攪拌装置付きステンレス製オートクレーブに、n−ヘプタン700mlを装入し、プロピレンガス雰囲気下に保ちつつ、トリエチルアルミニウム2.10mmol、シクロヘキシルメチルジメトキシシラン0.21mmol、及び前記固体触媒成分をTiとして0.0053mmol装入し、重合用触媒を形成した。次いで、0.2MPaのプロピレン圧をかけ、攪拌を保ちながら20℃で30分間予備的な重合を行った。その後、150mlの水素を装入し、系内のプロピレン圧を0.7MPa として70℃で2時間重合を継続した。なお、重合が進行するにつれて低下する圧力は、プロピレンのみを連続的に供給することにより補い、重合中一定の圧力に保持した。上記重合方法に従い、プロピレンの重合を行い、生成された重合体をろ別し、減圧乾燥して固体重合体を得た。一方、ろ液を凝縮して重合溶媒に溶存する重合体を得、その量を(M) とし、固体重合体の量を(N) とする。また、得られた固体重合体を沸騰n−ヘプタンで6時間抽出し、n−ヘプタンに不溶解の重合体を得、この量を(P) とする。固体触媒成分当たりの重合活性(Y) を下記式で表す。
(Y)=[ (M) +(N)](g)/固体触媒成分量(g)
[Formation and polymerization of polymerization catalyst]
700 ml of n-heptane was charged into a stainless steel autoclave with a stirrer having an internal volume of 1800 ml that had been sufficiently dried with nitrogen gas and then replaced with propylene gas, and maintained in a propylene gas atmosphere. The polymerization catalyst was formed by charging 0.21 mmol of cyclohexylmethyldimethoxysilane and 0.0053 mmol of the solid catalyst component as Ti. Next, a preliminary polymerization was carried out at 20 ° C. for 30 minutes while applying a propylene pressure of 0.2 MPa and maintaining stirring. Thereafter, 150 ml of hydrogen was charged, and the polymerization was continued for 2 hours at 70 ° C. with a propylene pressure in the system of 0.7 MPa. In addition, the pressure which falls as superposition | polymerization advances was supplemented by supplying only propylene continuously, and was kept at the constant pressure during superposition | polymerization. According to the above polymerization method, propylene was polymerized, and the produced polymer was filtered and dried under reduced pressure to obtain a solid polymer. On the other hand, the filtrate is condensed to obtain a polymer dissolved in the polymerization solvent, the amount of which is (M), and the amount of the solid polymer is (N). The obtained solid polymer is extracted with boiling n-heptane for 6 hours to obtain a polymer insoluble in n-heptane, and this amount is defined as (P). The polymerization activity (Y) per solid catalyst component is represented by the following formula.
(Y) = [(M) + (N)] (g) / solid catalyst component amount (g)
また、n−ヘプタンに不溶な全ポリマー(HI)を下記式で表わす。
(HI)={ (P) (g)/ [(M)+(N) ] (g) } ×100
Further, the total polymer (HI) insoluble in n-heptane is represented by the following formula.
(HI) = {(P) (g) / [(M) + (N)] (g)} × 100
さらに、生成固体重合体のメルトフローレイト(MFR) 、嵩比重(BD)および生成固体重合体の微粉(44μm以下、105μm以下)、平均粒径および粒度分布〔(D90−D10)/D50〕を測定したところ、表1に示すような結果が得られた。 Further, melt flow rate (MFR), bulk specific gravity (BD) of the produced solid polymer, fine powder (44 μm or less, 105 μm or less) of the produced solid polymer, average particle size and particle size distribution [(D90-D10) / D50] When measured, the results shown in Table 1 were obtained.
なお、生成固体重合体(N)のメルトフローレイトの値(MFR)は、ASTM D 1238、 JIS K 7210に準じて測定した。また、表1中、添加量の(g-アルコール等/g-固体物)は、(g-水分-エーテル-アルコール/g-固体物)を言う。 The melt flow rate value (MFR) of the produced solid polymer (N) was measured in accordance with ASTM D 1238 and JIS K 7210. In Table 1, the added amount (g-alcohol etc./g-solid) means (g-water-ether-alcohol / g-solid).
