JPH04355052A - Negative electrode for nonaqueous electrolyte secondary battery - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery

Info

Publication number
JPH04355052A
JPH04355052A JP3127321A JP12732191A JPH04355052A JP H04355052 A JPH04355052 A JP H04355052A JP 3127321 A JP3127321 A JP 3127321A JP 12732191 A JP12732191 A JP 12732191A JP H04355052 A JPH04355052 A JP H04355052A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte secondary
vinyl chloride
secondary battery
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3127321A
Other languages
Japanese (ja)
Other versions
JP2701586B2 (en
Inventor
Masaki Hasegawa
正樹 長谷川
Shuji Ito
修二 伊藤
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Sukeyuki Murai
村井 祐之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3127321A priority Critical patent/JP2701586B2/en
Priority to US07/826,993 priority patent/US5262255A/en
Publication of JPH04355052A publication Critical patent/JPH04355052A/en
Application granted granted Critical
Publication of JP2701586B2 publication Critical patent/JP2701586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To provide a negative electrode for a nonaqueous electrolyte secondary battery excellent in charge and discharge cycle characteristics. CONSTITUTION:Vinyl chloride-vinyl acetate copolymer resin is used for a negative electrode binding agent for a nonaqueous electrolyte secondary battery constituted of positive and negative electrodes 1, 4 where lithium can be stored and released. Fiber-state graphite is used for a conducting agent. By using the vinyl chloride-vinyl acetate copolymer resin, rich in a binding property, for the negative electrode binding agent and the fiber-state graphite for the conducting agent, improper collection, generated by expanding and contracting electrodes at charge and discharge, is suppressed so that the negative electrode for the nonaqueous electrolyte secondary battery excellent in charge and discharge characteristics can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非水電解質二次電池用
負極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a negative electrode for non-aqueous electrolyte secondary batteries.

【0002】0002

【従来の技術】リチウム,リチウム合金またはリチウム
化合物を負極とする非水電解質二次電池は、高電圧で高
エネルギー密度が期待され、多くの研究が行われている
BACKGROUND OF THE INVENTION Nonaqueous electrolyte secondary batteries using lithium, lithium alloys, or lithium compounds as negative electrodes are expected to have high voltage and high energy density, and much research has been conducted on them.

【0003】これまで非水電解質二次電池の正極活物質
には、LiCoO2,V2O5,Cr2O5,MnO2
,TiS2,MoS2などの遷移金属の酸化物およびカ
ルコゲン化合物が知られており、これらは層状もしくは
トンネル構造を有し、リチウムイオンが出入りできる結
晶構造を持つ。一方、負極活物質としては金属リチウム
が多く検討されてきた。しかしながら充電時にリチウム
表面に樹枝状にリチウムを析出し、充放電率の低下もし
くは正極と接して内部短絡を生じるという問題点を有し
ていた。 このような問題点を解決する手段として、リチウムの樹
枝状成長を抑制し、リチウムを吸蔵,放出することので
きるアルミニウムやアルミニウム合金などのリチウムを
吸蔵,放出することのできる金属または合金の板もしく
は粉末を負極活物質に用いる検討がなされている。
[0003] Until now, positive electrode active materials for non-aqueous electrolyte secondary batteries include LiCoO2, V2O5, Cr2O5, MnO2
, TiS2, MoS2, and other transition metal oxides and chalcogen compounds are known, and these have a layered or tunnel structure, and have a crystal structure in which lithium ions can enter and exit. On the other hand, metallic lithium has been widely studied as a negative electrode active material. However, during charging, lithium precipitates on the lithium surface in a dendritic form, resulting in a reduction in the charge/discharge rate or in contact with the positive electrode, resulting in an internal short circuit. As a means to solve these problems, metal or alloy plates or alloys that can store and release lithium, such as aluminum and aluminum alloys that can store and release lithium, suppress the dendritic growth of lithium. Studies are underway to use powder as a negative electrode active material.

【0004】0004

【発明が解決しようとする課題】しかしながらアルミニ
ウムもしくはアルミニウム合金などのリチウムを吸蔵,
放出することのできる金属または合金の板を負極活物質
として用いた場合、深い充放電を繰り返すと活物質の微
細化が起こって電極が崩れてしまい充分な充放電サイク
ル特性が得られない。また、前記金属または合金の粉末
を負極活物質として用いる場合は結着剤を添加し負極を
形成する方法も検討されている。正極で頻繁に使用され
ているフッ素樹脂も検討されたが、充電時に電解液の分
解を促進してしまった。このため負極用結着剤としてポ
リエチレンなどのポリオレフィン系の結着剤が用いられ
ている。しかしながらこの場合においてもリチウムの吸
蔵,放出に伴う電極の膨張,収縮の結果、活物質保持の
不良や集電不良が生じ充分なサイクル特性が得られない
という欠点を有している。本発明はこのような問題を解
決するもので、充放電サイクル特性に優れた非水電解質
二次電池用負極を提供することを目的とする。
[Problem to be solved by the invention] However, it is difficult to occlude lithium such as aluminum or aluminum alloy.
When a plate of metal or alloy that can emit gas is used as a negative electrode active material, repeated deep charging and discharging causes the active material to become finer and the electrode collapses, making it impossible to obtain sufficient charge-discharge cycle characteristics. Further, when using the metal or alloy powder as a negative electrode active material, a method of adding a binder to form a negative electrode is also being considered. Fluororesin, which is frequently used in positive electrodes, was also considered, but it accelerated the decomposition of the electrolyte during charging. For this reason, polyolefin binders such as polyethylene are used as binders for negative electrodes. However, even in this case, as a result of the expansion and contraction of the electrode due to intercalation and desorption of lithium, there is a drawback that insufficient active material retention and current collection occur, making it impossible to obtain sufficient cycle characteristics. The present invention solves these problems and aims to provide a negative electrode for a non-aqueous electrolyte secondary battery with excellent charge-discharge cycle characteristics.

【0005】[0005]

【課題を解決するための手段】この課題を解決するため
本発明の非水電解質二次電池用負極は、リチウムを吸蔵
,放出することのできる金属粉末もしくは合金粉末を活
物質とし、結着剤として塩化ビニル−酢酸ビニル共重合
樹脂を用いるもので、前記負極中に導電剤として繊維状
黒鉛を用いる。
[Means for Solving the Problem] In order to solve this problem, the negative electrode for a nonaqueous electrolyte secondary battery of the present invention uses a metal powder or alloy powder that can absorb and release lithium as an active material, and a binder. A vinyl chloride-vinyl acetate copolymer resin is used as the negative electrode, and fibrous graphite is used as a conductive agent in the negative electrode.

【0006】結着剤である塩化ビニル−酢酸ビニル共重
合樹脂としては、塩化ビニル含有量が95%から60%
であることが好ましい。
The vinyl chloride-vinyl acetate copolymer resin used as a binder has a vinyl chloride content of 95% to 60%.
It is preferable that

【0007】[0007]

【作用】この構成により本発明の非水電解質二次電池用
負極は、アルミニウムもしくはアルミニウム合金などの
リチウムを吸蔵,放出することのできる金属または合金
の粉末を活物質の結着剤として、結着性に富む塩化ビニ
ル−酢酸ビニル共重合樹脂を用いることで、充放電を繰
り返しても電極中の活物質が保持され、さらに、導電剤
として繊維状黒鉛を添加することにより、電極の膨張時
においても充分な集電が得られることとなる。その結果
、比較的少ない充放電サイクル数で充放電容量が低下す
ることがなくなり、安定した電池特性を有する非水電解
質二次電池用負極を構成することが可能となる。
[Operation] With this configuration, the negative electrode for non-aqueous electrolyte secondary batteries of the present invention uses powder of a metal or alloy, such as aluminum or aluminum alloy, that can occlude and release lithium as a binder for the active material. By using a vinyl chloride-vinyl acetate copolymer resin with high properties, the active material in the electrode is retained even after repeated charging and discharging.Furthermore, by adding fibrous graphite as a conductive agent, the active material in the electrode is retained even when the electrode expands. Also, sufficient current collection can be obtained. As a result, the charge/discharge capacity does not decrease with a relatively small number of charge/discharge cycles, making it possible to construct a negative electrode for a non-aqueous electrolyte secondary battery having stable battery characteristics.

【0008】[0008]

【実施例】以下、本発明の実施例の非水電解質二次電池
用負極を図面を基にして詳細に説明するが、これら実施
例に限定されるものではない。
EXAMPLES Hereinafter, negative electrodes for non-aqueous electrolyte secondary batteries according to examples of the present invention will be explained in detail with reference to the drawings, but the present invention is not limited to these examples.

【0009】(実施例1)本実施例においては、アルミ
ニウム粉末を負極活物質に、結着剤に塩化ビニル樹脂を
用いたものならびに塩化ビニルの含有量が85モル%,
65モル%の塩化ビニルと酢酸ビニルの共重合樹脂を用
い、さらに導電剤として繊維径が0.1μmから0.3
μm、繊維径と繊維長さの比率が1:75(アスペクト
比75)の繊維状黒鉛を用いて構成した負極について説
明する。
(Example 1) In this example, aluminum powder was used as the negative electrode active material, vinyl chloride resin was used as the binder, and the content of vinyl chloride was 85 mol%.
A copolymer resin of 65 mol% vinyl chloride and vinyl acetate is used, and a fiber diameter of 0.1 μm to 0.3 μm is used as a conductive agent.
A negative electrode constructed using fibrous graphite with a ratio of fiber diameter to fiber length of 1:75 (aspect ratio 75) will be described.

【0010】負極は、300メッシュパスのアルミニウ
ム粉末と導電剤としての繊維状黒鉛と結着剤を重量比で
45:45:10ならびに47.5:47.5:5の割
合で混合し負極合剤を得た。この負極合剤0.1gを直
径17.5mmに2トン/cm2でプレス成型し負極と
した。正極活物質にはLiCoO2を用い、正極はLi
CoO2と導電剤であるアセチレンブラックと結着剤で
あるポリ4フッ化エチレン樹脂を重量比で7:2:1の
割合で混合し、得られた正極合剤0.2gを直径17.
5mmに2トン/cm2でプレス成型することで作製し
た。図1において、成型した正極1をケース2に置く。 正極1の上にセパレータ3としての多孔性ポリプロピレ
ンフィルムを置いた。負極4を、ポリプロピレン製ガス
ケット5を付けた封口板6に圧着した。非水電解質とし
て、1モル/lの過塩素酸リチウムを溶解したプロピレ
ンカーボネート溶媒を用い、これをセパレータ3上およ
び負極4上に加えた。その後ケース2の上縁部をかしめ
て電池を封口した。なお従来例として、導電剤として繊
維状黒鉛ではなくアセチレンブラックを添加し形成した
負極を用いた電池も上記と同様の方法で作製した。
The negative electrode is made by mixing 300 mesh pass aluminum powder, fibrous graphite as a conductive agent, and a binder in a weight ratio of 45:45:10 and 47.5:47.5:5. obtained the drug. 0.1 g of this negative electrode mixture was press-molded to a diameter of 17.5 mm at 2 tons/cm 2 to obtain a negative electrode. LiCoO2 is used as the positive electrode active material, and Li is used as the positive electrode.
CoO2, acetylene black as a conductive agent, and polytetrafluoroethylene resin as a binder are mixed in a weight ratio of 7:2:1, and 0.2 g of the resulting positive electrode mixture is heated to a diameter of 17 mm.
It was produced by press molding to 5 mm at 2 tons/cm2. In FIG. 1, a molded positive electrode 1 is placed in a case 2. A porous polypropylene film as a separator 3 was placed on the positive electrode 1 . The negative electrode 4 was crimped onto a sealing plate 6 equipped with a polypropylene gasket 5. A propylene carbonate solvent in which 1 mol/l of lithium perchlorate was dissolved was used as a non-aqueous electrolyte, and this was added onto the separator 3 and the negative electrode 4. Thereafter, the upper edge of the case 2 was caulked to seal the battery. As a conventional example, a battery using a negative electrode formed by adding acetylene black instead of fibrous graphite as a conductive agent was also produced in the same manner as above.

【0011】以上、負極結着剤、および導電剤の異なる
12種類の電池の充放電サイクル特性の比較を行った。 なお本実施例では、負極の充放電サイクル試験を行うた
め、正極によるサイクル劣化を除外できるだけの充分な
正極容量をもつ条件で電池を構成している。充放電サイ
クル試験は、充放電電流0.5mA,電圧範囲4.0V
から3.0Vの間で定電流充放電することで行った。
The charge-discharge cycle characteristics of 12 types of batteries using different negative electrode binders and conductive agents were compared. In this example, in order to perform a charge/discharge cycle test on the negative electrode, the battery was constructed under conditions that the battery had a sufficient positive electrode capacity to exclude cycle deterioration due to the positive electrode. Charge/discharge cycle test: Charge/discharge current 0.5mA, voltage range 4.0V
This was carried out by constant current charging and discharging between 3.0V and 3.0V.

【0012】(表1)に初期放電容量ならびに初期放電
容量に対する50サイクル目の放電容量の容量維持率を
示す。サンプル数nはそれぞれ50個とした。
Table 1 shows the initial discharge capacity and the capacity retention ratio of the discharge capacity at the 50th cycle with respect to the initial discharge capacity. The number of samples n was 50 for each.

【0013】[0013]

【表1】[Table 1]

【0014】(表1)に示すように、導電剤としてアセ
チレンブラックを添加した負極を用いた従来例の電池は
、50サイクル後の放電容量維持率が75%から80%
程度まで低下する。一方、導電剤として繊維状黒鉛を含
む負極を用いた本実施例の電池は、塩化ビニル−酢酸ビ
ニル共重合樹脂を結着剤に用いた場合には、いずれも従
来例の電池と比較し放電容量が大きく向上し、また50
サイクル後の放電容量維持率が85%以上とサイクル特
性も向上している。結着剤量が5重量%ならびに10重
量%の塩化ビニル樹脂単独を負極結着剤に用いた電池の
初期放電容量は、塩化ビニル−酢酸ビニル共重樹脂を用
いた電池に比べ若干大きいものの、50サイクル目の放
電容量維持率は5重量%のものが66%、10重量%の
ものが69%まで低下する。二次電池においては、放電
容量ならびに容量維持率が大きい電極が望まれることか
ら、塩化ビニル−酢酸ビニル共重合樹脂を結着剤とし、
導電剤として繊維状黒鉛を用いた負極が優れた特性を有
している。これら実施例の負極を用いた電池の放電容量
の向上は、導電剤としてアセチレンブラックを添加した
場合には集電がまだ不十分であったものが、導電剤とし
ての繊維状黒鉛を添加することによって充分な集電が得
られるようになったためと考えられる。
As shown in Table 1, conventional batteries using negative electrodes containing acetylene black as a conductive agent have a discharge capacity retention rate of 75% to 80% after 50 cycles.
decrease to a certain extent. On the other hand, the battery of this example using a negative electrode containing fibrous graphite as a conductive agent has a lower discharge than the conventional battery when vinyl chloride-vinyl acetate copolymer resin is used as a binder. Capacity has greatly improved, and 50
The cycle characteristics are also improved, with a discharge capacity retention rate of 85% or more after cycling. Although the initial discharge capacity of batteries using vinyl chloride resin alone as the negative electrode binder with a binder amount of 5% or 10% by weight is slightly larger than that of batteries using vinyl chloride-vinyl acetate copolymer resin, The discharge capacity retention rate at the 50th cycle decreases to 66% for 5% by weight and 69% for 10% by weight. In secondary batteries, since electrodes with high discharge capacity and capacity retention are desired, vinyl chloride-vinyl acetate copolymer resin is used as a binder.
A negative electrode using fibrous graphite as a conductive agent has excellent characteristics. The discharge capacity of batteries using the negative electrodes of these examples was improved by adding fibrous graphite as a conductive agent, although current collection was still insufficient when acetylene black was added as a conductive agent. This is thought to be due to the fact that sufficient current collection could be obtained.

【0015】さらに、アスペクト比の異なる繊維状黒鉛
を導電剤として添加することを試みた。導電剤としてア
スペクト比20の繊維状黒鉛を、結着剤として塩化ビニ
ル含有量が85%の塩化ビニル−酢酸ビニル共重合樹脂
を用い、前記と同様の方法で活物質,導電剤,結着剤の
重量比が45:45:10である負極を用いた電池を作
製したところ、50サイクル目での容量維持率は84%
と若干の効果がみられた。また、アスペクト比150の
繊維状黒鉛を用いた場合には、50サイクル目での容量
維持率は89%と(表1)のアスペクト比75の場合と
ほぼ同様の効果が得られた。以上のことより、アスペク
ト比20以上の繊維状黒鉛を用いることが好ましいと考
えられる。
Furthermore, an attempt was made to add fibrous graphite having different aspect ratios as a conductive agent. Using fibrous graphite with an aspect ratio of 20 as a conductive agent and a vinyl chloride-vinyl acetate copolymer resin with a vinyl chloride content of 85% as a binder, the active material, conductive agent, and binder were prepared in the same manner as above. When a battery was fabricated using a negative electrode with a weight ratio of 45:45:10, the capacity retention rate at the 50th cycle was 84%.
A slight effect was seen. Further, when fibrous graphite with an aspect ratio of 150 was used, the capacity retention rate at the 50th cycle was 89%, which was almost the same effect as in the case of an aspect ratio of 75 (Table 1). From the above, it is considered preferable to use fibrous graphite with an aspect ratio of 20 or more.

【0016】以上のように、アルミニウム粉末を負極活
物質として、塩化ビニル−酢酸ビニル共重合樹脂を負極
結着剤として用いる電池において、導電剤として繊維状
黒鉛を用いることにより、充放電サイクル特性に優れた
非水電解質二次電池を作製できることを確認した。
As described above, in a battery that uses aluminum powder as the negative electrode active material and vinyl chloride-vinyl acetate copolymer resin as the negative electrode binder, the use of fibrous graphite as the conductive agent improves the charge-discharge cycle characteristics. It was confirmed that an excellent non-aqueous electrolyte secondary battery could be produced.

【0017】なお、実施例では、金属粉末としてアルミ
ニウムを用いた場合について説明したが、同様にリチウ
ムを吸蔵,放出しリチウムと合金形成することのできる
スズ,鉛,インジウム,ビスマス粉末を用いた場合にお
いても、ほぼ同様の効果が得られることを確認した。
[0017] In the example, the case where aluminum was used as the metal powder was explained, but it is also possible to use tin, lead, indium, or bismuth powder, which can absorb and release lithium and form an alloy with lithium. It was confirmed that almost the same effect could be obtained.

【0018】(実施例2)本実施例においては、96%
Al−6%Niで表わされる組成のアルミニウム合金粉
末を負極活物質に、結着剤に塩化ビニル樹脂を用いたも
のならびに塩化ビニルの含有量が85モル%,65モル
%の塩化ビニルと酢酸ビニルの共重合樹脂を用い、さら
に導電剤として繊維径が0.1μmから0.3μm、繊
維径と繊維長さの比率が1:75(アスペクト比75)
の繊維状黒鉛を用いて構成した負極について説明する。
(Example 2) In this example, 96%
One in which aluminum alloy powder with a composition expressed by Al-6%Ni is used as a negative electrode active material and vinyl chloride resin is used as a binder, and vinyl chloride and vinyl acetate with a vinyl chloride content of 85 mol% and 65 mol%. Using a copolymer resin of
A negative electrode constructed using fibrous graphite will be explained.

【0019】負極は、300メッシュパスの96%Al
−6%Niアルミニウム合金粉末と導電剤としての繊維
状黒鉛と結着剤を重量比で45:45:10ならびに4
7.5:47.5:5:5の割合で混合し負極合剤を得
た。この負極合剤0.1gを直径17.5mmに2トン
/cm2でプレス成型し負極とした。正極活物質にはL
iCoO2を用い、実施例1と同様の条件で正極を作製
した。電池の製造も、実施例1と同様の条件で行った。 なお従来例として、導電剤として繊維状黒鉛ではなくア
セチレンブラックを添加し形成した負極を用いた電池も
上記と同様の方法で作製した。
The negative electrode is made of 96% Al with a 300 mesh pass.
-6% Ni aluminum alloy powder, fibrous graphite as a conductive agent, and binder in a weight ratio of 45:45:10 and 4
A negative electrode mixture was obtained by mixing at a ratio of 7.5:47.5:5:5. 0.1 g of this negative electrode mixture was press-molded to a diameter of 17.5 mm at 2 tons/cm 2 to obtain a negative electrode. L in the positive electrode active material
A positive electrode was produced using iCoO2 under the same conditions as in Example 1. The battery was also manufactured under the same conditions as in Example 1. As a conventional example, a battery using a negative electrode formed by adding acetylene black instead of fibrous graphite as a conductive agent was also produced in the same manner as above.

【0020】以上、負極結着剤の異なる12種類の電池
の充放電サイクル特性の比較を行った。なお本実施例で
も実施例1と同様、負極の充放電サイクル試験を行うた
め、正極による充放電サイクル劣化を除外できるだけの
充分な正極容量をもつ条件で電池を構成している。充放
電サイクル試験は、充放電電流0.5mA,電圧範囲4
.0Vから3.0Vの間で定電流充放電することで行っ
た。
As described above, the charge/discharge cycle characteristics of 12 types of batteries using different negative electrode binders were compared. In this example, as in Example 1, in order to conduct a charge/discharge cycle test on the negative electrode, the battery was constructed under conditions that the positive electrode capacity was sufficient to exclude charge/discharge cycle deterioration due to the positive electrode. The charge/discharge cycle test was conducted using a charge/discharge current of 0.5 mA and a voltage range of 4.
.. This was carried out by constant current charging and discharging between 0V and 3.0V.

【0021】(表2)に初期放電容量ならびに初期放電
容量に対する50サイクル目の放電容量の容量維持率を
示す。
Table 2 shows the initial discharge capacity and the capacity retention ratio of the discharge capacity at the 50th cycle with respect to the initial discharge capacity.

【0022】[0022]

【表2】[Table 2]

【0023】(表2)に示すように、導電剤としてアセ
チレンブラックを添加した負極を用いた従来例の電池は
、50サイクル後の放電容量維持率が60%程度まで低
下する。一方、導電剤として繊維状黒鉛を含む負極を用
いた本実施例の電池は、塩化ビニル−酢酸ビニル共重合
樹脂を用いた場合は、いずれも従来例の電池と比較し放
電容量が大きく向上し、また50サイクル後の放電容量
維持率が85%以上と充放電サイクル特性も向上してい
る。結着剤量が5重量%ならびに10重量%のポリ塩化
ビニル樹脂単独を負極結着剤に用いた電池の初期放電容
量は塩化ビニル−酢酸ビニル共重合樹脂を用いた電池に
比べて若干大きいものの、50サイクル目の放電容量維
持率は5重量%のものが67%、10重量%のものが7
1%まで低下する。二次電池においては、放電容量なら
びに容量維持率が大きい電極が望まれることから、塩化
ビニルと酢酸ビニルの共重合樹脂を結着剤とし、導電剤
として繊維状黒鉛を用いた負極が優れた特性を有してい
る。実施例の負極を用いた電池の大幅な放電容量の向上
は、導電剤としてアセチレンブラックを添加した場合に
は集電がまだ不十分であったものが、導電剤としての繊
維状黒鉛を添加することによって充分な集電が得られる
ようになったためと考えられる。
As shown in Table 2, in the conventional battery using a negative electrode to which acetylene black was added as a conductive agent, the discharge capacity retention rate after 50 cycles decreased to about 60%. On the other hand, in the batteries of this example using a negative electrode containing fibrous graphite as a conductive agent, when vinyl chloride-vinyl acetate copolymer resin was used, the discharge capacity was greatly improved compared to conventional batteries. Moreover, the discharge capacity retention rate after 50 cycles is 85% or more, and the charge/discharge cycle characteristics are also improved. Although the initial discharge capacity of batteries using polyvinyl chloride resin alone as the negative electrode binder with a binder amount of 5% or 10% by weight is slightly larger than that of batteries using vinyl chloride-vinyl acetate copolymer resin, , the discharge capacity retention rate at the 50th cycle was 67% for the 5% by weight product and 7% for the 10% by weight product.
It drops to 1%. In secondary batteries, electrodes with high discharge capacity and capacity retention are desired, so a negative electrode that uses a copolymer resin of vinyl chloride and vinyl acetate as a binder and fibrous graphite as a conductive agent has excellent characteristics. have. The significant improvement in discharge capacity of the battery using the negative electrode of the example was due to the fact that current collection was still insufficient when acetylene black was added as a conductive agent, but when fibrous graphite was added as a conductive agent. This is thought to be due to the fact that sufficient current collection could be obtained.

【0024】さらに、アスペクト比の異なる繊維状黒鉛
を導電剤として添加することを試みた。導電剤としてア
スペクト比20の繊維状黒鉛を、結着剤として塩化ビニ
ル含有量が85%の塩化ビニル−酢酸ビニル共重合樹脂
を用い、前記と同様の方法で活物質,導電剤,結着剤が
重量比で45:45:10である負極を用いて電池を作
製したところ、50サイクル目での容量維持率は85%
で若干の効果がみられた。また、アスペクト比150の
繊維状黒鉛を用いた場合には、50サイクル目での容量
維持率は90%と(表1)のアスペクト比75の場合と
、ほぼ同様の効果が得られた。以上のことより、アスペ
クト比20以上の繊維状黒鉛を用いることが好ましいと
考えられる。
Furthermore, an attempt was made to add fibrous graphite having different aspect ratios as a conductive agent. Using fibrous graphite with an aspect ratio of 20 as a conductive agent and a vinyl chloride-vinyl acetate copolymer resin with a vinyl chloride content of 85% as a binder, the active material, conductive agent, and binder were prepared in the same manner as above. When a battery was fabricated using a negative electrode with a weight ratio of 45:45:10, the capacity retention rate at the 50th cycle was 85%.
A slight effect was seen. Further, when fibrous graphite with an aspect ratio of 150 was used, the capacity retention rate at the 50th cycle was 90%, which was almost the same effect as in the case with an aspect ratio of 75 (Table 1). From the above, it is considered preferable to use fibrous graphite with an aspect ratio of 20 or more.

【0025】以上のように、アルミニウム合金粉末を負
極活物質として、塩化ビニル−酢酸ビニル共重合樹脂を
負極結着剤として用いる電池において、導電剤として繊
維状黒鉛を用いることにより、充放電サイクル特性に優
れた非水電解質二次電池を作製できることを確認した。
As described above, in a battery that uses aluminum alloy powder as the negative electrode active material and vinyl chloride-vinyl acetate copolymer resin as the negative electrode binder, the use of fibrous graphite as the conductive agent improves the charge-discharge cycle characteristics. It was confirmed that it was possible to create a non-aqueous electrolyte secondary battery with excellent performance.

【0026】なお本実施例では、合金粉末として94%
Al−6%Niで表わされるアルミニウム合金を用いた
場合について説明したが、同様にリチウムを吸蔵,放出
することのできる他のアルミニウム合金や、ウッド合金
等のアルミニウム以外の金属を主成分とする合金粉末を
用いた場合においても、ほぼ同様の効果が得られること
を確認した。
In this example, 94% of alloy powder was used.
Although we have explained the case where an aluminum alloy represented by Al-6%Ni is used, other aluminum alloys that can similarly absorb and release lithium, and alloys whose main component is a metal other than aluminum, such as wood alloy, may also be used. It was confirmed that almost the same effect can be obtained even when powder is used.

【0027】以上の実施例では、正極活物質としてLi
CoO2を用いた場合について説明したが、V2O5,
Cr2O5,MnO2,TiS2,MoS2などの遷移
金属の酸化物およびカルコゲン化合物を用いた場合にお
いても、ほぼ同様の効果が得られる。ただし、この場合
には負極活物質は予めリチウムを吸収した充電状態とし
ておく必要がある。
In the above embodiments, Li was used as the positive electrode active material.
Although we have explained the case using CoO2, V2O5,
Almost the same effect can be obtained even when transition metal oxides such as Cr2O5, MnO2, TiS2, MoS2 and chalcogen compounds are used. However, in this case, it is necessary to bring the negative electrode active material into a charged state in which it has absorbed lithium in advance.

【0028】[0028]

【発明の効果】以上の実施例の説明で明らかなように本
発明の非水電解質二次電池用負極によれば、リチウムを
吸蔵,放出することのできる金属粉末もしくは合金粉末
を活物質とし、結着剤として塩化ビニル−酢酸ビニル共
重合樹脂を用いることにより、前記負極中に導電剤とし
て繊維状黒鉛を用いることで、優れた充放電サイクル特
性を有する非水電解質二次電池用負極を得ることができ
る。
Effects of the Invention As is clear from the above description of the embodiments, according to the negative electrode for a non-aqueous electrolyte secondary battery of the present invention, a metal powder or alloy powder capable of intercalating and deintercalating lithium is used as an active material, By using a vinyl chloride-vinyl acetate copolymer resin as a binder and by using fibrous graphite as a conductive agent in the negative electrode, a negative electrode for a non-aqueous electrolyte secondary battery having excellent charge-discharge cycle characteristics is obtained. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例の非水電解質二次電池用負極を
用いた電池の縦断面図
[Fig. 1] A vertical cross-sectional view of a battery using a negative electrode for a non-aqueous electrolyte secondary battery according to an example of the present invention.

【符号の説明】[Explanation of symbols]

1  正極 2  ケース 3  セパレータ 4  負極 5  ガスケット 6  封口板 1 Positive electrode 2 Case 3 Separator 4 Negative electrode 5 Gasket 6 Sealing plate

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】リチウムを吸蔵,放出することのできる金
属粉末もしくは合金粉末を活物質とし、結着剤として塩
化ビニル−酢酸ビニル共重合樹脂を用いる非水電解質二
次電池の負極において、前記負極中に導電剤として繊維
状黒鉛を用いた非水電解質二次電池用負極。
1. A negative electrode of a non-aqueous electrolyte secondary battery using a metal powder or alloy powder capable of intercalating and deintercalating lithium as an active material and a vinyl chloride-vinyl acetate copolymer resin as a binder, the negative electrode comprising: A negative electrode for non-aqueous electrolyte secondary batteries that uses fibrous graphite as a conductive agent.
【請求項2】結着剤である塩化ビニル−酢酸ビニル共重
合樹脂の塩化ビニルの含有量が95モル%から60モル
%である請求項1記載の非水電解質二次電池用負極。
2. The negative electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the vinyl chloride content of the vinyl chloride-vinyl acetate copolymer resin as the binder is from 95 mol% to 60 mol%.
JP3127321A 1991-01-30 1991-05-30 Negative electrode for non-aqueous electrolyte secondary battery Expired - Fee Related JP2701586B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3127321A JP2701586B2 (en) 1991-05-30 1991-05-30 Negative electrode for non-aqueous electrolyte secondary battery
US07/826,993 US5262255A (en) 1991-01-30 1992-01-28 Negative electrode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3127321A JP2701586B2 (en) 1991-05-30 1991-05-30 Negative electrode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH04355052A true JPH04355052A (en) 1992-12-09
JP2701586B2 JP2701586B2 (en) 1998-01-21

Family

ID=14957043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3127321A Expired - Fee Related JP2701586B2 (en) 1991-01-30 1991-05-30 Negative electrode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2701586B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
KR100615161B1 (en) * 1999-11-11 2006-08-25 삼성에스디아이 주식회사 Composition for surface-treating electrode current collector of lithium secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002507313A (en) * 1997-06-27 2002-03-05 エルジー・ケミカル・リミテッド Lithium ion secondary battery and method of manufacturing the same
KR100615161B1 (en) * 1999-11-11 2006-08-25 삼성에스디아이 주식회사 Composition for surface-treating electrode current collector of lithium secondary battery

Also Published As

Publication number Publication date
JP2701586B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
US6436573B1 (en) Non-aqueous electrolyte secondary cell, negative electrode therefor, and method of producing negative electrode
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3403449B2 (en) Non-aqueous electrolyte secondary battery
JP2002025611A (en) Nonaqueous electrolyte secondary battery
JP2548460B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JPH10255766A (en) Nonaqueous electrolyte secondary battery
US20040096741A1 (en) Non-aqueous electrolyte secondary battery, negative electrode, and method of manufacturing negative electrode
JPH04355052A (en) Negative electrode for nonaqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JP2529479B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH04289658A (en) Nonaqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent
JPH08241733A (en) Lithium secondary battery
JP2734793B2 (en) Negative electrode for non-aqueous electrolyte secondary battery
JPH0917446A (en) Non-aqueous electrolyte secondary battery
JPH09245798A (en) Lithium secondary battery
JPH0355770A (en) Lithium secondary battery
JP2001110406A (en) Nonaqueous electrolyte secondary battery
JPH08190933A (en) Secondary battery having nonaqueous solvent electrolyte
JP2001006660A (en) Nonaqueous secondary battery
JPH0574489A (en) Nonaqueous electrolyte secondary battery
JP3168615B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees