JPH08190933A - Secondary battery having nonaqueous solvent electrolyte - Google Patents

Secondary battery having nonaqueous solvent electrolyte

Info

Publication number
JPH08190933A
JPH08190933A JP7015577A JP1557795A JPH08190933A JP H08190933 A JPH08190933 A JP H08190933A JP 7015577 A JP7015577 A JP 7015577A JP 1557795 A JP1557795 A JP 1557795A JP H08190933 A JPH08190933 A JP H08190933A
Authority
JP
Japan
Prior art keywords
secondary battery
positive electrode
charge
lithium
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7015577A
Other languages
Japanese (ja)
Inventor
Katsuya Hayashi
克也 林
Shinichi Tobishima
真一 鳶島
So Arai
創 荒井
Junichi Yamaki
準一 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7015577A priority Critical patent/JPH08190933A/en
Publication of JPH08190933A publication Critical patent/JPH08190933A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a secondary battery with high energy density, high rate discharge and quick charge capability, long charge/discharge life, and low cost. CONSTITUTION: A secondary battery has a negative electrode 2 capable of charging/discharging a lithium ion, a positive electrode 6 capable of conducting reversible electrochemical reaction with a lithium ion, and an electrolyte 3 prepared by dissolving an ion dissociative lithium salt in a nonaqueous solvent. In this secondary battery, a positive active material which requires charging end voltage of 3.5V or higher is used in the positive electrode 6, as the nonaqueous solvent of the electrolyte 3, a mixture of ethylene carbonate and ester or ether having lower viscosity than the ethylene carbonate is used, and the volume mixing ratio is more than 5:5 but less than 0:10. As the example of the ester or ether, di-lower alkyl carbonate and 1,2-di-lower alkoxy ethane are used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に高電圧、高エネル
ギー密度で、充放電容量が大きい非水溶媒電解液を有す
る二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a secondary battery having a non-aqueous solvent electrolyte having a high voltage, a high energy density and a large charge / discharge capacity.

【0002】[0002]

【従来の技術】携帯用電子機器の小型軽量化が進み、そ
の電源として(1)高電圧、高エネルギー密度で、更に
その使用用途から(2)大電流放電急速充電可能で、
(3)充放電寿命が長く、(4)安価な二次電池が要求
されている。このような要求に応える電池として、リチ
ウムイオンを充放電可能な負極とリチウムイオンを充放
電可能な正極を有する高性能二次電池、つまりリチウム
二次電池の開発が期待されている。現在市販されている
二次電池であるニッケルカドミウム電池、ニッケル水素
電池、鉛蓄電池は、急速充電できるという特徴を有して
はいるが、その電池電圧、エネルギー密度は低く、現在
求められている要求に応えられない。これに対して、負
極材料として、リチウムイオンをドーピングしたカーボ
ンの層間化合物あるいは、黒鉛層間化合物を用いたいわ
ゆるリチウムイオン電池は、ニッケルカドミウム電池、
ニッケル水素電池、鉛蓄電池と比較して高電圧、高エネ
ルギー密度を有している。しかし、このリチウムイオン
電池には、以下に述べる4つの解決すべき問題点があ
る。(問題点1)負極に金属リチウムを用いたリチウム
二次電池と比較して、電圧、エネルギー密度の両点で劣
っている。(問題点2)負極におけるリチウムイオンの
拡散が遅いため大電流放電急速充電することができな
い。(問題点3)電圧、エネルギー密度を高めるために
負極を金属リチウムに変えただけでは、特に負極におけ
る充放電効率が低いため充放電サイクル寿命が短くな
り、各材料の最適化が必要である。更に、(問題点4)
リチウムイオン電池の製造には特殊な行程が含まれ、そ
のために大容量の電池を製造する場合、そのコストは非
常に高いものとなってしまう。
2. Description of the Related Art As portable electronic devices have become smaller and lighter, (1) they have a high voltage and a high energy density as their power sources, and (2) they can be rapidly charged with a large current discharge due to their intended use.
(3) A charge / discharge life is long, and (4) an inexpensive secondary battery is required. As a battery that meets such demands, development of a high-performance secondary battery having a negative electrode capable of charging and discharging lithium ions and a positive electrode capable of charging and discharging lithium ions, that is, a lithium secondary battery is expected. The nickel-cadmium batteries, nickel-hydrogen batteries, and lead-acid batteries that are currently commercially available as secondary batteries have the characteristics that they can be rapidly charged, but their battery voltage and energy density are low, and the requirements currently demanded. Can't answer. On the other hand, a so-called lithium-ion battery using an intercalation compound of carbon doped with lithium ions or a graphite intercalation compound as a negative electrode material is a nickel-cadmium battery,
It has higher voltage and higher energy density than nickel-metal hydride batteries and lead storage batteries. However, this lithium ion battery has the following four problems to be solved. (Problem 1) It is inferior in both voltage and energy density as compared with a lithium secondary battery using metallic lithium for the negative electrode. (Problem 2) Since diffusion of lithium ions in the negative electrode is slow, high-current discharge rapid charging cannot be performed. (Problem 3) If only the negative electrode is changed to metallic lithium in order to increase the voltage and energy density, the charge / discharge efficiency of the negative electrode is particularly low, which shortens the charge / discharge cycle life and requires optimization of each material. Furthermore, (Problem 4)
The manufacture of lithium-ion batteries involves a special process, which makes the cost of manufacturing large-capacity batteries very high.

【0003】[0003]

【発明が解決しようとする課題】本発明は、上述の4つ
の問題点に着目してなされたものであり、正極、負極、
電解液の最適な組合せをもって、エネルギー密度が高
く、大電流放電急速充電が可能であり、充放電寿命が長
く、しかも安価なリチウム二次電池を提供することを目
的とする。
The present invention has been made by paying attention to the above-mentioned four problems, that is, a positive electrode, a negative electrode,
An object of the present invention is to provide a lithium secondary battery which has a high energy density, is capable of high-current discharge rapid charging, has a long charge / discharge life, and is inexpensive with an optimal combination of electrolytic solutions.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明は非水溶媒電解液を有する二次電池に関する発明で
あって、リチウムイオンを充放電可能な負極と、リチウ
ムイオンと可逆的な電気化学反応可能な正極、及び非水
溶媒にイオン解離性のリチウム塩を溶解した電解液を有
する二次電池において、前記正極として、3.5V以上
の充電終止電圧を必要とする正極活物質を正極に用い、
前記電解液の非水溶媒として、エチレンカーボネートと
該エチレンカーボネートより低粘度のエステル又はエー
テルとの混合溶媒を用い、体積混合比を5:5を越え、
0:10未満とすることを特徴とする。
The present invention will be described in brief. The present invention relates to a secondary battery having a non-aqueous solvent electrolyte, wherein the negative electrode is capable of charging and discharging lithium ions, and reversible with lithium ions. Positive electrode capable of electrochemical reaction, and a secondary battery having an electrolytic solution in which a non-aqueous solvent contains an ion-dissociative lithium salt dissolved therein, the positive electrode active material requiring a charge end voltage of 3.5 V or more as the positive electrode. Is used for the positive electrode,
As the non-aqueous solvent of the electrolytic solution, a mixed solvent of ethylene carbonate and an ester or ether having a viscosity lower than the ethylene carbonate is used, and the volume mixing ratio exceeds 5: 5,
It is characterized in that it is less than 0:10.

【0005】本発明によれば、3.5V以上の充電終止
電圧を必要とする正極活物質、特にLix Mn2-y y
4 (M=Na、Mg、Sc、Y、Fe、Co、Ni、
Cu、Zn、Al、Pb、Sb、0≦x≦1.2、0≦
y≦0.7)を主体とする複合酸化物あるいはMn2
4 を主体とする複合酸化物を正極に用い、負極材料にリ
チウムイオンを充放電可能なもの、特に金属リチウムあ
るいはリチウム金属合金を用い、非水溶媒電解液の溶媒
として、エチレンカーボネート(EC)とECより低粘
度の溶媒、特にジメチルカーボネート(DMC)、ジエ
チルカーボネート(DEC)、エチルメチルカーボネー
ト(EMC)等のうちから選ばれた少なくとも一種類と
の混合溶媒を用いることによって大電流放電、急速充電
を可能とする非水溶媒電解液を有する二次電池を提供す
ることができる。なお、本発明において、ECより低粘
度のエーテルの例としては、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、又は1,2−エトキシ
メトキシエタンが挙げられる。
According to the present invention, a positive electrode active material requiring a cut-off voltage of 3.5 V or more, particularly Li x Mn 2- y My.
O 4 (M = Na, Mg, Sc, Y, Fe, Co, Ni,
Cu, Zn, Al, Pb, Sb, 0 ≦ x ≦ 1.2, 0 ≦
composite oxide mainly composed of y ≦ 0.7) or Mn 2 O
A compound oxide mainly composed of 4 is used for the positive electrode, a negative electrode material capable of charging and discharging lithium ions, particularly metallic lithium or a lithium metal alloy is used, and ethylene carbonate (EC) is used as a solvent for the non-aqueous solvent electrolytic solution. Large current discharge and rapid charging by using a solvent having a viscosity lower than EC, especially a mixed solvent with at least one selected from dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), etc. It is possible to provide a secondary battery having a non-aqueous solvent electrolytic solution that enables the above. In the present invention, examples of ethers having a viscosity lower than EC include 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-ethoxymethoxyethane.

【0006】リチウムイオンを充放電可能な負極材料と
しては、(1)リチウム金属負極、(2)リチウムイオ
ンを充電及び放電可能なリチウム合金負極、例えば、L
iとAlを主体とするリチウム合金、LiとCd、I
n、Pb、Bi等のリチウム合金、(3)リチウムイオ
ンを充放電可能な負極活物質保持体を主体とする負極、
例えば、種々の炭素材料、Nb2 5 、WO2 、Fe2
3 等の金属酸化物、ポリチオフェン、ポリアセチレン
等の高分子化合物等がある。
As the negative electrode material capable of charging and discharging lithium ions, (1) a lithium metal negative electrode, (2) a lithium alloy negative electrode capable of charging and discharging lithium ions, for example, L
A lithium alloy mainly composed of i and Al, Li and Cd, I
Lithium alloys such as n, Pb and Bi, (3) Negative electrode mainly composed of a negative electrode active material holder capable of charging and discharging lithium ions,
For example, various carbon materials, Nb 2 O 5 , WO 2 , Fe 2
Examples thereof include metal oxides such as O 3 and polymer compounds such as polythiophene and polyacetylene.

【0007】電解液の電解質としてはLiClO4 、L
iPF6 、LiAsF6 、LiBF4 、LiAlC
4 、LiCF3 SO3 、LiSbF6 、LiSCN、
LiCl、LiC6 5 SO3 、LiN(CF3
2 2 、LiC(CF3 SO2 3、LiCF3 SO
3 等のリチウム塩を、単独又は2種以上混合して用いる
ことができる。これらのリチウム塩は、0.5〜1.5
mol/リットルの濃度で用いるのが好ましい。
As the electrolyte of the electrolytic solution, LiClO 4 , L
iPF 6, LiAsF 6, LiBF 4 , LiAlC
l 4 , LiCF 3 SO 3 , LiSbF 6 , LiSCN,
LiCl, LiC 6 H 5 SO 3 , LiN (CF 3 S
O 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiCF 3 SO
Lithium salts such as 3 can be used alone or in admixture of two or more. These lithium salts are 0.5 to 1.5
It is preferably used at a concentration of mol / liter.

【0008】本発明の非水溶媒電解液を有する二次電池
においては、次のような特徴を有する。すなわち正極活
物質としてLix Mn2-y y 4 (M=Na、Mg、
Sc、Y、Fe、Co、Ni、Cu、Zn、Al、P
b、Sb、0≦x≦1.2、0≦y≦0.7)及びMn
2 4 を主体とする複合酸化物を用いた電池は安価でサ
イクル寿命が長いという特徴を有している。また正極活
物質としてLix Mn2-y y 4 (M=Na、Mg、
Sc、Y、Fe、Co、Ni、Cu、Zn、Al、P
b、Sb、0≦x≦1.2、0≦y≦0.7)を主体と
する複合酸化物を用いた電池は、Lix Mn2 4 (0
≦x≦1.2)のMnを一部遷移金属に置換することに
より特に結晶構造が安定し充放電寿命が長くなってい
る。また正極活物質としてLix CoO2 (0≦x≦
1.2)を主体とする複合酸化物を用いた電池は、電圧
が高く、エネルギー密度が大きいという特徴を有してい
る。また正極活物質としてLix NiO2 (0≦x≦
1.2)を主体とする複合酸化物を用いた電池は、充放
電容量が大きく、エネルギー密度が大きいという特徴を
有している。また正極活物質としてFe2 (SO4 3
を主体とする複合硫酸塩を用いた電池は安価で軽いとい
う特徴を有している。
The secondary battery having the non-aqueous solvent electrolyte of the present invention has the following features. That is, as a positive electrode active material, Li x Mn 2- y My O 4 (M = Na, Mg,
Sc, Y, Fe, Co, Ni, Cu, Zn, Al, P
b, Sb, 0 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.7) and Mn
A battery using a complex oxide mainly composed of 2 O 4 is characterized by being inexpensive and having a long cycle life. Further, as a positive electrode active material, Li x Mn 2- y My O 4 (M = Na, Mg,
Sc, Y, Fe, Co, Ni, Cu, Zn, Al, P
b, Sb, 0 ≦ x ≦ 1.2, 0 ≦ y ≦ 0.7) is used as a battery, and a battery using a composite oxide is Li x Mn 2 O 4 (0
By substituting a part of transition metal for Mn of ≦ x ≦ 1.2), the crystal structure is particularly stable and the charge / discharge life is extended. Further, as a positive electrode active material, Li x CoO 2 (0 ≦ x ≦
The battery using the complex oxide mainly composed of 1.2) is characterized by high voltage and high energy density. Further, as a positive electrode active material, Li x NiO 2 (0 ≦ x ≦
The battery using the complex oxide mainly composed of 1.2) has the characteristics of large charge / discharge capacity and large energy density. Further, as a positive electrode active material, Fe 2 (SO 4 ) 3
A battery using a complex sulfate mainly composed of is characterized by being inexpensive and lightweight.

【0009】以上述べたように、正極にこれらの充電終
止電圧として3.5V以上が必要な正極活物質を正極に
用いることにより、高電圧、高エネルギー密度が得ら
れ、またそのリチウムイオンのインターカレーション、
デインターカレーションの拡散が速いために大電流放電
急速充電に適している。負極には、特に金属リチウムあ
るいはリチウム金属合金を用いることによって、高エネ
ルギー密度を有することができ、リチウムイオンのイン
ターカレーション、デインターカレーションの必要がな
いためにリチウムイオンの拡散の問題が生じず、そのた
めに大電流放電急速充電に適しており、負極を作製する
のに特別な行程も必要ないためにコストが低くできる。
電解液には、非常に高い誘電率を持つECを用い、EC
より低粘度溶媒と混合することによって相加的な効果に
より高い誘電率を得ることができる。これによって大電
流放電急速充電が可能になった。また、このECとEC
より低粘度溶媒と混合した電解液は高いリチウム極の充
放電効率を示し、これにより、長い充放電寿命を達成す
ることができる。
As described above, a high voltage and a high energy density can be obtained by using a positive electrode active material that requires 3.5 V or more as the final charge voltage for the positive electrode, and the lithium ion interface can be obtained. Curation,
It is suitable for high-current discharge rapid charging due to the rapid diffusion of deintercalation. The negative electrode can have a high energy density by using metal lithium or a lithium metal alloy, and there is no need for lithium ion intercalation or deintercalation, which causes a problem of lithium ion diffusion. Therefore, it is suitable for high-current discharge rapid charging, and no cost is required because no special process is required for producing the negative electrode.
EC with a very high dielectric constant is used as the electrolyte.
By mixing with a lower viscosity solvent, a high dielectric constant can be obtained by an additive effect. This enabled high-current discharge rapid charging. Also, this EC and EC
An electrolytic solution mixed with a lower viscosity solvent exhibits high charge / discharge efficiency of a lithium electrode, and thus a long charge / discharge life can be achieved.

【0010】[0010]

【実施例】以下に実施例及び比較例を用いて、本発明の
効果を説明するが、本発明はこれら実施例に限定されな
い。
EXAMPLES The effects of the present invention will be described below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0011】実施例1(2:8) 図1は本発明による非水溶媒電解液を有する二次電池の
断面図である。図1において、1はステンレス製の負極
ケースである。2は負極であり、ここでは、所定の厚さ
のリチウム箔を直径16mmに打ち抜いたものを1に圧
着したものである。3は非水溶媒を用いた電解液であ
り、ECとDMCを体積比2:8の混合溶媒に六フッ化
リン酸リチウムLiPF6 を1mol/リットル溶解し
たものである。4はポリプロピレン又はポリエチレンの
多孔質フィルムからなるセパレータである。5はステン
レス製正極ケースである。6はLiMn1.9 Co0.1
4 を用いて構成された正極である。これは、上記正極活
物質を、導電剤、結着剤と混合しスラリーとしたものを
SUS箔上に所定の厚さに塗布し、乾燥させた後にそれ
を直径14mmの電極部分を持つ直径16mmの大きさ
に切り出したものである。7はガスケットであり負極ケ
ース1と正極ケース5との間の電気的絶縁を保つと同時
に、負極ケース開口縁が内側に折り曲げられ、かしめら
れることによって、電池内容物を密閉、封止している。
この非水溶媒電解液を有する二次電池を3.3V〜4.
3Vの電圧範囲で、充電電流1mA/cm2 、放電電流
3mA/cm2 の大電流放電、急速充電の仕様で充放電
サイクル試験を行った。表1に充放電容量とサイクル寿
命を示す。これからも明らかなように、この二次電池
は、安定に充放電を繰り返し、充放電容量も大きく、サ
イクル寿命も1400回と非常に長かった。なお、サイ
クル寿命は、容量が安定に充放電を繰り返しているとき
の容量の半分になったときのサイクル数とし、充放電容
量は、サイクル寿命までの平均値とした。
Example 1 (2: 8) FIG. 1 is a sectional view of a secondary battery having a non-aqueous solvent electrolyte according to the present invention. In FIG. 1, 1 is a negative electrode case made of stainless steel. Reference numeral 2 denotes a negative electrode, which is obtained by punching out a lithium foil having a predetermined thickness to a diameter of 16 mm and press-bonding it to 1. Reference numeral 3 is an electrolytic solution using a non-aqueous solvent, in which 1 mol / liter of lithium hexafluorophosphate LiPF 6 was dissolved in a mixed solvent of EC and DMC in a volume ratio of 2: 8. 4 is a separator made of a polypropylene or polyethylene porous film. 5 is a positive electrode case made of stainless steel. 6 is LiMn 1.9 Co 0.1 O
It is a positive electrode configured by using 4 . This is prepared by mixing the above positive electrode active material with a conductive agent and a binder to form a slurry, applying the slurry to a predetermined thickness on a SUS foil, and drying it. It was cut into the size of. Reference numeral 7 denotes a gasket, which maintains electrical insulation between the negative electrode case 1 and the positive electrode case 5, and at the same time, the opening edge of the negative electrode case is bent inward and caulked to seal and seal the battery contents. .
A secondary battery having this non-aqueous solvent electrolytic solution is used in the range of 3.3V to 4.V.
A charging / discharging cycle test was performed in the voltage range of 3 V under the specifications of a large current discharge with a charging current of 1 mA / cm 2 and a discharging current of 3 mA / cm 2 , and rapid charging. Table 1 shows the charge / discharge capacity and cycle life. As is clear from this, this secondary battery was repeatedly charged and discharged stably, had a large charge and discharge capacity, and had a very long cycle life of 1400 times. The cycle life was the number of cycles when the capacity became half of the capacity during repeated stable charge and discharge, and the charge and discharge capacity was the average value up to the cycle life.

【0012】[0012]

【表1】 [Table 1]

【0013】実施例2(1:9) 実施例1の二次電池において、電解液をECとDMCの
体積混合比1:9の混合溶媒にLiPF6 を1mol/
リットル溶解したものを用いる以外は実施例1と同様に
電池を作製し、この電池について実施例1と同一の充放
電条件で充放電サイクル試験を行った。表1に充放電容
量とサイクル寿命を示す。これより明らかなように、こ
の二次電池は安定に充放電を繰り返し、充放電容量も大
きく、サイクル寿命も1200回と非常に長かった。
Example 2 (1: 9) In the secondary battery of Example 1, 1 mol / mol of LiPF 6 was used as the electrolytic solution in a mixed solvent of EC and DMC in a volume mixing ratio of 1: 9.
A battery was prepared in the same manner as in Example 1 except that the one dissolved in liter was used, and this battery was subjected to a charge / discharge cycle test under the same charge / discharge conditions as in Example 1. Table 1 shows the charge / discharge capacity and cycle life. As is clear from this, this secondary battery was repeatedly charged and discharged stably, had a large charge and discharge capacity, and had a very long cycle life of 1200 times.

【0014】実施例3(3:7) 実施例1の二次電池において、電解液をECとDMCの
体積混合比3:7の混合溶媒にLiPF6 を1mol/
リットル溶解したものを用いる以外は実施例1と同様に
電池を作製し、この電池について実施例1と同一の充放
電条件で充放電サイクル試験を行った。表1に充放電容
量とサイクル寿命を示す。これより明らかなように、こ
の二次電池は安定に充放電を繰り返し、充放電容量も大
きく、サイクル寿命も1200回と非常に長かった。
Example 3 (3: 7) In the secondary battery of Example 1, 1 mol / mol of LiPF 6 was used as the electrolytic solution in a mixed solvent of EC and DMC in a volume mixing ratio of 3: 7.
A battery was prepared in the same manner as in Example 1 except that the one dissolved in liter was used, and this battery was subjected to a charge / discharge cycle test under the same charge / discharge conditions as in Example 1. Table 1 shows the charge / discharge capacity and cycle life. As is clear from this, this secondary battery was repeatedly charged and discharged stably, had a large charge and discharge capacity, and had a very long cycle life of 1200 times.

【0015】実施例4(4:6) 実施例1の二次電池において、電解液をECとDMCの
体積混合比4:6の混合溶媒にLiPF6 を1mol/
リットル溶解したものを用いる以外は実施例1と同様に
電池を作製し、この電池について実施例1と同一の充放
電条件で充放電サイクル試験を行った。表1に充放電容
量とサイクル寿命を示す。これより明らかなように、こ
の二次電池は安定に充放電を繰り返し、充放電容量も大
きく、サイクル寿命も1100回と非常に長かった。
Example 4 (4: 6) In the secondary battery of Example 1, 1 mol / mL of LiPF 6 was used as the electrolytic solution in a mixed solvent of EC and DMC in a volume mixing ratio of 4: 6.
A battery was prepared in the same manner as in Example 1 except that the one dissolved in liter was used, and this battery was subjected to a charge / discharge cycle test under the same charge / discharge conditions as in Example 1. Table 1 shows the charge / discharge capacity and cycle life. As is clear from this, this secondary battery was repeatedly charged and discharged stably, had a large charge and discharge capacity, and had a very long cycle life of 1100 times.

【0016】比較例1(0:10) 比較のため、実施例1の二次電池において、電解液をD
MCの単独溶媒にLiPF6 を1mol/リットル溶解
したものを用いる以外は実施例1と同様に電池を作製
し、この電池について実施例1と同一の充放電条件で充
放電サイクル試験を行った。表1に充放電容量とサイク
ル寿命を示す。これより明らかなように、この二次電池
のサイクル寿命は、実施例1〜4と比較して大きく下回
り、650回であった。
Comparative Example 1 (0:10) For comparison, in the secondary battery of Example 1, the electrolyte solution was changed to D
A battery was prepared in the same manner as in Example 1 except that 1 mol / liter of LiPF 6 dissolved in a single solvent of MC was used, and this battery was subjected to a charge / discharge cycle test under the same charge / discharge conditions as in Example 1. Table 1 shows the charge / discharge capacity and cycle life. As is clear from this, the cycle life of this secondary battery was 650 times, which was much shorter than in Examples 1 to 4.

【0017】比較例2(5:5) 比較のため、実施例1の二次電池において、電解液をE
CとDMCの体積混合比5:5の混合溶媒にLiPF6
を1mol/リットル溶解したものを用いる以外は実施
例1と同様に電池を作製し、この電池について実施例1
と同一の充放電条件で充放電サイクル試験を行った。表
1に充放電容量とサイクル寿命を示す。これより明らか
なように、この二次電池のサイクル寿命及び充放電容量
は、実施例1〜4と比較して大きく下回った。
Comparative Example 2 (5: 5) For comparison, in the secondary battery of Example 1, the electrolytic solution was E.
LiPF 6 was added to a mixed solvent of C and DMC at a volume mixing ratio of 5: 5.
A battery was prepared in the same manner as in Example 1 except that 1 mol / liter of was dissolved in Example 1.
A charge / discharge cycle test was performed under the same charge / discharge conditions as above. Table 1 shows the charge / discharge capacity and cycle life. As is clear from this, the cycle life and charge / discharge capacity of this secondary battery were much lower than those of Examples 1 to 4.

【0018】実施例5 Mn2 実施例1の二次電池において、正極をLiMn1.9 Co
0.1 4 からLiMn2 4 に変えて用いる以外は実施
例1と同様に電池を作製し、この電池についてECとD
MCの体積混合比を0:10〜9:1の10種類とした
電解液を用い、同一の充放電条件で充放電サイクル試験
を行った。表2にそれぞれの充放電容量とサイクル寿命
を示す。これより明らかなように、ECとDMCの体積
混合比を1:9〜4:6とした電解液において、この二
次電池のサイクル寿命は長く、充放電容量も大きいもの
となった。
Example 5 Mn 2 In the secondary battery of Example 1, the positive electrode was LiMn 1.9 Co.
A battery was prepared in the same manner as in Example 1 except that 0.1 O 4 was used instead of LiMn 2 O 4 , and EC and D
A charge / discharge cycle test was performed under the same charge / discharge conditions using 10 kinds of electrolytic solutions having a volume mixing ratio of MC of 0:10 to 9: 1. Table 2 shows each charge / discharge capacity and cycle life. As is clear from this, in the electrolytic solution in which the volume mixing ratio of EC and DMC was 1: 9 to 4: 6, the cycle life of this secondary battery was long and the charge / discharge capacity was large.

【0019】[0019]

【表2】 [Table 2]

【0020】実施例6 DEC 実施例1の二次電池において、電解液をECとDECの
体積混合比0:10〜9:1とした混合溶媒にLiPF
6 を1mol/リットル溶解したものを用いる以外は実
施例1と同様に電池を作製し、同一の充放電条件で充放
電サイクル試験を行った。表3にそれぞれの充放電容量
とサイクル寿命を示す。これより明らかなように、EC
とDECの体積混合比を1:9〜4:6とした電解液に
おいて、この二次電池のサイクル寿命は長く、充放電容
量も大きいものとなった。
Example 6 DEC In the secondary battery of Example 1, the electrolytic solution was LiPF in a mixed solvent of EC and DEC in a volume mixing ratio of 0:10 to 9: 1.
A battery was produced in the same manner as in Example 1 except that 6 was dissolved in 1 mol / liter, and a charge / discharge cycle test was performed under the same charge / discharge conditions. Table 3 shows each charge / discharge capacity and cycle life. As is clear from this, EC
In the electrolytic solution in which the volume mixing ratio of and DEC was 1: 9 to 4: 6, the cycle life of this secondary battery was long and the charge / discharge capacity was large.

【0021】[0021]

【表3】 [Table 3]

【0022】実施例7 EMC 実施例1の二次電池において、電解液をECとEMCの
体積混合比0:10〜9:1とした混合溶媒にLiPF
6 を1mol/リットル溶解したものを用いる以外は実
施例1と同様に電池を作製し、同一の充放電条件で充放
電サイクル試験を行った。表4にそれぞれの充放電容量
とサイクル寿命を示す。これより明らかなように、EC
とEMCの体積混合比を1:9〜4:6とした電解液に
おいて、この二次電池のサイクル寿命は長く、充放電容
量も大きいものとなった。
Example 7 EMC In the secondary battery of Example 1, the electrolyte solution was mixed with EC and EMC in a mixed solvent having a volume mixing ratio of 0:10 to 9: 1, and LiPF.
A battery was produced in the same manner as in Example 1 except that 6 was dissolved in 1 mol / liter, and a charge / discharge cycle test was performed under the same charge / discharge conditions. Table 4 shows each charge / discharge capacity and cycle life. As is clear from this, EC
In the electrolytic solution in which the volume mixing ratio of EMC and 1: 9 to 4: 6, the cycle life of this secondary battery was long and the charge / discharge capacity was large.

【0023】[0023]

【表4】 [Table 4]

【0024】実施例8 LiClO4 実施例1の二次電池において、電解液のLiPF6 をL
iClO4 に変えて用いる以外は実施例1と同様に電池
を作製し、この電池についてECとDMCの体積混合比
を0:10〜9:1の10種類とした電解液を用い、同
一の充放電条件で充放電サイクル試験を行った。表5に
それぞれの充放電容量とサイクル寿命を示す。これより
明らかなように、LiClO4 を用い、ECとDMCの
体積混合比を1:9〜4:6とした電解液において、こ
の二次電池のサイクル寿命は長く、充放電容量も大きい
ものとなった。
Example 8 LiClO 4 In the secondary battery of Example 1, the electrolyte solution LiPF 6 was added to L
A battery was prepared in the same manner as in Example 1 except that iClO 4 was used, and the same charge was used for the battery using 10 kinds of electrolytic solutions having a volume mixing ratio of EC and DMC of 0:10 to 9: 1. A charge / discharge cycle test was conducted under discharge conditions. Table 5 shows each charge / discharge capacity and cycle life. As is clear from this, in an electrolytic solution using LiClO 4 and a volume mixing ratio of EC and DMC of 1: 9 to 4: 6, the secondary battery has a long cycle life and a large charge / discharge capacity. became.

【0025】[0025]

【表5】 [Table 5]

【0026】実施例9 LiAsF6 実施例1の二次電池において、電解液のLiPF6 をL
iAsF6 に変えて用いる以外は実施例1と同様に電池
を作製し、この電池についてECとDMCの体積混合比
を0:10〜9:1の10種類とした電解液を用い、同
一の充放電条件で充放電サイクル試験を行った。表6に
それぞれの充放電容量とサイクル寿命を示す。これより
明らかなように、LiAsF6 を用い、ECとDMCの
体積混合比を1:9〜4:6とした電解液において、こ
の二次電池のサイクル寿命は長く、充放電容量も大きい
ものとなった。
Example 9 LiAsF 6 In the secondary battery of Example 1, the electrolyte solution LiPF 6 was changed to L.
A battery was prepared in the same manner as in Example 1 except that iAsF 6 was used, and the same charge was used for this battery using 10 kinds of electrolytic solutions having a volume mixing ratio of EC and DMC of 0:10 to 9: 1. A charge / discharge cycle test was conducted under discharge conditions. Table 6 shows each charge / discharge capacity and cycle life. This As is clear from, using LiAsF 6, the volume mixing ratio of EC and DMC 1: 9 to 4: In 6 and the electrolyte, the cycle life of the secondary battery is long, as the charge-discharge capacity greater became.

【0027】[0027]

【表6】 [Table 6]

【0028】[0028]

【発明の効果】以上説明したように、本発明は、3.5
V以上の充電終止電圧を必要とする正極活物質を正極に
用い、前記電解液の非水溶媒として、ECとECより低
粘度の溶媒との混合溶媒を用い、更にECより低粘度の
溶媒の体積混合比率を大きくすることによって、エネル
ギー密度が高く、大電流放電急速充電が可能であり、充
放電寿命が長く、しかも安価な非水溶媒電解液を有する
二次電池を提供できる。
As described above, the present invention has 3.5
A positive electrode active material that requires a cut-off voltage of charge of V or more is used for the positive electrode, a mixed solvent of EC and a solvent having a viscosity lower than EC is used as the nonaqueous solvent of the electrolytic solution, and a solvent having a viscosity lower than that of EC is used. By increasing the volume mixing ratio, it is possible to provide a secondary battery having a high energy density, capable of high-current discharge rapid charging, long charge / discharge life, and inexpensive non-aqueous solvent electrolyte.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電池の断面図である。FIG. 1 is a cross-sectional view of a battery of the present invention.

【符号の説明】[Explanation of symbols]

1:ステンレス製の負極ケース、2:負極、3:非水溶
媒を用いた電解液、4:セパレータ、5:ステンレス製
正極ケース、6:正極、7:ガスケット
1: Stainless steel negative electrode case, 2: Negative electrode, 3: Electrolyte using non-aqueous solvent, 4: Separator, 5: Stainless steel positive electrode case, 6: Positive electrode, 7: Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山木 準一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Junichi Yamaki 1-1-6 Uchisaiwaicho, Chiyoda-ku, Tokyo Nihon Telegraph and Telephone Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを充放電可能な負極と、
リチウムイオンと可逆的な電気化学反応可能な正極、及
び非水溶媒にイオン解離性のリチウム塩を溶解した電解
液を有する二次電池において、前記正極として、3.5
V以上の充電終止電圧を必要とする正極活物質を正極に
用い、前記電解液の非水溶媒として、エチレンカーボネ
ートと該エチレンカーボネートより低粘度のエステル又
はエーテルとの混合溶媒を用い、体積混合比を5:5を
越え、0:10未満とすることを特徴とする二次電池。
1. A negative electrode capable of charging and discharging lithium ions,
In a secondary battery having a positive electrode capable of performing a reversible electrochemical reaction with lithium ions and an electrolytic solution in which an ion dissociative lithium salt is dissolved in a non-aqueous solvent, the positive electrode may be 3.5
A positive electrode active material that requires a cut-off voltage of charge of V or more is used for the positive electrode, a mixed solvent of ethylene carbonate and an ester or ether having a viscosity lower than the ethylene carbonate is used as a non-aqueous solvent of the electrolytic solution, and a volume mixing ratio is set. Is more than 5: 5 and less than 0:10, a secondary battery.
【請求項2】 上記負極として、金属リチウムあるいは
リチウム金属合金を負極活物質に用いたことを特徴とす
る請求項1に記載の二次電池。
2. The secondary battery according to claim 1, wherein metallic lithium or a lithium metal alloy is used as a negative electrode active material for the negative electrode.
【請求項3】 上記正極活物質としてLix Mn2-y
y 4 (M=Na、Mg、Sc、Y、Fe、Co、N
i、Cu、Zn、Al、Pb、Sb、0≦x≦1.2、
0≦y≦0.7)及びMn2 4 を主体とする複合酸化
物を用いたことを特徴とする請求項1又は2に記載の二
次電池。
3. Li x Mn 2-y M as the positive electrode active material
y O 4 (M = Na, Mg, Sc, Y, Fe, Co, N
i, Cu, Zn, Al, Pb, Sb, 0 ≦ x ≦ 1.2,
The secondary battery according to claim 1 or 2, wherein a composite oxide mainly composed of 0 ≦ y ≦ 0.7) and Mn 2 O 4 is used.
【請求項4】 上記電解液の非水溶媒として、エチレン
カーボネートと該エチレンカーボネートより低粘度の溶
媒として、ジメチルカーボネート、ジエチルカーボネー
ト、エチルメチルカーボネートのうちから選ばれた少な
くとも一種類を混合したものを使用することを特徴とす
る請求項1〜3のいずれかに記載の二次電池。
4. A non-aqueous solvent for the electrolytic solution, which comprises a mixture of ethylene carbonate and at least one selected from dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate as a solvent having a viscosity lower than that of ethylene carbonate. It uses, The secondary battery in any one of Claims 1-3.
【請求項5】 上記電解液用のリチウム塩としてLiP
6 、LiAsF6あるいはLiClO4 を0.5〜
1.5mol/リットルの濃度で用いたことを特徴とす
る請求項1〜4のいずれかに記載の二次電池。
5. LiP as a lithium salt for the electrolytic solution
0.5% of F 6 , LiAsF 6 or LiClO 4
The secondary battery according to claim 1, wherein the secondary battery is used at a concentration of 1.5 mol / liter.
【請求項6】 上記の非水溶媒としてエチレンカーボネ
ートとジメチルカーボネートを体積混合率比3:7〜
1:9の混合溶媒とした電解液を用い、正極活物質とし
てLix Mn2-y Coy 4 (0≦x≦1.2、0≦y
≦0.7)を用いたことを特徴とする請求項1に記載の
二次電池。
6. The volume mixing ratio of ethylene carbonate and dimethyl carbonate as the non-aqueous solvent is 3: 7 to.
Li x Mn 2-y Co y O 4 (0 ≦ x ≦ 1.2, 0 ≦ y was used as a positive electrode active material, using an electrolytic solution as a mixed solvent of 1: 9.
≦ 0.7) was used, The secondary battery according to claim 1.
JP7015577A 1995-01-06 1995-01-06 Secondary battery having nonaqueous solvent electrolyte Pending JPH08190933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7015577A JPH08190933A (en) 1995-01-06 1995-01-06 Secondary battery having nonaqueous solvent electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7015577A JPH08190933A (en) 1995-01-06 1995-01-06 Secondary battery having nonaqueous solvent electrolyte

Publications (1)

Publication Number Publication Date
JPH08190933A true JPH08190933A (en) 1996-07-23

Family

ID=11892593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7015577A Pending JPH08190933A (en) 1995-01-06 1995-01-06 Secondary battery having nonaqueous solvent electrolyte

Country Status (1)

Country Link
JP (1) JPH08190933A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156244A (en) * 1998-11-18 2000-06-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2009076468A (en) * 2004-08-30 2009-04-09 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2011096661A (en) * 2009-10-30 2011-05-12 Samsung Sdi Co Ltd Electrolyte for lithium battery, lithium battery containing the same, and operation method of lithium battery
JP2015028949A (en) * 2014-09-19 2015-02-12 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000156244A (en) * 1998-11-18 2000-06-06 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2009076468A (en) * 2004-08-30 2009-04-09 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2011096661A (en) * 2009-10-30 2011-05-12 Samsung Sdi Co Ltd Electrolyte for lithium battery, lithium battery containing the same, and operation method of lithium battery
JP2015028949A (en) * 2014-09-19 2015-02-12 株式会社Gsユアサ Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
CN111916845B (en) Electrochemical device and electronic device
US20210328215A1 (en) Anode material and electrochemical device and electronic device including the same
US6878487B2 (en) Active material for battery and method of preparing same
EP0482287B2 (en) A non-aqueous secondary electrochemical battery
CN105742582B (en) Lithium secondary battery
KR100802851B1 (en) Non-aqueous electrolyte secondary battery
US20170207497A1 (en) Charging and discharging method for lithium secondary battery
CN102160215A (en) Nonaqueous electrolyte secondary battery
KR20150133167A (en) Anode active material for lithium secondary battery and Lithium secondary battery comprising the same
US20230125949A1 (en) Electrochemical Device and Power Consuming Device Comprising the Electrochemical Device
CN111919325A (en) Lithium secondary battery
US20240170652A1 (en) Positive electrode active material, preparation method thereof, and lithium-ion battery, battery module, battery pack, and electric apparatus containing same
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
EP4270548A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
CN112467218B (en) Lithium metal battery based on copper nitrate electrolyte additive
CN115548437A (en) Anion-regulated lithium metal battery electrolyte
JPH07302618A (en) Secondary battery with nonaqueous solvent electrolyte
JPH08190933A (en) Secondary battery having nonaqueous solvent electrolyte
JP2000012029A (en) Nonaqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent
JPH08236151A (en) Secondary battery having nonaqueous solvent electrolyte
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JPH09245838A (en) Secondary battery having nonaqueous solvent electrolyte
US20230163357A1 (en) Electrolyte, secondary battery, battery module, battery pack, and power consuming device
US20230146812A1 (en) Negative electrode plate, secondary battery, battery module, battery pack, and electric apparatus