実施例2〜実施例4
0.03g-(水分-ジブチルエーテル-エタノール)/g-固体物に代えて、0.05g-(水分-ジブチルエーテル-エタノール)/g-固体物(実施例2)、0.001g-(水分-ジブチルエーテル-エタノール)/g-固体物(実施例3)、0.2g-(水分-ジブチルエーテル-エタノール)/g-固体物(実施例4)とした以外は、実施例1と同様に固体触媒成分の調製、重合触媒の形成および重合を行った。重合結果を表1に示した。
Example 2 to Example 4
Instead of 0.03 g- (water-dibutyl ether-ethanol) / g-solid material, 0.05 g- (water-dibutyl ether-ethanol) / g-solid material (Example 2), 0.001 g- (water content) -Dibutyl ether-ethanol) / g-solid (Example 3) and 0.2 g- (water-dibutyl ether-ethanol) / g-solid (Example 4). Preparation of the solid catalyst component, formation of the polymerization catalyst and polymerization were carried out. The polymerization results are shown in Table 1.
実施例5〜実施例7
エタノールに代えて2-ブタノールとしたこと(実施例5)、ジブチルエーテルに代えてジエチルエーテルとしたこと(実施例6)、エタノールに代えて2-エチル-1-ヘキサノールとし、ジブチルエーテルに代えてジイソアミルエーテルとしたこと(実施例7)以外は、実施例1と同様に固体触媒成分の調製、重合触媒の形成および重合を行った。重合結果を表1に示した。
Example 5 to Example 7
2-butanol was used instead of ethanol (Example 5), diethyl ether was used instead of dibutyl ether (Example 6), 2-ethyl-1-hexanol was used instead of ethanol, and dibutyl ether was used instead. A solid catalyst component was prepared, a polymerization catalyst was formed, and polymerization was carried out in the same manner as in Example 1, except that diisoamyl ether was used (Example 7). The polymerization results are shown in Table 1.
比較例1
固体生成物とアルコール飽和窒素ガスの接触を行わなかったこと、接触後の四塩化チタンを投入しなかったこと以外は、実施例1と同様に固体触媒成分を調製し、重合触媒の形成および重合を行った。その結果を表1に示した。
Comparative Example 1
A solid catalyst component was prepared in the same manner as in Example 1 except that the contact between the solid product and the alcohol-saturated nitrogen gas was not performed, and the titanium tetrachloride after the contact was not added. Went. The results are shown in Table 1.
比較例2
窒素ガスで充分に置換され、撹拌機を具備した容量200mlの丸底フラスコにジエトキシマグネシウム5g、ジブチルフタレート1.8gおよび塩化メチレン25mlを装入して懸濁状態とし、還流下で1時間撹拌した。次いでこの懸濁液を撹拌機を具備した容量500mlの丸底フラスコ中の室温のTiCl4 200ml中に圧送し110℃に昇温して2時間撹拌しながら反応させた。反応終了後40℃のn−ヘプタン200mlで10回洗浄し固体組成物を得た。次に該固体組成物3gを内容積500mlの丸底フラスコにとり、10ppmの水を含んだn−ヘプタン100ml加えて室温で1時間撹拌下で処理した後、室温のn−ヘプタン200mlで5回洗浄し、新たにTiCl4 200mlを加えて120℃で2時間撹拌しながら反応させた。反応終了後40℃まで冷却し、次いでn−ヘプタン200mlによる洗浄を繰り返し行ない、洗浄液中に塩素が検出されなくなった時点で洗浄終了とし触媒成分とした。なお、この際該触媒成分中のチタン含有量を測定したところ3.2重量%であつた。
Comparative Example 2
A 200-ml round bottom flask fully substituted with nitrogen gas and equipped with a stirrer was charged with 5 g of diethoxymagnesium, 1.8 g of dibutyl phthalate and 25 ml of methylene chloride, suspended, and stirred at reflux for 1 hour. did. The suspension was then pumped into 200 ml of room temperature TiCl 4 in a 500 ml round bottom flask equipped with a stirrer, heated to 110 ° C. and allowed to react for 2 hours with stirring. After completion of the reaction, it was washed 10 times with 200 ml of n-heptane at 40 ° C. to obtain a solid composition. Next, 3 g of the solid composition was put into a 500 ml round bottom flask, added with 100 ml of n-heptane containing 10 ppm of water, treated with stirring at room temperature for 1 hour, and then washed 5 times with 200 ml of room temperature n-heptane. Then, 200 ml of TiCl 4 was newly added and reacted at 120 ° C. with stirring for 2 hours. After completion of the reaction, the reaction mixture was cooled to 40 ° C. and then repeatedly washed with 200 ml of n-heptane. When chlorine was no longer detected in the washing solution, the washing was terminated and used as a catalyst component. At this time, the titanium content in the catalyst component was measured and found to be 3.2% by weight.
比較例3
〈固体触媒成分の調製〉
攪拌機を具備し、窒素ガスで充分に置換された、容量2000mlの丸底フラスコに、ジエトキシマグネシウム150g及びトルエン750mlを装入し、懸濁状態とした。次いで、該懸濁溶液を、攪拌機を具備し窒素ガスで充分に置換された、容量3000mlの丸底フラスコ中に予め装入されたトルエン450ml及び四塩化チタン300mlの溶液中に、装入した。次いで、ジ-n- ブチルフタレート54mlを添加し、110℃まで昇温し、その途中で、ジメチルポリシロキサン60mlを添加した。110℃まで昇温後、攪拌しながら2時間反応させた。反応終了後、生成物をトルエンで洗浄し、新たにトルエン1200ml、四塩化チタン300mlを加えて、100℃で2時間攪拌しながら接触反応させた。次いで、生成物をヘプタンで洗浄し、濾過、乾燥して、粉末状の固体成分を得た。この固体成分中のチタン含有量を測定したところ、1.4重量%であった。
Comparative Example 3
<Preparation of solid catalyst component>
A 2000-ml round bottom flask equipped with a stirrer and sufficiently substituted with nitrogen gas was charged with 150 g of diethoxymagnesium and 750 ml of toluene to form a suspension. The suspended solution was then charged into a solution of 450 ml of toluene and 300 ml of titanium tetrachloride previously charged in a 3000 ml round bottom flask equipped with a stirrer and thoroughly replaced with nitrogen gas. Next, 54 ml of di-n-butyl phthalate was added, the temperature was raised to 110 ° C., and 60 ml of dimethylpolysiloxane was added along the way. After raising the temperature to 110 ° C., the mixture was reacted for 2 hours with stirring. After completion of the reaction, the product was washed with toluene, and 1200 ml of toluene and 300 ml of titanium tetrachloride were newly added, and contact reaction was conducted with stirring at 100 ° C. for 2 hours. The product was then washed with heptane, filtered and dried to obtain a powdery solid component. The titanium content in the solid component was measured and found to be 1.4% by weight.
(固体成分のアルコール処理)
次に、攪拌機を具備し、窒素ガスで充分に置換された、容量500mlの丸底フラスコに、上記の固体成分10g、ヘプタン50mlを装入し、懸濁溶液とした。次いで、該懸濁溶液中に、予め準備された、ヘプタン50ml中にエタノール0.01mlを添加した混合溶液を全量添加し、50℃で1時間、攪拌しながら接触させて、固体触媒成分を得た。この固体触媒成分を固液分離して、固体中のチタン含有率を測定したところ、1.4重量%であった。
(Alcohol treatment of solid components)
Next, 10 g of the above solid component and 50 ml of heptane were charged into a 500 ml round bottom flask equipped with a stirrer and sufficiently substituted with nitrogen gas to obtain a suspended solution. Next, the entire amount of the prepared mixed solution prepared by adding 0.01 ml of ethanol to 50 ml of heptane is added to the suspension solution and brought into contact with stirring at 50 ° C. for 1 hour to obtain a solid catalyst component. It was. The solid catalyst component was separated into solid and liquid, and the titanium content in the solid was measured and found to be 1.4% by weight.
上記のようにして調製した固体触媒成分を用いた以外は実施例1と同様に、重合触媒の形成および重合を行った。その重合結果を表1に示した。 A polymerization catalyst was formed and polymerized in the same manner as in Example 1 except that the solid catalyst component prepared as described above was used. The polymerization results are shown in Table 1.
比較例4
〈固体成分の調製〉
撹拌機を具備し、窒素ガスで充分に置換された、容量2000mlの丸底フラスコに、ジエトキシマグネシウム150g及びトルエン750mlを装入し、懸濁状態とした。次いで、該懸濁液を、撹拌機を具備し、窒素ガスで充分に置換された、容量2000mlの丸底フラスコに予め装入されたトルエン450ml及びチタンテトラクロライド300mlの溶液中に添加した。次いで、該懸濁液を5℃で1時間反応させた(低温熟成処理)。その後、フタル酸ジ−n−ブチル22.5mlを添加して、90℃まで昇温した後、撹拌しながら2時間反応処理(第1処理)を行った。反応終了後、生成物を80℃のトルエン1300mlで4回洗浄(中間洗浄)し、新たにトルエン1200ml及びチタンテトラクロライド300mlを加えて、撹拌しながら112℃で2時間の反応処理(第2処理)を行った。この後、中間洗浄及び第2処理を、更にもう一度繰り返した。次いで、生成物を40℃ヘプタン1300mlで7回洗浄し、濾過、乾燥して、粉末状の固体成分を得た。この固体成分中のチタン含有量を測定したところ、2.9重量%であった。
Comparative Example 4
<Preparation of solid components>
A 2000 ml round bottom flask equipped with a stirrer and sufficiently substituted with nitrogen gas was charged with 150 g of diethoxymagnesium and 750 ml of toluene to form a suspended state. The suspension was then added to a solution of 450 ml of toluene and 300 ml of titanium tetrachloride pre-charged in a 2000 ml round bottom flask equipped with a stirrer and thoroughly substituted with nitrogen gas. Next, the suspension was reacted at 5 ° C. for 1 hour (low temperature aging treatment). Thereafter, 22.5 ml of di-n-butyl phthalate was added, the temperature was raised to 90 ° C., and a reaction treatment (first treatment) was performed for 2 hours with stirring. After completion of the reaction, the product was washed four times with 1300 ml of toluene at 80 ° C. (intermediate washing), and 1200 ml of toluene and 300 ml of titanium tetrachloride were newly added, and the reaction treatment was performed at 112 ° C. for 2 hours (second treatment). ) Thereafter, the intermediate washing and the second treatment were repeated once more. The product was then washed 7 times with 1300 ml of 40 ° C. heptane, filtered and dried to obtain a powdered solid component. The titanium content in the solid component was measured and found to be 2.9% by weight.
(固体成分のエーテル処理)
上記のようにして得られた固体成分10gをヘプタン100ml中に懸濁させ、この懸濁液中にジブチルエーテル0.6mlを添加した。その後40℃で1時間、攪拌しながら処理を行い、次いで、40℃のヘプタン1300mlで7回洗浄し固体触媒成分(A)を得た。この固体触媒成分中のチタン含有量を測定したところ、2.2重量%であった。
(Ether treatment of solid components)
10 g of the solid component obtained as described above was suspended in 100 ml of heptane, and 0.6 ml of dibutyl ether was added to this suspension. Thereafter, the mixture was treated with stirring at 40 ° C. for 1 hour, and then washed 7 times with 1300 ml of heptane at 40 ° C. to obtain a solid catalyst component (A). The titanium content in the solid catalyst component was measured and found to be 2.2% by weight.
上記のようにして調製した固体触媒成分を用いた以外は実施例1と同様に、重合触媒の形成および重合を行った。その重合結果を表1に示した。
実施例8
0.03g-(水分-ジブチルエーテル-エタノール)/g-固体物になるように水分、ジブチルエーテル及びエタノールの混合飽和窒素ガスを用いる代わりに、0.03g-(水分-エタノール)/g-固体物になるように水分及びエタノールの混合飽和窒素ガスを用いたい外は、実施例1と同様に行なった。
実施例9
0.03g-(水分-ジブチルエーテル-エタノール)/g-固体物になるように水分、ジブチルエーテル及びエタノールの混合飽和窒素ガスを用いる代わりに、0.03g-(水分-ジブチルエーテル)/g-固体物になるように水分及びジブチルエーテルの混合飽和窒素ガスを用いたい外は、実施例1と同様に行なった。
A polymerization catalyst was formed and polymerized in the same manner as in Example 1 except that the solid catalyst component prepared as described above was used. The polymerization results are shown in Table 1.
Example 8
0.03 g- (moisture-dibutyl ether-ethanol) / g-solid instead of using saturated nitrogen gas mixed with water, dibutyl ether and ethanol so as to become a solid substance The same procedure as in Example 1 was conducted except that saturated nitrogen gas mixed with water and ethanol was used so as to obtain a product.
Example 9
0.03 g- (moisture-dibutyl ether-ethanol) / g- Instead of using saturated nitrogen gas mixed with water, dibutyl ether and ethanol so as to become a solid substance, 0.03 g- (water-dibutyl ether) / g- The same procedure as in Example 1 was performed except that a mixed saturated nitrogen gas of water and dibutyl ether was used so as to become a solid substance.
表1の結果から、本発明の固体触媒成分および触媒を用いてプロピレンの重合を行うことにより、高活性および高立体規則性を維持し、微粉重合体の発生が極めて少ないポリマーが得られることがわかる。 From the results of Table 1, it can be seen that by polymerizing propylene using the solid catalyst component and catalyst of the present invention, a polymer that maintains high activity and high stereoregularity and generates very little fine polymer can be obtained. Recognize.
Claims (7)
(式中、R1は炭素数1〜4のアルキル基を示し、Qは水素原子あるいはハロゲン原子を示し、pは0<p≦3の実数である。)で表される有機アルミニウム化合物および(C)外部電子供与性化合物によって形成されることを特徴とするオレフィン類重合用触媒。 (A) Solid catalyst component for olefin polymerization according to any one of claims 1 to 4, (B) the following general formula (1); R 1 p AlQ 3-p (1)
(Wherein R 1 represents an alkyl group having 1 to 4 carbon atoms, Q represents a hydrogen atom or a halogen atom, and p is a real number of 0 <p ≦ 3) and ( C) Olefin polymerization catalyst characterized by being formed by an external electron donating compound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008055939A JP5105480B2 (en) | 2008-03-06 | 2008-03-06 | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008055939A JP5105480B2 (en) | 2008-03-06 | 2008-03-06 | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009209308A JP2009209308A (en) | 2009-09-17 |
JP5105480B2 true JP5105480B2 (en) | 2012-12-26 |
Family
ID=41182778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008055939A Expired - Fee Related JP5105480B2 (en) | 2008-03-06 | 2008-03-06 | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5105480B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5305695B2 (en) * | 2008-03-06 | 2013-10-02 | 東邦チタニウム株式会社 | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME |
JP5305694B2 (en) * | 2008-03-06 | 2013-10-02 | 東邦チタニウム株式会社 | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME |
JP5335258B2 (en) * | 2008-03-06 | 2013-11-06 | 東邦チタニウム株式会社 | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME |
JP7337828B2 (en) * | 2018-09-27 | 2023-09-04 | 東邦チタニウム株式会社 | Method for producing solid catalyst component for olefin polymerization, solid catalyst for olefin polymerization, and method for producing olefin polymer |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58215408A (en) * | 1982-06-08 | 1983-12-14 | Mitsui Petrochem Ind Ltd | Polymerization of olefin |
JPH1112316A (en) * | 1997-06-26 | 1999-01-19 | Toho Titanium Co Ltd | Solid catalyst component and catalyst for polymerizing olefins |
JP2003261612A (en) * | 2002-03-11 | 2003-09-19 | Toho Catalyst Co Ltd | Solid catalyst component for polymerizing olefins and catalyst |
JP5305694B2 (en) * | 2008-03-06 | 2013-10-02 | 東邦チタニウム株式会社 | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME |
JP5335258B2 (en) * | 2008-03-06 | 2013-11-06 | 東邦チタニウム株式会社 | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME |
-
2008
- 2008-03-06 JP JP2008055939A patent/JP5105480B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009209308A (en) | 2009-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5253911B2 (en) | Method for synthesizing alkoxymagnesium | |
JP4402359B2 (en) | Method for producing dialkoxymagnesium, method for producing solid catalyst component for olefin polymerization, and method for producing catalyst | |
JP5110589B2 (en) | Solid catalyst component for olefin polymerization, method for producing the same, catalyst and method for producing olefin polymers using the same | |
JP5105480B2 (en) | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME | |
JP5305694B2 (en) | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME | |
JP5208544B2 (en) | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME, AND CATALYST | |
JP4402353B2 (en) | Method for producing dialkoxymagnesium, solid catalyst component and catalyst for olefin polymerization | |
JP5305695B2 (en) | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME | |
JP5335258B2 (en) | SOLID CATALYST COMPONENT FOR OLEFIN POLYMERIZATION, PROCESS FOR PRODUCING THE SAME AND CATALYST, AND METHOD FOR PRODUCING OLEFIN POLYMER USING THE SAME | |
JP4557260B2 (en) | Method for producing solid catalyst component for olefin polymerization | |
JP4098588B2 (en) | Solid catalyst components and catalysts for olefin polymerization | |
JP2007039529A (en) | Solid catalytic component for polymerizing olefins, catalyst and method for polymerizing olefin polymers using the same | |
JP3885035B2 (en) | Method for producing solid catalyst component for olefin polymerization | |
JP4624115B2 (en) | Solid catalyst component and catalyst for olefin polymerization, and method for producing olefin polymer | |
JP2006274105A (en) | Solid catalytic component for polymerizing olefins, catalyst for polymerizing olefins and method for producing olefin polymer or copolymer | |
JP4091417B2 (en) | Solid catalyst components and catalysts for olefin polymerization | |
JP4712418B2 (en) | Method for producing solid catalyst component for olefin polymerization, catalyst for olefin polymerization, and method for producing olefin polymer or copolymer using the same | |
JP3885034B2 (en) | Method for preparing solid catalyst component for polymerization of olefins | |
JP3765278B2 (en) | Solid catalyst component and catalyst for olefin polymerization | |
JP3679068B2 (en) | Solid catalyst component and catalyst for olefin polymerization | |
JP2009209310A (en) | Solid catalytic component for polymerization of olefins, catalyst, and process for producing olefin polymer using the same | |
JP4540055B2 (en) | Method for producing solid catalyst component for olefin polymerization | |
JP5254048B2 (en) | Method for producing solid catalyst component for olefin polymerization | |
JP2003327616A (en) | Solid catalytic component and catalyst for polymerizing olefin | |
JP2008285573A (en) | Dialkoxy magnesium powder composition, solid catalyst component for olefin polymerization, catalyst, and olefinic polymer production method using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120706 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120717 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120730 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120926 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5105480 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151012 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151012 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |