JPH08241733A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08241733A
JPH08241733A JP7043926A JP4392695A JPH08241733A JP H08241733 A JPH08241733 A JP H08241733A JP 7043926 A JP7043926 A JP 7043926A JP 4392695 A JP4392695 A JP 4392695A JP H08241733 A JPH08241733 A JP H08241733A
Authority
JP
Japan
Prior art keywords
electrolyte
battery
lithium
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7043926A
Other languages
Japanese (ja)
Other versions
JP3383454B2 (en
Inventor
Kenji Nakai
賢治 中井
Shinji Saito
慎治 斉藤
Takumi Hayakawa
他▲く▼美 早川
Akio Komaki
昭夫 小牧
Michio Sasaoka
三千雄 笹岡
Takefumi Nakanaga
偉文 中長
Akiyoshi Inubushi
昭嘉 犬伏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otsuka Chemical Co Ltd
Resonac Corp
Original Assignee
Otsuka Chemical Co Ltd
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co Ltd, Shin Kobe Electric Machinery Co Ltd filed Critical Otsuka Chemical Co Ltd
Priority to JP04392695A priority Critical patent/JP3383454B2/en
Publication of JPH08241733A publication Critical patent/JPH08241733A/en
Application granted granted Critical
Publication of JP3383454B2 publication Critical patent/JP3383454B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To sufficiently suppress the generation of dendrite and provide a long-lived and safe lithium secondary battery by containing a specified material represented by the formula in a specified quantity to an electrolyte. CONSTITUTION: In a lithium secondary battery having a negative electrode active material layer formed of lithium or a lithium alloy, the addition amount of an orthosulfobenzimide represented by the formula I is preferably set within a range of 0.005-1 mole to 1kg of an electrolyte. When the orthosulfobenzimide is smaller than 0.005 moles, the generation of dendrite can not be sufficiently suppressed. When the orthosulfobenzimide exceeds one mole, it disturbs the charge and discharge of the battery to increase the internal resistance of the battery.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウム二次電池に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、電池の小型化、軽量化、薄形化、
高性能化が望まれており、これらの要求に応じる高エネ
ルギー電池として負極活物質材料にリチウムを用い、電
解質として非水電解液、固体電解質または高分子マトリ
ックスに非水電解液を含有させたものを用いたリチウム
二次電池が提案されている。しかしながらリチウム二次
電池では、電池の充電時に負極活物質材料であるリチウ
ムが負極活物質の表面に均一に析出しないため、電池に
充放電が繰り返されると負極活物質表面から樹枝状のデ
ンドライトが成長する。この成長したデンドライトが脱
落すると負極活物質を充放電に十分に利用できなくなる
上、デンドライトが正極活物質まで成長すると極板間短
絡が発生して電池機能が喪失するという問題が生じる。
また、このように極板間に短絡が発生すると過大な電流
が電池内に流れて電池温度が異常に上昇し、有機電解液
が揮発する。その結果、電池の内圧が上昇して、最悪の
場合には、電池の破裂、爆発を起こす。特に電池が破裂
すると化学的に活性なリチウムが空気中の水分と反応し
て、Li+H2 O→LiOH+1/2H2 の反応式によ
り水素ガスと反応熱が発生するため、安全性に大きな問
題が生じる。
2. Description of the Related Art In recent years, batteries have become smaller, lighter and thinner.
Higher performance is desired, and lithium is used as the negative electrode active material for high energy batteries that meet these requirements, and non-aqueous electrolyte, solid electrolyte or polymer matrix contains non-aqueous electrolyte as the electrolyte. A lithium secondary battery using is proposed. However, in a lithium secondary battery, since lithium, which is the negative electrode active material, does not deposit uniformly on the surface of the negative electrode active material when the battery is charged, dendritic dendrites grow from the surface of the negative electrode active material when the battery is repeatedly charged and discharged. To do. If the grown dendrites fall off, the negative electrode active material cannot be fully utilized for charging / discharging, and if the dendrites grow to the positive electrode active material, a short circuit between the electrode plates occurs and the battery function is lost.
Further, when a short circuit occurs between the electrode plates in this way, an excessive current flows into the battery, the battery temperature rises abnormally, and the organic electrolyte solution volatilizes. As a result, the internal pressure of the battery rises, and in the worst case, the battery bursts or explodes. In particular, when the battery ruptures, chemically active lithium reacts with moisture in the air to generate hydrogen gas and reaction heat by the reaction formula of Li + H 2 O → LiOH + 1 / 2H 2 , which causes a great safety problem. .

【0003】そこで、負極活物質としてLi−Al等の
リチウム合金を用いることが提案された。負極活物質と
してLi合金を用いると電池の充電時にLiの合金化反
応が起こり、デンドライトの成長が抑制される。しかし
ながら、この種の電池では、負極活物質の合金化により
負極の電位が正極電位側にシフトして、電池の起電力が
低下したり、電池の充放電が進むにつれてリチウム合金
が粉状化して、負極活物質が充放電に利用されなくなる
という問題が生じる。
Therefore, it has been proposed to use a lithium alloy such as Li-Al as the negative electrode active material. When a Li alloy is used as the negative electrode active material, an Li alloying reaction occurs at the time of charging the battery, and dendrite growth is suppressed. However, in this type of battery, the negative electrode potential is shifted to the positive electrode potential side due to the alloying of the negative electrode active material, the electromotive force of the battery is reduced, and the lithium alloy is powdered as the charge and discharge of the battery progress. However, there arises a problem that the negative electrode active material is not used for charging and discharging.

【0004】また、電気化学的にリチウムイオンを吸
蔵、放出できる炭素質材料からなる負極活物質保持体を
負極側に配置してデントライトの発生を防止するリチウ
ム電池も提案された。しかしながら、この種の電池で
は、エネルギー密度が小くなる上急速充電時にはデンド
ライトの生成を十分に抑制できないという問題がある。
A lithium battery has also been proposed in which a negative electrode active material holder made of a carbonaceous material capable of electrochemically absorbing and desorbing lithium ions is disposed on the negative electrode side to prevent the generation of dendrites. However, this type of battery has a problem that the energy density is low and dendrite formation cannot be sufficiently suppressed during rapid charging.

【0005】そこで電解質に充放電特性を向上させる各
種の添加剤を添加することが検討された。例えば、非水
電解液からなる電解質に添加する添加剤として、ピリジ
ン(特開昭49−108525号)、クラウン化合物
(特開昭57−141878号)、エチレンジアミン
(特開昭58−87777号)、ニトロベンゼン誘導体
(特開昭58−214281号)、第4級アンモニウム
塩(特開昭60−30065号)、ポリエチレングリコ
ール(特開昭60−41773号)、4−アルキルモル
ホリン(特開昭62−80977号)、第4級ホスホニ
ウム塩(特開昭63−121268号)、アルキルベン
ゼン類(特開平5−36439号)等がある。これらの
添加剤は、リチウムまたはリチウム合金からなる負極活
物質の表面に被膜を形成して、非水電解液と活性なリチ
ウムとを接触し難くくしたり、デンドライトの成長を抑
制して充放電サイクル特性を向上させようとするもので
ある。
Therefore, the addition of various additives to the electrolyte to improve the charge / discharge characteristics has been studied. For example, pyridine (JP-A-49-108525), crown compound (JP-A-57-141878), ethylenediamine (JP-A-58-87777), as an additive to be added to an electrolyte composed of a non-aqueous electrolyte solution, Nitrobenzene derivative (JP-A-58-214281), quaternary ammonium salt (JP-A-60-30065), polyethylene glycol (JP-A-60-41773), 4-alkylmorpholine (JP-A-62-80977). No.), a quaternary phosphonium salt (JP-A-63-112268), alkylbenzenes (JP-A-5-36439) and the like. These additives form a film on the surface of the negative electrode active material composed of lithium or a lithium alloy to make it difficult for the non-aqueous electrolyte and active lithium to come into contact with each other, or suppress the growth of dendrites to improve the charge / discharge cycle. It is intended to improve the characteristics.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の添加剤を電解質に添加してもデンドライトの成長を十
分に抑制することはできなかった。
However, even if these additives were added to the electrolyte, the growth of dendrites could not be sufficiently suppressed.

【0007】本発明の目的は、デンドライトの成長を十
分に抑制して、長寿命で安全なリチウム二次電池を提供
することにある。
An object of the present invention is to provide a lithium secondary battery having a long life and safety by sufficiently suppressing the growth of dendrite.

【0008】[0008]

【課題を解決するための手段】本発明は、リチウムまた
はリチウム合金により負極活物質層が形成されてなるリ
チウム二次電池を改良の対象にして、式
The present invention is directed to an improvement of a lithium secondary battery in which a negative electrode active material layer is formed of lithium or a lithium alloy.

【化2】 で表されるオルト−スルホベンズイミド(o−スルホベ
ンズイミド:サッカリン)を電解質に対して0.005
〜1.0モル/kg含有させる。
Embedded image Ortho-sulfobenzimide (o-sulfobenzimide: saccharin) represented by
˜1.0 mol / kg.

【0009】なおここでいう電解質とは、単に正極活物
質層と負極活物質層との間に積層された電解質層中の電
解質のみを指すものではなく、例えば、正極活物質層中
に含有されている電解質(イオン伝導体)等も含むもの
である。o−スルホベンズイミドは電解質に対して0.
05〜0.5モル/kg含有させるのがより好ましい。
The term "electrolyte" used herein does not mean only the electrolyte in the electrolyte layer laminated between the positive electrode active material layer and the negative electrode active material layer, but is contained in the positive electrode active material layer, for example. The electrolyte (ion conductor) and the like are included. o-Sulfobenzimide was added to the electrolyte at 0.
More preferably, it is contained in an amount of 05 to 0.5 mol / kg.

【0010】なお、電池に用いる正極活物質としては、
無機化合物、有機化合物のものを用いることができる。
無機化合物としては、アモルファス−V2 5 、LiM
24 、MnO2 、LiV3 8 、V6 13、LiC
oO2 、LiNiO2 、MoS2 、TiS2 等を用いる
ことができる。また有機化合物としては、ポリアニリン
誘導体、ポリピロール誘導体、ポリチオフェン誘導体等
を用いることができる。
As the positive electrode active material used in the battery,
Inorganic compounds and organic compounds can be used.
As the inorganic compound, amorphous-V 2 O 5 , LiM
n 2 O 4 , MnO 2 , LiV 3 O 8 , V 6 O 13 , LiC
It is possible to use oO 2 , LiNiO 2 , MoS 2 , TiS 2 or the like. Moreover, as the organic compound, a polyaniline derivative, a polypyrrole derivative, a polythiophene derivative, or the like can be used.

【0011】また電解質としては、LiClO4 、Li
BF4 、LiAsF6 、LiPF6、CF3 SO3 Li
等からなるリチウム塩をプロピレンカーボネートからな
る有機溶媒に溶解した非水電解液を用いることができ
る。有機溶媒としては、エチレンカーボネート、γ−ブ
チロラクトン、1,2−ジメトキシエタン、テトラヒド
ロフラン、2−メチルテトラヒドロフラン、ジメチルス
ルホキシド、1,3−ジオキソラン、スルホラン等から
選ばれた1種または2種以上を用いることができる。ま
たMEP、ポリエチレンオキシド、ポリメタクリル酸オ
リゴアルキレンオキシド、ポリビニルブチロラクトン等
からなる高分子化合物にリチウム塩を含有させた高分子
固体電解質を用いることができる。また、非水電解液、
高分子固体電解質以外に高分子マトリックスに非水電解
液を含有させたゲル状物または粘性物等を電解質として
用いることができる。このようなものとしては、前述の
高分子固体電解質に前述の有機溶媒を溶解した粘性物、
メタクリル酸アルキルエステルとアクリロニトリルとの
共重合体とリチウム塩に両者を溶解する有機溶媒を添加
した粘性物、メトキシポリ(エチレングリコール)メタ
クリレート、ポリ(エチレングリコール)ジメタクリレ
ート、シンナモイル化ポリエチレンオキシド等の感光性
基を有するポリマーと有機溶媒及びリチウム塩とからな
る溶液に紫外光等を照射して有機溶媒を含有したゲル状
の架橋体としたもの等がある。
As the electrolyte, LiClO 4 , Li
BF 4 , LiAsF 6 , LiPF 6 , CF 3 SO 3 Li
It is possible to use a non-aqueous electrolytic solution in which a lithium salt composed of, for example, is dissolved in an organic solvent composed of propylene carbonate. As the organic solvent, use one or more selected from ethylene carbonate, γ-butyrolactone, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, dimethylsulfoxide, 1,3-dioxolane, sulfolane and the like. You can Further, a polymer solid electrolyte in which a lithium salt is contained in a polymer compound made of MEP, polyethylene oxide, polymethacrylic acid oligoalkylene oxide, polyvinyl butyrolactone or the like can be used. In addition, non-aqueous electrolyte,
In addition to the polymer solid electrolyte, a gel-like material or a viscous material in which a polymer matrix contains a non-aqueous electrolyte can be used as the electrolyte. As such, a viscous substance obtained by dissolving the organic solvent in the polymer solid electrolyte described above,
Viscosity of methacrylic poly (ethylene glycol) methacrylate, poly (ethylene glycol) dimethacrylate, cinnamoylated polyethylene oxide etc. There is a gel-like cross-linked product containing an organic solvent, which is obtained by irradiating a solution comprising a polymer having a group, an organic solvent and a lithium salt with ultraviolet light or the like.

【0012】また、負極活物質としては、リチウム、リ
チウム・アルミニウム合金、リチウム・インジウム合
金、リチウム・鉛合金、リチウム・ガリウム合金、リチ
ウム・マグネシウム合金、リチウム・アルミニウム・ス
ズ合金等を用いることができる。
As the negative electrode active material, lithium, lithium-aluminum alloy, lithium-indium alloy, lithium-lead alloy, lithium-gallium alloy, lithium-magnesium alloy, lithium-aluminum-tin alloy, etc. can be used. .

【0013】また、正極活物質層に導電助剤、フッソデ
ィスパージョン等の結着剤等を用いたり、電解質層に
は、機械的な短絡を防止するセパレータ等を必要に応じ
て用いることができる。
In addition, a conductive auxiliary agent, a binder such as fluorine dispersion, or the like may be used in the positive electrode active material layer, and a separator or the like that prevents mechanical short circuit may be used in the electrolyte layer, if necessary. .

【0014】[0014]

【作用】本発明で電解質に含有させるo−スルホベンズ
イミドは、リチウム二次電池の充電時において析出する
リチウムの表面に吸着して、局部的なリチウムの析出を
抑制し、リチウムを負極活物質面に全体的に析出させ
る。そのため本発明によれば、デンドライトの発生を抑
制して極板間短絡を防止することができる。o−スルホ
ベンズイミドの添加量は、上記の電解質1kgに対し
て、0.005〜1モルの範囲が好ましい。o−スルホ
ベンズイミドが0.005モルを下回ると、十分にデン
ドライトの発生を抑制できない。またo−スルホベンズ
イミドが1モルを超えると、o−スルホベンズイミドが
電池の充放電の妨げになり、電池の内部抵抗が増大す
る。
The o-sulfobenzimide contained in the electrolyte according to the present invention is adsorbed on the surface of lithium deposited during charging of the lithium secondary battery to suppress local lithium deposition, and lithium is used as the negative electrode active material. Deposit entirely on the surface. Therefore, according to the present invention, it is possible to suppress the generation of dendrites and prevent a short circuit between the electrode plates. The addition amount of o-sulfobenzimide is preferably in the range of 0.005 to 1 mol with respect to 1 kg of the above electrolyte. When o-sulfobenzimide is less than 0.005 mol, dendrite generation cannot be sufficiently suppressed. When the amount of o-sulfobenzimide exceeds 1 mol, the o-sulfobenzimide interferes with charge / discharge of the battery, and the internal resistance of the battery increases.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0016】(実施例1)図1は電解質として非水電解
液を用いるコイン形リチウム二次電池に本発明を適用し
た実施例の電池の概略断面図である。本図において、1
は正極集電体であり、2は正極活物質層であり、3は負
極集電体であり、4は負極活物質層であり、5は電解質
層であり、6は正極缶であり、7は負極缶であり、8は
環状ガスケットである。このコイン形リチウム二次電池
は次のように製造した。まずアモルファスの五酸化バナ
ジウム(a−V2 5 )70重量部とアセチレンブラッ
クからなる導電助剤25重量部とポリテトラフロロエチ
レン(PTFE)5重量部とを混練して混練物を作っ
た。次にこの混練物をシート状に圧延した後にディスク
状に切断してペレットを作った。次にこのペレットを正
極缶6内にスポット溶接されたステンレス網からなる正
極集電体1上に載置して約25mAh の容量を持つ正極活
物質層2を形成した。なお正極活物質層2中のa−V2
5 量は100mgとした。そして正極缶6の外周端部6
bの上にポリプロピレン製の環状ガスケット8を載置し
た。
(Example 1) FIG. 1 is a schematic sectional view of a battery of an example in which the present invention is applied to a coin type lithium secondary battery using a non-aqueous electrolyte as an electrolyte. In this figure, 1
Is a positive electrode current collector, 2 is a positive electrode active material layer, 3 is a negative electrode current collector, 4 is a negative electrode active material layer, 5 is an electrolyte layer, 6 is a positive electrode can, 7 Is a negative electrode can and 8 is an annular gasket. This coin type lithium secondary battery was manufactured as follows. First, 70 parts by weight of amorphous vanadium pentoxide (a-V 2 O 5 ), 25 parts by weight of a conductive additive made of acetylene black, and 5 parts by weight of polytetrafluoroethylene (PTFE) were kneaded to prepare a kneaded product. Next, this kneaded product was rolled into a sheet and then cut into a disk to form pellets. Next, the pellets were placed on a positive electrode current collector 1 made of stainless steel and spot-welded in a positive electrode can 6 to form a positive electrode active material layer 2 having a capacity of about 25 mAh. In addition, a-V 2 in the positive electrode active material layer 2
The amount of O 5 was 100 mg. And the outer peripheral end portion 6 of the positive electrode can 6
An annular gasket 8 made of polypropylene was placed on b.

【0017】次に厚み0.1mmのリチウム箔を正極活物
質層2と同じ径の円板状に切断したものを負極缶7内に
スポット溶接されたステンレス網からなる負極集電体3
に圧着して負極活物質層4を形成した。
Next, a 0.1 mm thick lithium foil is cut into a disk shape having the same diameter as the positive electrode active material layer 2 and spot-welded in the negative electrode can 7 to form a negative electrode current collector 3 made of a stainless steel net.
Then, the negative electrode active material layer 4 was formed by pressing.

【0018】次にLiClO4 を1モル/Kg溶解したプ
ロピレンカーボネートと1,2−ジメトキシエタンとを
体積比1:1で混合した混合液にo−スルホベンズイミ
ドを添加して非水電解液を作った。次にこの非水電解液
を正極活物質層2上に0.1ml滴下してから、その上に
ポリプロピレン製の不織布からなるセパレータを配置
し、さらにセパレータ上に非水電解液を0.1ml滴下し
て電解質層5を形成した。
Next, o-sulfobenzimide was added to a mixed solution of propylene carbonate having 1 mol / Kg of LiClO 4 dissolved therein and 1,2-dimethoxyethane at a volume ratio of 1: 1 to prepare a non-aqueous electrolytic solution. Had made. Next, 0.1 ml of this non-aqueous electrolyte is dropped on the positive electrode active material layer 2, and then a separator made of polypropylene non-woven fabric is placed thereon, and 0.1 ml of the non-aqueous electrolyte is dropped on the separator. Then, the electrolyte layer 5 was formed.

【0019】次に負極活物質層4と電解質層5とを接合
するように負極活物質層4を形成した前述の負極缶7を
電解質層5上に載置した。そして環状ガスケット8を介
して正極缶6と負極缶7とを重ね、両缶の外周部をかし
めて、コイン形リチウム二次電池を完成した。
Next, the above-mentioned negative electrode can 7 having the negative electrode active material layer 4 formed thereon so as to join the negative electrode active material layer 4 and the electrolyte layer 5 was placed on the electrolyte layer 5. Then, the positive electrode can 6 and the negative electrode can 7 were stacked via the annular gasket 8 and the outer peripheral portions of both cans were caulked to complete a coin-type lithium secondary battery.

【0020】下記表1及び2に示すように、非水電解液
に対するo−スルホベンズイミドの添加量を種々に変え
た実施例1−1〜1−6の電池と、o−スルホベンズイ
ミドを電解液に添加せずその他は実施例の電池と同じ方
法で作った比較例1−1の電池と、o−スルホベンズイ
ミドの代りに他の添加物を用いその他は実施例の電池と
同じ方法で作った比較例1−2〜1−25の電池とを用
いて充放電試験を行った。充放電試験は、0.5mA/
cm2 の定電流で終止電圧2Vで放電した後に、終止電
圧3.6Vで充電する充放電を各電池に繰り返し、各電
池の短絡が発生するまでのサイクル数を求めた。なお本
試験においては、通常用いられる微孔性のポリプロピレ
ンフィルムをセパレータとして用いずに、ポリプロピレ
ンの不織布をセパレータとして用いている。これはデン
ドライトの発生を促進して試験を速やかに行うためであ
る。また短絡の発生の有無は、充電時の電圧が不安定な
挙動を示し、電池が充電終了電圧(3.6V)に到達し
ないこと、または電池内部抵抗がほぼ0.0Ωとなった
こと等により確認した。
As shown in Tables 1 and 2 below, the batteries of Examples 1-1 to 1-6 in which the amount of o-sulfobenzimide added to the non-aqueous electrolyte was variously changed, and o-sulfobenzimide were used. The same method as the battery of Comparative Example 1-1, which was prepared by the same method as that of the battery of Example except that it was not added to the electrolytic solution, and other additives were used instead of o-sulfobenzimide. A charge / discharge test was performed using the batteries of Comparative Examples 1-2 to 1-25 prepared in 1. Charge / discharge test is 0.5mA /
After the battery was discharged at a final voltage of 2 V with a constant current of cm 2, the batteries were repeatedly charged and discharged at a final voltage of 3.6 V, and the number of cycles until a short circuit occurred in each battery was obtained. In this test, a polypropylene non-woven fabric is used as a separator, instead of the normally used microporous polypropylene film as a separator. This is because the generation of dendrites is promoted and the test is performed quickly. Whether or not a short circuit occurs is due to the fact that the voltage shows unstable behavior during charging, the battery does not reach the charge termination voltage (3.6 V), or the internal resistance of the battery is approximately 0.0Ω. confirmed.

【0021】表1及び表2はその測定結果を示してい
る。
Tables 1 and 2 show the measurement results.

【0022】[0022]

【表1】 [Table 1]

【表2】 両表より実施例1−1〜1−6の電池は比較例1−1〜
1−25の電池に比べて、デンドライトの発生が抑制さ
れて短絡が発生し難いのが判る。特に実施例1−1〜1
−6の電池は、他の添加物を用いた比較例1−2〜1−
25の電池に比べて少ない添加量でサイクル数を延ばせ
るのが分る。
[Table 2] From both tables, the batteries of Examples 1-1 to 1-6 are comparative examples 1-1 to 1-1.
It can be seen that the generation of dendrites is suppressed and a short circuit is less likely to occur as compared with the battery No. 1-25. In particular, Examples 1-1 to 1
The battery of No. -6 is the comparative example 1-2 to 1 which uses other additives.
It can be seen that the number of cycles can be extended with a smaller addition amount as compared with the No. 25 battery.

【0023】(実施例2)図2は電解質として高分子固
体電解質を用いる薄形リチウム二次電池に本発明を適用
した実施例の電池の概略断面図である。本実施例の電池
は正極集電体11の一方の面上に形成された正極活物質
層12と負極集電体13の一方の面上に形成された負極
活物質層14とが高分子固体電解質層15を介して積層
された構造を有している。この高分子固体電解質リチウ
ム二次電池は次のように製造した。まず平均分子量15
0万のメトキシオリゴエチレンオキシポリホスファゼン
(以下、MEPと言う)と該MEPに対して0.5モル
/kgのLiBF4 とを1,2−ジメトキシエタン(以
下、DMEと言う)溶液中に20重量%溶かした混合溶
液にo−スルホベンズイミドを添加して添加剤含有ME
P/DME溶液を作った。そして、この添加剤含有ME
P/DME溶液を重量比60:15のLiMn24
アセチレンブラックとの混練物に混合してからこれを攪
拌して混合物を作った。なおLiMn2 4 とアセチレ
ンブラックとの混練物と添加剤含有MEP/DME溶液
との割合は、混練物とMEPとの重量比が75:25に
なる割合とした。次にこの混合物からDMEを揮発除去
してから、これをロールプレスによりシート状に成形
し、適当な大きさに切断して約25mAh の容量を持つ厚
み180μm の正極活物質層12を作った。次に正極活
物質層12を厚み20μm のステンレス箔からなる正極
集電体11の一方の面の中央部分11aに貼り付けた。
なおこのようにして作った正極活物質層12は粘着性を
有しているので、結着剤等を用いなくても正極集電体1
1に貼り付けることができる。次に前述のものと同じ添
加剤含有MEP/DME溶液を正極活物質層12の上に
塗布してからDMEを揮発除去して厚み50μm の高分
子固体電解質層15の半部を作った。
Example 2 FIG. 2 is a schematic sectional view of a battery of an example in which the present invention is applied to a thin lithium secondary battery using a polymer solid electrolyte as an electrolyte. In the battery of this embodiment, the positive electrode active material layer 12 formed on one surface of the positive electrode current collector 11 and the negative electrode active material layer 14 formed on one surface of the negative electrode current collector 13 are polymer solids. It has a structure in which the electrolyte layers 15 are stacked. This polymer solid electrolyte lithium secondary battery was manufactured as follows. First, average molecular weight 15
20,000 of methoxyoligoethyleneoxypolyphosphazene (hereinafter referred to as MEP) and 0.5 mol / kg of LiBF 4 with respect to the MEP in a 1,2-dimethoxyethane (hereinafter referred to as DME) solution The additive-containing ME was prepared by adding o-sulfobenzimide to a mixed solution in which the weight% was dissolved.
A P / DME solution was made. And this additive-containing ME
The P / DME solution was mixed with a kneaded material of LiMn 2 O 4 and acetylene black having a weight ratio of 60:15, and this was stirred to form a mixture. The ratio of the kneaded material of LiMn 2 O 4 and acetylene black to the additive-containing MEP / DME solution was such that the weight ratio of the kneaded material to MEP was 75:25. Then, DME was volatilized and removed from this mixture, and this was formed into a sheet by a roll press and cut into a suitable size to form a positive electrode active material layer 12 having a capacity of about 25 mAh and a thickness of 180 μm. Next, the positive electrode active material layer 12 was attached to the central portion 11a of one surface of the positive electrode current collector 11 made of a stainless foil having a thickness of 20 μm.
Since the positive electrode active material layer 12 thus formed has adhesiveness, the positive electrode current collector 1 does not require a binder or the like.
Can be pasted on 1. Next, the same additive-containing MEP / DME solution as described above was applied on the positive electrode active material layer 12, and then DME was volatilized and removed to form a half portion of the polymer solid electrolyte layer 15 having a thickness of 50 μm.

【0024】次に厚み20μm のステンレス箔からなる
負極集電体13の一方の面に厚み40μm のリチウム箔
を載置して負極活物質層14を形成した。そして、前述
のものと同じ添加剤含有MEP/DME溶液を負極活物
質層14の上に塗布してからDMEを揮発除去して厚み
50μm の高分子固体電解質層15の半部を作った。次
に正極集電体11の外周端部11bの上に加熱圧着タイ
プのホットメルト16を載置してから、高分子固体電解
質層15の半部どうしが接合するように正極集電体11
に形成した高分子固体電解質層15の半部の上に負極活
物質層14等を形成した負極集電体13を載置した。そ
して、加熱によりホットメルト16を集電体11及び1
3の外周端部11b及び13bに完全に接続して高分子
固体電解質リチウム二次電池を完成した。
Next, a negative electrode active material layer 14 was formed by placing a 40 μm thick lithium foil on one surface of a negative electrode current collector 13 made of a 20 μm thick stainless steel foil. Then, the same additive-containing MEP / DME solution as described above was applied on the negative electrode active material layer 14, and then DME was removed by volatilization to form a half portion of the solid polymer electrolyte layer 15 having a thickness of 50 μm. Next, the thermocompression-bonding type hot melt 16 is placed on the outer peripheral end 11b of the positive electrode current collector 11, and then the positive electrode current collector 11 is joined so that the half parts of the solid polymer electrolyte layer 15 are joined together.
The negative electrode current collector 13 having the negative electrode active material layer 14 formed thereon was placed on the half of the solid polymer electrolyte layer 15 formed in 1. Then, the hot melt 16 is heated to collect the current collectors 11 and 1.
3 was completely connected to the outer peripheral end portions 11b and 13b to complete a polymer solid electrolyte lithium secondary battery.

【0025】下記表3及び4に示すように、高分子固体
電解質に対するo−スルホベンズイミドの添加量を種々
に変えた実施例2−1〜2−6の電池と、o−スルホベ
ンズイミドを電解液に添加せずその他は実施例の電池と
同じ方法で作った比較例2−1の電池と、o−スルホベ
ンズイミドの代りに他の添加物を用いその他は実施例の
電池と同じ方法で作った比較例2−2〜2−25の電池
とを用いて充放電試験を行った。充放電試験は、50μ
A/cm2 の定電流で、終止電圧2Vで放電した後に終
止電圧4.2Vで充電する充放電を各電池に繰り返し、
各電池の短絡が発生するまでのサイクル数を求めた。
As shown in Tables 3 and 4 below, the batteries of Examples 2-1 to 2-6 in which the amount of o-sulfobenzimide added to the polymer solid electrolyte was variously changed, and o-sulfobenzimide were used. The battery of Comparative Example 2-1 prepared by the same method as the battery of the Example except that it was not added to the electrolytic solution, and other additives were used instead of o-sulfobenzimide, and the same method as the battery of the Example was used. A charging / discharging test was performed using the batteries of Comparative Examples 2-2 to 2-25 prepared in. Charge / discharge test is 50μ
A constant current of A / cm 2 was applied to each battery, which was repeatedly charged and discharged by discharging at a final voltage of 2V and then charging at a final voltage of 4.2V.
The number of cycles until a short circuit occurred in each battery was determined.

【0026】表3及び4はその測定結果を示している。Tables 3 and 4 show the measurement results.

【0027】[0027]

【表3】 [Table 3]

【表4】 両表より実施例2−1〜2−6の電池は比較例2−1〜
2−25の電池に比べて、デンドライトの発生が抑制さ
れて短絡が発生し難いのが判る。特に実施例2−1〜2
−6の電池は、他の添加物を用いた比較例2−2〜2−
25の電池に比べて少ない添加量でサイクル数を延ばせ
るのが分る。
[Table 4] From both tables, the batteries of Examples 2-1 to 2-6 are comparative examples 2-1 to 2-1.
It can be seen that the generation of dendrites is suppressed and a short circuit is less likely to occur as compared with the battery No. 2-25. In particular, Examples 2-1 and 2-2
The battery of No. -6 is a comparative example 2-2-2 using other additives.
It can be seen that the number of cycles can be extended with a smaller addition amount as compared with the No. 25 battery.

【0028】次に上記実施例1及び2の電池において、
電解質1Kgに対するo−スルホベンズイミドの添加量
と、短絡が発生するまでの電池のサイクル数との関係を
調べた。図3はその測定結果を示している。本図におい
て丸印は電解質として非水電解液を用いる実施例1の電
池のデータを示し、三角印は電解質として高分子固体電
解質を用いる実施例2の電池のデータを示している。電
池の充放電試験は実施例1及び2の欄に記載した方法と
同じ条件で行った。本図より電解質1Kgに対するo−ス
ルホベンズイミドの添加量を0.005〜1モルとする
といずれの電池のサイクル寿命が延びるのが分る。また
添加量を0.05〜0.5モルとすると電池のサイクル
寿命がさらに大きく延びるのが分る。これは、添加量が
0.005モルを下回ると、十分にデンドライトの発生
を抑制できず、添加量が1モルを超えると、o−スルホ
ベンズイミドがリチウムの正常な析出までも抑制して、
電池の充放電を妨げるためである。
Next, in the batteries of Examples 1 and 2,
The relationship between the amount of o-sulfobenzimide added to 1 kg of electrolyte and the number of battery cycles until a short circuit occurred was examined. FIG. 3 shows the measurement result. In this figure, the circles show the data of the battery of Example 1 using the non-aqueous electrolyte as the electrolyte, and the triangles show the data of the battery of Example 2 using the solid polymer electrolyte as the electrolyte. The battery charge / discharge test was performed under the same conditions as the methods described in the columns of Examples 1 and 2. From this figure, it can be seen that the cycle life of any battery is extended when the amount of o-sulfobenzimide added is 0.005-1 mol per 1 kg of electrolyte. Further, it can be seen that the cycle life of the battery is further extended when the addition amount is 0.05 to 0.5 mol. This is because when the addition amount is less than 0.005 mol, the generation of dendrites cannot be sufficiently suppressed, and when the addition amount exceeds 1 mol, o-sulfobenzimide suppresses even normal precipitation of lithium,
This is to prevent charging / discharging of the battery.

【0029】以下、明細書に記載した複数の発明の中で
いくつかの発明についてその構成を示す。
The structure of some of the inventions described in the specification will be shown below.

【0030】(1) リチウムまたはリチウム合金から
なる負極活物質層と正極活物質層とが非水電解液を含浸
するセパレータを介して積層されてなるリチウム二次電
池において、式
(1) In a lithium secondary battery in which a negative electrode active material layer made of lithium or a lithium alloy and a positive electrode active material layer are laminated via a separator impregnated with a non-aqueous electrolyte,

【化3】 で表されるo−スルホベンズイミドが電解質に対して
0.005〜1.0モル/kg含有されていることを特
徴とするリチウム二次電池。
Embedded image A lithium secondary battery containing o-sulfobenzimide represented by the formula of 0.005 to 1.0 mol / kg with respect to the electrolyte.

【0031】(2) 前記非水電解液としてLiClO
4 とプロピレンカーボネートと1,2−ジメトキシエタ
ンとの混合液にo−スルホベンズイミドを添加したもの
を用い、前記正極活物質層は、アモルファスの五酸化バ
ナジウムとアセチレンブラックからなる導電助剤とポリ
テトラフロロエチレンとの混合物に前記非水電解液が含
浸されて形成されていることを特徴とする上記(1)に
記載のリチウム二次電池。
(2) LiClO as the non-aqueous electrolyte
A mixture of 4 , propylene carbonate and 1,2-dimethoxyethane to which o-sulfobenzimide was added was used, and the positive electrode active material layer was composed of a conductive auxiliary agent composed of amorphous vanadium pentoxide and acetylene black, and The lithium secondary battery according to (1) above, which is formed by impregnating the mixture with tetrafluoroethylene with the non-aqueous electrolyte.

【0032】(3) リチウムまたはリチウム合金から
なる負極活物質層と正極活物質層とが固体電解質層を介
して積層されてなるリチウム二次電池において、式
(3) In a lithium secondary battery in which a negative electrode active material layer made of lithium or a lithium alloy and a positive electrode active material layer are laminated with a solid electrolyte layer in between,

【化4】 で表されるo−スルホベンズイミドが電解質に対して
0.005〜1.0モル/kg含有されていることを特
徴とするリチウム二次電池。
[Chemical 4] A lithium secondary battery containing o-sulfobenzimide represented by the formula of 0.005 to 1.0 mol / kg with respect to the electrolyte.

【0033】(4) 前記固体電解質層はメトキシオリ
ゴエチレンオキシポリホスファゼンとLiBF4 とo−
スルホベンズイミドとの混合物からなる固体電解質によ
り形成され、前記正極活物質層は、LiMn2 4 とア
セチレンブラックからなる導電助剤との混合物に前記固
体電解質が含浸されて形成されていることを特徴とする
上記(3)に記載のリチウム二次電池。
(4) The solid electrolyte layer comprises methoxyoligoethyleneoxypolyphosphazene, LiBF 4 and o-.
It is formed by a solid electrolyte composed of a mixture with sulfobenzimide, and the positive electrode active material layer is formed by impregnating the solid electrolyte with a mixture of LiMn 2 O 4 and a conductive auxiliary agent composed of acetylene black. The lithium secondary battery according to the above (3), which is characterized.

【0034】(5) 前記o−スルホベンズイミドが電
解質に対して0.05〜0.5モル/kg含有されてい
ることを特徴とする上記(1)または(3)に記載のリ
チウム二次電池。
(5) The lithium secondary as described in (1) or (3) above, wherein the o-sulfobenzimide is contained in an amount of 0.05 to 0.5 mol / kg with respect to the electrolyte. battery.

【0035】[0035]

【発明の効果】本発明によれば、デンドライトの発生を
抑制して極板間短絡を防止することができるため、長寿
命でより安全なリチウム二次電池を得ることができる。
特にo−スルホベンズイミドの添加量が、電解質1kg
に対して0.005モルを下回ると、十分にデンドライ
トの発生を抑制できず、またo−スルホベンズイミドの
添加量が1モルを超えると電池の充放電の妨げられるの
で、o−スルホベンズイミドの添加量は、電解質1kg
に対して0.005〜1モルの範囲が好ましい。
According to the present invention, it is possible to suppress the generation of dendrites and prevent a short circuit between electrode plates, so that it is possible to obtain a safer lithium secondary battery having a long life.
In particular, the amount of o-sulfobenzimide added is 1 kg of electrolyte.
When the amount is less than 0.005 mol, the generation of dendrite cannot be sufficiently suppressed, and when the amount of o-sulfobenzimide added exceeds 1 mol, charging / discharging of the battery is hindered. 1kg of electrolyte
It is preferably in the range of 0.005 to 1 mol.

【図面の簡単な説明】[Brief description of drawings]

【図1】 電解質として非水電解液を用いるリチウム二
次電池に適用した本発明の実施例のリチウム二次電池の
概略断面図である。
FIG. 1 is a schematic cross-sectional view of a lithium secondary battery of an embodiment of the present invention applied to a lithium secondary battery using a non-aqueous electrolyte solution as an electrolyte.

【図2】 電解質として高分子固体電解質を用いるリチ
ウム二次電池に適用した本発明の実施例のリチウム二次
電池の概略断面図である。
FIG. 2 is a schematic cross-sectional view of a lithium secondary battery of an example of the present invention applied to a lithium secondary battery using a polymer solid electrolyte as an electrolyte.

【図3】 o−スルホベンズイミドの添加量と、短絡が
発生するまでの電池のサイクル数との関係を示す図であ
る。
FIG. 3 is a graph showing the relationship between the amount of o-sulfobenzimide added and the number of battery cycles until a short circuit occurs.

【符号の説明】[Explanation of symbols]

1,11 正極集電体 2,12 正極活物質層 3,13 負極集電体 4,14 負極活物質層 5,15 電解質層 1, 11 Positive Electrode Current Collector 2, 12 Positive Electrode Active Material Layer 3, 13 Negative Current Collector 4, 14 Negative Electrode Active Material Layer 5, 15 Electrolyte Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 他▲く▼美 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 小牧 昭夫 東京都新宿区西新宿二丁目1番1号 新神 戸電機株式会社内 (72)発明者 笹岡 三千雄 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 中長 偉文 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 (72)発明者 犬伏 昭嘉 徳島県徳島市川内町加賀須野463番地 大 塚化学株式会社徳島研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hayakawa et al. ▲ Ku ▼ Beauty 2-1, 1-1 Nishinishinjuku, Shinjuku-ku, Tokyo Shin-Kindo Electric Co., Ltd. (72) Inventor Akio Komaki Nishishinjuku, Shinjuku-ku, Tokyo 2-1-1 No. 1 Shinshin Todo Electric Co., Ltd. (72) Inventor Michio Sasaoka 463, Kagasuno, Kawauchi Town, Tokushima City, Tokushima Prefecture Otsuka Chemical Co., Ltd., Tokushima Laboratory (72) Inventor Nakafumi Weibun Tokushima, Tokushima Prefecture 463 Kagasuno, Ichikawauchi-machi Otsuka Chemical Co., Ltd., Tokushima Laboratory (72) Inventor Akika Inubushi 463, Kagasuno, Kawauchi-machi, Tokushima, Tokushima Prefecture Otsuka Chemical Co., Ltd., Tokushima Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 リチウムまたはリチウム合金により負極
活物質層が形成されてなるリチウム二次電池において、 式 【化1】 で表されるオルト−スルホベンズイミドが電解質に対し
て0.005〜1.0モル/kg含有されていることを
特徴とするリチウム二次電池。
1. A lithium secondary battery having a negative electrode active material layer formed of lithium or a lithium alloy, wherein: A lithium secondary battery containing the ortho-sulfobenzimide represented by the above formula in an amount of 0.005 to 1.0 mol / kg with respect to the electrolyte.
【請求項2】 前記オルト−スルホベンズイミドが電解
質に対して0.05〜0.5モル/kg含有されている
ことを特徴とする請求項1に記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the ortho-sulfobenzimide is contained in an amount of 0.05 to 0.5 mol / kg with respect to the electrolyte.
【請求項3】 前記電解質は、高分子マトリックスに非
水電解液を含有させたゲル状または粘性を有するもの、
非水電解液または固体電解質からなることを特徴とする
請求項1または2に記載のリチウム二次電池。
3. The electrolyte, which is gel-like or viscous in which a non-aqueous electrolytic solution is contained in a polymer matrix,
The lithium secondary battery according to claim 1 or 2, comprising a non-aqueous electrolyte solution or a solid electrolyte.
JP04392695A 1995-03-03 1995-03-03 Lithium secondary battery Expired - Fee Related JP3383454B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04392695A JP3383454B2 (en) 1995-03-03 1995-03-03 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04392695A JP3383454B2 (en) 1995-03-03 1995-03-03 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH08241733A true JPH08241733A (en) 1996-09-17
JP3383454B2 JP3383454B2 (en) 2003-03-04

Family

ID=12677311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04392695A Expired - Fee Related JP3383454B2 (en) 1995-03-03 1995-03-03 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3383454B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307738A (en) * 2000-04-26 2001-11-02 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2002151144A (en) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2006318888A (en) * 2005-04-08 2006-11-24 Sony Corp Electrolyte and battery
US20080193854A1 (en) * 2006-03-22 2008-08-14 Akira Yamaguchi Electrolytic solution and battery
JP2016167437A (en) * 2014-03-25 2016-09-15 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001307738A (en) * 2000-04-26 2001-11-02 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP4590682B2 (en) * 2000-04-26 2010-12-01 三菱化学株式会社 Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP2002151144A (en) * 2000-11-07 2002-05-24 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2006318888A (en) * 2005-04-08 2006-11-24 Sony Corp Electrolyte and battery
US9583791B2 (en) 2005-04-08 2017-02-28 Sony Corporation Electrolytic solution and battery
US20080193854A1 (en) * 2006-03-22 2008-08-14 Akira Yamaguchi Electrolytic solution and battery
US8679683B2 (en) * 2006-03-22 2014-03-25 Sony Corporation Electrolyte solution containing a cyclic imide salt and light metal salt and battery
JP2016167437A (en) * 2014-03-25 2016-09-15 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery including the same

Also Published As

Publication number Publication date
JP3383454B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
JP4196373B2 (en) Nonaqueous electrolyte secondary battery
US6713217B2 (en) Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
EP0883199A1 (en) Negative electrode materials for non-aqueous electrolyte secondary batteries and said batteries employing the same materials
US7279249B2 (en) Organic electrolytic solution and lithium battery employing the same
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
CN101740807A (en) Nonaqueous electrolyte secondary battery
JP2004063432A (en) Battery
JP3480190B2 (en) Non-aqueous electrolyte secondary battery
JP2010080407A (en) Positive electrode active material, positive electrode, and non-aqueous electrolyte secondary battery
JP4014816B2 (en) Lithium polymer secondary battery
JP2000058116A (en) Nonaqueous battery electrolyte and secondary battery using the same
JP3791797B2 (en) battery
JP5082198B2 (en) Lithium ion secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2003123767A (en) Collector, electrode, and battery
JP5082221B2 (en) Negative electrode for secondary battery and secondary battery
JP2002324550A (en) Non-aqueous electrolyte secondary battery
JP3383454B2 (en) Lithium secondary battery
JPH07169505A (en) Lithium secondary battery
JP2003168427A (en) Nonaqueous electrolyte battery
JP2004063269A (en) Nonaqueous electrolyte battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH10261437A (en) Polymer electrolyte and lithium polymer battery using it
JP3303319B2 (en) Non-aqueous electrolyte secondary battery
JP3358482B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees