JPH0471086B2 - - Google Patents

Info

Publication number
JPH0471086B2
JPH0471086B2 JP58185872A JP18587283A JPH0471086B2 JP H0471086 B2 JPH0471086 B2 JP H0471086B2 JP 58185872 A JP58185872 A JP 58185872A JP 18587283 A JP18587283 A JP 18587283A JP H0471086 B2 JPH0471086 B2 JP H0471086B2
Authority
JP
Japan
Prior art keywords
transition metal
metal catalyst
particles
pulverized
classified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58185872A
Other languages
Japanese (ja)
Other versions
JPS6079016A (en
Inventor
Tadashi Asanuma
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP18587283A priority Critical patent/JPS6079016A/en
Publication of JPS6079016A publication Critical patent/JPS6079016A/en
Publication of JPH0471086B2 publication Critical patent/JPH0471086B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerization Catalysts (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は担体付遷移金属触媒の製造法に関す
る。詳しくはα−オレフインの重合用として適し
た担体付遷移金属触媒の製造法に関する。 遷移金属当りのポリオレフインの収率を高める
方法についてはチーグラー・ナツタによる触媒の
発明以来さまざまの方法で行われているが中でも
特公昭39−12105号で提案されたハロゲン化金属
にハロゲン化チタンを担持して触媒を得る方法は
遷移金属当りのポリオレフインの収率を大幅に高
めることが可能であり、数多くの改良法が提案さ
れている。 特に、ここ十年の触媒性能の向上は目覚しく遷
移金属当りのポリオレフインの収率はもちろん、
遷移金属触媒当り(担体を含めた触媒当り)の収
率が向上し、遷移金属触媒当り数万g/g−遷移
金属触媒の高性能のものとなつている。 一般にポリオレフインの重合は溶液粘度の問
題、重合熱の除去の問題から液状媒体中、或は気
相媒体中でスラリー状態で行われる。スラリー状
態での重合に於て、ポリオレフインは粒状で存在
するため粒子の巨大なもの或は微粒のものはない
方が良く中でも巨大な粒子が存在すると重合槽に
とか配管とかの装置の狭い部分に溜り場合によつ
ては、閉塞したりする問題があつた。この閉塞の
問題は、ポリオレフインの重合のように連続で製
造する方法に於てはプラント全体の停止にもつな
がる重大な問題である。これに対する対処の方法
としては、遷移金属触媒の大きさと、ポリオレフ
インの粒子の大きさが相関することから遷移金属
触媒を分級し、一定以上の粒子を除去すれば良
い。中でも担体の段階で分級するのが操作的にも
比較的楽であり好ましい。しかしながら分級する
と一定以上の大きさの担体は無駄になり、又、担
体は各種の有機物を含有しているため産業廃棄物
として処理しなければならず好ましくない。 本発明者らは、上記問題について鋭意検討した
結果特定の方法を行うことによつて担体を無駄に
することなく遷移金属触媒が得られることを見い
出し本発明を完成した。 本発明の目的は効率良く担体付遷移金属触媒を
製造する方法を提供することにある。 本発明は、ハロゲン化マグネシウムとC−O結
合を有する有機化合物を共粉砕して得た担体にハ
ロゲン化チタンを担持して担体付遷移金属触媒を
製造する方法において、担体として共粉砕物を担
体付遷移金属触媒当りの収率をWg/gとすると
分級されるべき共粉砕物の粒径Rは、
The present invention relates to a method for producing a supported transition metal catalyst. Specifically, the present invention relates to a method for producing a supported transition metal catalyst suitable for polymerizing α-olefins. Since the invention of the catalyst by Ziegler and Natsuta, various methods have been used to increase the yield of polyolefin per transition metal.Among them, the method proposed in Japanese Patent Publication No. 12105/1973 was to support titanium halide on a metal halide. This method of obtaining a catalyst can greatly increase the yield of polyolefin per transition metal, and many improved methods have been proposed. In particular, the improvement in catalyst performance over the past decade has been remarkable, and the yield of polyolefin per transition metal has improved.
The yield per transition metal catalyst (per catalyst including carrier) has been improved, and the transition metal catalyst has a high performance of tens of thousands of g/g per transition metal catalyst. Polyolefin polymerization is generally carried out in a slurry state in a liquid medium or a gaseous medium due to problems with solution viscosity and removal of polymerization heat. During polymerization in a slurry state, polyolefin exists in granular form, so it is better not to have large or fine particles.If there are large particles, they may get into the polymerization tank, piping, or other narrow parts of the equipment. In some cases, there was a problem of blockage. This clogging problem is a serious problem in continuous production methods such as polyolefin polymerization, which can lead to the shutdown of the entire plant. To deal with this problem, since the size of the transition metal catalyst and the size of the polyolefin particles are correlated, the transition metal catalyst may be classified to remove particles larger than a certain level. Among these, it is preferable to classify the carrier at the carrier stage because it is relatively easy to operate. However, when classified, carriers larger than a certain size are wasted, and since the carriers contain various organic substances, they must be disposed of as industrial waste, which is not preferable. The inventors of the present invention have conducted intensive studies on the above-mentioned problems, and have discovered that a transition metal catalyst can be obtained by carrying out a specific method without wasting the carrier, and have completed the present invention. An object of the present invention is to provide a method for efficiently producing a supported transition metal catalyst. The present invention provides a method for producing a supported transition metal catalyst by supporting a titanium halide on a carrier obtained by co-pulverizing a magnesium halide and an organic compound having a C-O bond. If the yield per transition metal catalyst is Wg/g, the particle size R of the co-pulverized product to be classified is:

【式】で表せるRより大きい 粒子と分級し微粒はそのまま四塩化チタンを担持
し、粗粒はハロゲン化炭化水素を添加して共粉砕
した後四塩化チタンを担持することを特徴とする
担体付遷移金属触媒の製造方法。 本発明に於てハロゲン化マグネシウムとしては
塩化マグネシウム、臭化マグネシウムが挙げられ
るが中でも塩化マグネシウムが好ましい。 C−O結合を有する有機化合物としては、公知
のハロゲン化マグネシウムの担体を製造する際に
用いられる種々の化合物が適用可能である。共粉
砕方法は公知の各種の装置、方法を採用し得るが
中でもボールミル、振動ミルによる共粉砕が好ま
しい。 本発明に於ては上記操作で得た共粉砕物は分級
され、粗大粒子が分離される。この分級で除去さ
れるべき共粉砕物の粒径は、通常重合プロセスで
好ましくないポリオレフインの粗大粒子径は5mm
程度であり、これは例えば担体付遷移金属触媒当
り2万g/gのポリオレフインの収率があればほ
ぼ0.1mmの担体付遷移金属触媒粒径に相当する。
従つて担体付遷移金属触媒当りの収率が例えばW
g/gとすると分級除去されるべき共粉砕物の粒
径Rは
With a carrier, the fine particles are classified into particles larger than R expressed by the formula, and the fine particles directly support titanium tetrachloride, and the coarse particles are co-pulverized with a halogenated hydrocarbon and then support titanium tetrachloride. A method for producing a transition metal catalyst. In the present invention, magnesium halides include magnesium chloride and magnesium bromide, with magnesium chloride being preferred. As the organic compound having a C-O bond, various compounds used in the production of known magnesium halide carriers can be used. For the co-pulverization method, various known devices and methods can be employed, but co-pulverization using a ball mill or a vibration mill is particularly preferred. In the present invention, the co-pulverized product obtained by the above operation is classified to separate coarse particles. The particle size of the co-pulverized material to be removed in this classification is 5 mm, since the coarse particle size of polyolefin, which is usually undesirable in the polymerization process, is 5 mm.
For example, if the yield of polyolefin is 20,000 g/g per supported transition metal catalyst, this corresponds to a particle size of the supported transition metal catalyst of approximately 0.1 mm.
Therefore, the yield per supported transition metal catalyst is, for example, W
g/g, the particle size R of the co-pulverized material to be classified and removed is

【式】として表わされ る。 分級の方法は公知の多くの方法が採用可能であ
り、例えば適当な目開のふるいで分級する方法、
或は、気流輸送プロセスを利用した分級サイクロ
ンによる分級などが挙げられる。 分級によつて分離された粗大粒子がない共粉砕
物は四塩化チタンが担持される。一方分級された
粗大粒子は、さらに前述のボールミル又は振動ミ
ル等で粉砕し粗大粒子は細くされる。この際粗大
共粉砕物粒子のみを粉砕し、四塩化チタンを担持
して得られた触媒を用いて重合すると超微細粒子
が増加し好ましくなく、又、α−オレフインの重
合に用いる場合には得られるポリオレフインの立
体規則性が低下する。これに対して粗大粒子をハ
ロゲン化炭化水素の共存下で共粉砕すると超微細
粒子もほとんど増加せず又、活性も向上し、しか
もα−オレフインの重合に用いる場合にも得られ
るポリオレフインの立体規則性が向上する。粗大
粒子に共存させて共粉砕するに際して添加するハ
ロゲン化炭化水素の量は重量比で粗大粒子1に対
して0.01〜0.5、好ましくは0.05〜0.2程度である。
共粉砕に要する時間は粉砕器の形状等によつて相
異し特定できないが初めの共粉砕に要した時間の
1/3〜1/10の時間で充分である。用いられるハロ
ゲン化炭化水素としては、塩化メチレン、二塩化
エチレン、トリクロロエタン、塩化プロパン、ジ
クロロプロパン、トリクロロプロパン、α,α,
α−トリクロロトルエン、など脂肪族、芳香族ハ
ロゲン化炭化水素が用いられるが好ましくは室温
で液状のものである。 本発明の方法を適用することにより、粗大粒子
のない担体付遷移金属触媒を収率より与えること
ができ工業的に価値が高い。 以下に実施例を挙げ本発明をさらに具体的に説
明する。 実験例 1 イ) 触媒の製造 水分0.4Wt%含有する塩化マグネシウム30g、
オルソ酢酸エチル4.5ml、1,2−ジクロロエタ
ン3mlを直径12mmのステンレス製ボール80個入れ
たポツトに入れ40時間粉砕した。この操作を繰り
返し共粉砕物を1Kg得た。共粉砕物500gを0.074
mmの目開の金網に乗せ共粉砕物をかきまわしなが
ら金網上と下に分離した。金網上として65g得
た。上で用いた粉砕機を用いて金網上20gと1,
2−ジクロロエタン3ml、及び金網上20gだけで
それぞれ5時間共粉砕した。 上記で得られた共粉砕物、金網下a、金網上+
1,2−ジクロロエタン共粉砕b、金網上粉砕
c、金網上dの4種について、それぞれ10gを
200mlの丸底フラスコに入れ、四塩化チタンを50
ml加え80℃で1時間撹拌下で処理し次いで100ml
のn−ヘプタンで固体部分を5回洗浄し、さらに
n−ヘプタンを抜き出した後四塩化チタン50mlを
加え80℃で1時間撹拌下で処理し、次いで固体部
分を100mlのn−ヘプタンで7回洗浄し、さらに
n−ヘプタン50mlを加え担体付遷移金属触媒とし
た。 ロ) 重合反応 十分に乾燥し窒素で置換した内容積5のオー
トクレーブを準備する。十分に乾燥し窒素置換し
た200mlのフラスコに乾燥し窒素置換したn−ヘ
プタン50ml入れジエチルアルミニウムクロライド
0.128ml、p−トルイル酸メチル0.06ml、トリエ
チルアルミニウム0.008mlイ)で得た触媒30mgを
加え混合した触媒スラリーを上記オートクレーブ
に入れ、次いでプロピレン1.5Kg、水素0.6Nl入れ
オートクレーブを加熱することにより内温75℃で
2時間重合した。次いで未反応のプロピレンを排
出し得られたポリプロピレンパウダーを取り出し
60℃で10時間減圧下に乾燥し秤量した。又、パウ
ダーの極限粘度数(以下ηと略記135℃テトラリ
ン溶液で測定)沸騰n−ヘプタン抽出残率(以下
と略記、ソツクスレー抽出器で沸騰n−ヘプタ
ンで6時間抽出し抽出残ポリマー重量/抽出前ポリマー
重量×100%と して算出)、かさ比重及び粒度分布(米国タイラ
ーメツシユ)を測定した、結果は表に示す。 実験例 2 共粉砕を塩化マグネシウム30g、安息香酸エチ
ル3mlで行つた他は実験1と同様にした、但し、
金網上は約10%であつた。 実験例 3−b,4−b 実験例1−bで1,2−ジクロロエタン3mlに
変えて1,3−ジクロロプロパンを用いた他は実
験例1−bと同様にした(3−b)、実験例2−
bで1,2−ジクロロエタン3mlにかえて1,
1,1−トリクロロエタンを用いた他は実験例2
−bと同様にした(4−b)結果は表に示す。
It is expressed as [Formula]. Many known methods can be used for classification, such as classification using a sieve with an appropriate opening;
Another example is classification using a classification cyclone using an air flow transport process. The co-pulverized product separated by classification and free of coarse particles supports titanium tetrachloride. On the other hand, the classified coarse particles are further pulverized using the aforementioned ball mill or vibration mill, etc. to make the coarse particles fine. At this time, if only the coarse co-pulverized particles are pulverized and polymerized using a catalyst obtained by supporting titanium tetrachloride, the number of ultrafine particles will increase, which is undesirable. The stereoregularity of the resulting polyolefin decreases. On the other hand, when coarse particles are co-pulverized in the coexistence of a halogenated hydrocarbon, the number of ultrafine particles hardly increases, the activity is improved, and the stereoregularity of the polyolefin obtained when used in the polymerization of α-olefins is also improved. Improves sex. The amount of the halogenated hydrocarbon added when co-pulverizing the coarse particles is about 0.01 to 0.5, preferably about 0.05 to 0.2, based on 1 part of the coarse particles.
The time required for co-pulverization varies depending on the shape of the crusher and cannot be specified, but 1/3 to 1/10 of the time required for the initial co-pulverization is sufficient. The halogenated hydrocarbons used include methylene chloride, ethylene dichloride, trichloroethane, propane chloride, dichloropropane, trichloropropane, α, α,
Aliphatic or aromatic halogenated hydrocarbons such as α-trichlorotoluene are used, but preferably those that are liquid at room temperature are used. By applying the method of the present invention, it is possible to provide a supported transition metal catalyst free of coarse particles in a higher yield, which is of high industrial value. EXAMPLES The present invention will be explained in more detail with reference to Examples below. Experimental example 1 a) Production of catalyst 30g of magnesium chloride containing 0.4Wt% water,
4.5 ml of ethyl orthoacetate and 3 ml of 1,2-dichloroethane were placed in a pot containing 80 stainless steel balls with a diameter of 12 mm and ground for 40 hours. This operation was repeated to obtain 1 kg of co-pulverized material. 0.074 for 500g of co-pulverized material
The co-pulverized material was placed on a wire mesh with a mesh opening of mm and separated into the upper and lower parts of the wire mesh while stirring. 65g was obtained on wire mesh. Using the crusher used above, place 20g on a wire mesh and 1.
Co-milling was carried out with 3 ml of 2-dichloroethane and only 20 g on a wire mesh for 5 hours each. Co-pulverized product obtained above, wire mesh bottom a, wire mesh top +
1,2-dichloroethane co-grinding b, grinding on wire mesh c, and wire mesh d, 10 g each.
Add 50% titanium tetrachloride to a 200ml round bottom flask.
Add 100 ml and treat at 80℃ for 1 hour with stirring.
The solid portion was washed 5 times with 100 ml of n-heptane, and after extracting the n-heptane, 50 ml of titanium tetrachloride was added and treated at 80°C for 1 hour with stirring, and then the solid portion was washed 7 times with 100 ml of n-heptane. After washing, 50 ml of n-heptane was added to prepare a supported transition metal catalyst. b) Polymerization reaction Prepare an autoclave with an internal volume of 5 that has been thoroughly dried and purged with nitrogen. Pour 50 ml of n-heptane in a 200 ml flask that has been thoroughly dried and purged with nitrogen, and add diethylaluminum chloride.
0.128 ml, methyl p-toluate 0.06 ml, triethylaluminum 0.008 ml, and the mixed catalyst slurry was added to the above autoclave. Next, 1.5 kg of propylene and 0.6 Nl of hydrogen were added, and the autoclave was heated. Polymerization was carried out at a temperature of 75°C for 2 hours. Next, unreacted propylene is discharged and the resulting polypropylene powder is taken out.
It was dried under reduced pressure at 60°C for 10 hours and weighed. In addition, the intrinsic viscosity of the powder (hereinafter abbreviated as η, measured with a tetralin solution at 135°C), the boiling n-heptane extraction residue rate (hereinafter abbreviated as η, extracted with boiling n-heptane for 6 hours using a Soxhlet extractor, extracted residual polymer weight/extraction) (Calculated as previous polymer weight x 100%), bulk specific gravity, and particle size distribution (Tyler Meshes, USA) were measured, and the results are shown in the table. Experimental Example 2 The same procedure as Experiment 1 was carried out except that co-pulverization was carried out using 30 g of magnesium chloride and 3 ml of ethyl benzoate.
It was about 10% on the wire mesh. Experimental Examples 3-b, 4-b The same procedure as Experimental Example 1-b was carried out except that 1,3-dichloropropane was used instead of 3 ml of 1,2-dichloroethane in Experimental Example 1-b (3-b). Experimental example 2-
In b, replace 3 ml of 1,2-dichloroethane with 1,
Experimental example 2 except that 1,1-trichloroethane was used.
-b The results are shown in the table (4-b).

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の理解を助けるためのフロー
図である。
FIG. 1 is a flow diagram to aid understanding of the present invention.

Claims (1)

【特許請求の範囲】 1 ハロゲン化マグネシウムとC−O結合を有す
る有機化合物を共粉砕して得た担体にハロゲン化
チタンを担持して担体付遷移金属触媒を製造する
方法において、担体として共粉砕物を担体付遷移
金属触媒当りの収率をWg/gとすると分級され
るべき共粉砕物の粒径Rは、 【式】で表せるRより大きい 粒子と分級し微粒はそのまま四塩化チタンを担持
し、粗粒はハロゲン化炭化水素を添加して共粉砕
した後四塩化チタンを担持することを特徴とする
担体付遷移金属触媒の製造方法。
[Claims] 1. In a method for producing a supported transition metal catalyst by supporting titanium halide on a carrier obtained by co-pulverizing magnesium halide and an organic compound having a C-O bond, co-pulverizing as a carrier If the yield per supported transition metal catalyst is Wg/g, the particle size R of the co-pulverized product to be classified is expressed by [Formula].It is classified into particles larger than R, and the fine particles directly support titanium tetrachloride. A method for producing a supported transition metal catalyst, characterized in that the coarse particles are co-pulverized by adding a halogenated hydrocarbon and then supported on titanium tetrachloride.
JP18587283A 1983-10-06 1983-10-06 Production of supported transition metal catalyst Granted JPS6079016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18587283A JPS6079016A (en) 1983-10-06 1983-10-06 Production of supported transition metal catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18587283A JPS6079016A (en) 1983-10-06 1983-10-06 Production of supported transition metal catalyst

Publications (2)

Publication Number Publication Date
JPS6079016A JPS6079016A (en) 1985-05-04
JPH0471086B2 true JPH0471086B2 (en) 1992-11-12

Family

ID=16178351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18587283A Granted JPS6079016A (en) 1983-10-06 1983-10-06 Production of supported transition metal catalyst

Country Status (1)

Country Link
JP (1) JPS6079016A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586804A (en) * 1978-12-26 1980-07-01 Mitsui Petrochem Ind Ltd Preparation of ethylene copolymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586804A (en) * 1978-12-26 1980-07-01 Mitsui Petrochem Ind Ltd Preparation of ethylene copolymer

Also Published As

Publication number Publication date
JPS6079016A (en) 1985-05-04

Similar Documents

Publication Publication Date Title
SU1457813A3 (en) Method of producing polypropylene
CN101848946B (en) Gas-phase polymerization process
CN102030841A (en) Gas-phase polymerization of propylene
JP2007231257A (en) Method for producing polypropylene
JPH0471086B2 (en)
CN101312934B (en) Magnesium alkoxide granulate, method for the production thereof, and use thereof
JPH058205B2 (en)
JPH0436166B2 (en)
JPH0436165B2 (en)
JPH0480927B2 (en)
JPH0425288B2 (en)
JPS59174601A (en) Preparation of transition metal catalyst supported on carrier
JP2772978B2 (en) Solid catalyst component for ultra high molecular weight polyethylene production
JPS5840568B2 (en) Method for polymerizing ethylene or α-olefins
JPS60252608A (en) Recovery of diluent
JPS59129209A (en) Production of random propylene/ethylene copolymer
JPH0710885B2 (en) Catalyst for olefin polymerization
JPS6225110A (en) Catalyst component for polymerizing olefin and catalyst
JPS581707A (en) Production of catalyst component for alpha-olefin polymerization
Ledwinka et al. Industrial polymerization processes
JPS6147704A (en) Preparation of solid catalyst component
JPH07173213A (en) Catalyst for producing ethylene-propylene copolymer rubber
JPS61106609A (en) Catalyst component for olefin polymerization
JPH0254361B2 (en)
JPS6160085B2 (en)