JPH04354208A - Bit length expanding device - Google Patents

Bit length expanding device

Info

Publication number
JPH04354208A
JPH04354208A JP15370291A JP15370291A JPH04354208A JP H04354208 A JPH04354208 A JP H04354208A JP 15370291 A JP15370291 A JP 15370291A JP 15370291 A JP15370291 A JP 15370291A JP H04354208 A JPH04354208 A JP H04354208A
Authority
JP
Japan
Prior art keywords
data
change
bit
lsb
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15370291A
Other languages
Japanese (ja)
Other versions
JPH0773187B2 (en
Inventor
Hideaki Hayashi
英昭 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Columbia Co Ltd
Original Assignee
Nippon Columbia Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Columbia Co Ltd filed Critical Nippon Columbia Co Ltd
Priority to JP3153702A priority Critical patent/JPH0773187B2/en
Publication of JPH04354208A publication Critical patent/JPH04354208A/en
Publication of JPH0773187B2 publication Critical patent/JPH0773187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve distortion at the reproduction of a small level. CONSTITUTION:A data difference such as 'minimum bit', 'no change', and 'large amplitude change', is extracted from the sampling data of a prescribed bit by a difference extracting circuit 1, inputted to a shirt register 2 and a data pattern by an interval or the like in a change in a small level from the shifty register 2 is extracted by a data pattern extracting device 3 and when a discrimination data such as a minimum bit change interval is long or short is inputted to a shift register 4, the data of a low-order bit (less then LSB) is generated by a data generating circuit 5 based on the discrimination data and the inputted data is fed to an adder circuit 7 together with a data generating timing with a shift register 6 and added, all bits are expanded, before and after the original LSB change is smoothly changed by all bit data and when a small data is reproduced, the quantization distortion by the LSB is decreased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ディジタルオーデオ等
のディジタルアナログ変換に用いて、特に微少レベル時
の再生歪の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvement of reproduction distortion particularly at minute levels when used in digital-to-analog conversion of digital audio and the like.

【0002】0002

【従来の技術】従来アナログ信号をAD,DAを介して
ディジタルにて伝送、又は記録再生するものでは、ディ
ジタル段階では、限られたビット長からなる一つのサン
プルデーターを用いるため、そのビット長に見合った量
子化歪をともなう。
[Prior Art] Conventionally, in the digital transmission, recording and reproduction of analog signals via AD and DA, one sample data consisting of a limited bit length is used in the digital stage. with commensurate quantization distortion.

【0003】0003

【発明が解決しようとする課題】特に微少レベル再生で
は最少ビット(LSB)に近付くにつれ歪が増大するた
めサイン波信号でも方形波に近ずき歪が増大している。
Particularly in minute level reproduction, distortion increases as the signal approaches the least significant bit (LSB), so that even with a sine wave signal, distortion increases as the signal approaches a square wave.

【0004】0004

【課題を解決するための手段】このため本発明では、こ
れら微少レベルの量子化歪を減少させ、ビット長を増大
してDA変換しうる装置を得るものである。この実現の
ため、再生ディジタル信号の各サンプルデーター間の差
分を抽出することによってサンプル間にデーター変化が
無い区間、1LSB変化のみが発生する区間、又はそれ
以上の大振幅変化等の抽出を行い、数サンプルにわたり
変化がなく1LSBのみが変化し又変化のないような微
少レベル部を抽出し、この1LSB変化の前後数サンプ
ルにわたりゆるやかなレベル変化出力となるよう、LS
B以下のデーターを生成する。この生成出力が1LSB
変化点に対応し出力することでLSB変化点が近い場合
にも、これらの生成出力を加算することで全体的になめ
らかなデータ変化とする拡張ビットを得これをアナログ
変換する。
SUMMARY OF THE INVENTION Therefore, the present invention provides an apparatus that can perform DA conversion by reducing these minute level quantization distortions and increasing the bit length. To achieve this, by extracting the difference between each sample data of the reproduced digital signal, we extract sections where there is no data change between samples, sections where only 1 LSB change occurs, or larger amplitude changes, etc. We extract a very small level part where there is no change over several samples and only 1LSB changes, and then output a gradual level change over several samples before and after this 1LSB change.
Generate data below B. This generated output is 1LSB
By outputting corresponding to the change point, even when the LSB change point is close, by adding these generated outputs, an extended bit is obtained that makes the data change smoothly overall, and this is converted into analog.

【0005】[0005]

【実施例】以下ブロック図にしたがって説明する。全体
を示したブロック図を図1に示し、図2にその波形図を
示す。再生された有限長ビットからなるワードであるサ
ンプル毎のデーターDinは、差分抽出回路1でサンプ
ルデーター間のデーターの変化を検出する。
Embodiments will be explained below with reference to block diagrams. A block diagram showing the entire system is shown in FIG. 1, and a waveform diagram thereof is shown in FIG. Data Din for each sample, which is a word consisting of reproduced finite-length bits, is used by a difference extraction circuit 1 to detect changes in data between the sample data.

【0006】図3に示すサンプルクロックfs毎にデー
ターを移動するシフトレジスター1−1,1−2をもう
け、これらの1サンプル間のデーターを比較器1−3で
比較し、これら1サンプル間で同一データーである変化
なし出力0、+1LSBの変化、ー1LSB以下の変化
、又はそれ以上の大振幅変化H等の差分抽出を行う。次
にこれらの差分データーをシフトレジスター2に入力し
、目的に合わせ数〜数10サンプルにわたりこれらの変
化パターンを検出するためにシフトレジスター2にやは
りサンプルクロックでシフトするように入力する。
Shift registers 1-1 and 1-2 are provided which move data every sample clock fs as shown in FIG. Differences such as the same data with no change output 0, a change of +1LSB, a change of -1LSB or less, or a large amplitude change H of more than that are extracted. Next, these differential data are input to the shift register 2, and in order to detect these change patterns over several to several tens of samples depending on the purpose, the data are also input to the shift register 2 so as to be shifted using the sample clock.

【0007】このシウフトレジスター2のデーターを元
に微少レベル区間、又はその変化間隔(周波数)などを
抽出、すなわちパターン抽出を行い微少レベル変化であ
るLSB変化1つに対応したデーター生成を決定する。
Based on the data of this Schauft register 2, a minute level section or its change interval (frequency) is extracted, that is, a pattern is extracted, and data generation corresponding to one LSB change, which is a minute level change, is determined. .

【0008】パターン抽出部3により、図2に示すよう
にLSB変化点とのサンプル距離によってLSB変化に
応じた下位の拡張データーを生成する。今、比較的ゆる
やかな低い周波数成分に対応したデーター生成F1 と
、高い周波数成分のF2 の2つの生成手段について説
明する。
The pattern extraction unit 3 generates lower extended data according to the LSB change based on the sample distance from the LSB change point as shown in FIG. Now, two data generation means, F1 corresponding to a relatively gentle low frequency component and F2 corresponding to a high frequency component, will be explained.

【0009】正の方向に1LSB変化点より、途中のサ
ンプルがデーター変化なしにー1LSBに変化するχの
区間、又は逆にー1より+1へのχ’の区間がdに示す
ように(i)以上の間隔があり、又同極性の間隔が(y
)が(ii)以上であればF1の出力をパターン抽出部
3より1LSB変化点に対応して出力し、又、eに示す
ようにχが(i)以下で(i’)以上であればF2 を
出力するようにする。(ここで(ii)は用いず又F1
 F2 出力共H入力の場合は出力しない。)
As shown in d, the interval of χ in which the intermediate sample changes to -1LSB without data change from the 1LSB change point in the positive direction, or conversely, the interval of χ' from -1 to +1, is shown in (i ), and the interval of the same polarity is (y
) is greater than or equal to (ii), the output of F1 is output from the pattern extraction unit 3 corresponding to the 1LSB change point, and as shown in e, if χ is less than or equal to (i) and greater than or equal to (i'), Make it output F2. (Here, (ii) is not used and F1
F2 No output if both outputs are H input. )

【001
0】このパターン出力データーをもとにシフトレジスタ
ー4にF1 及びF2 のデーターがシフトされ、この
途中にサンプル毎にF1 に対応してd1 又はd1 
’、F2 に対応してd2 又はd2 ’に示すような
データーをそれぞれ生成する。これらを加算することで
拡張データーを生成し上位データーに加えてビット拡張
されたデーターとしてDA変換する。ここで上位データ
ーは、データ生成出力と同一位置に合わせるためにシフ
トレジスター6で位相を合わせておく。
001
0] Based on this pattern output data, the data of F1 and F2 are shifted to the shift register 4, and during this, data of d1 or d1 is shifted for each sample corresponding to F1.
', F2, data as shown in d2 or d2' is generated, respectively. By adding these, extended data is generated, which is added to the upper data and subjected to DA conversion as bit-extended data. Here, the phase of the upper data is adjusted by the shift register 6 in order to align it with the same position as the data generation output.

【0011】図2の入力データーaの上位データーによ
って、各LSB変化点のパターン抽出データーは、図2
のcに示す破線のようになりこれらを加算することによ
って実線の生成出力を得、上位データと加えた総合的な
出力は、図2のbのようになめらかな歪のない波形を得
ることができる。
Using the upper data of the input data a in FIG. 2, the pattern extraction data at each LSB change point is as shown in FIG.
The broken line shown in c in Figure 2 will be obtained.By adding these, a solid line generated output will be obtained, and the overall output when added with the upper data will produce a smooth distortion-free waveform as shown in b in Fig. 2. can.

【0012】さらに各部について詳細に説明する。図4
のパターン抽出器3について説明する。F1 の出力は
、先の(i)が17サンプル以上又(ii)が5サンプ
ル以上で示してある。レジスター2−24 および2ー
8の出力より+1LSBとHのオアをOR回路a24及
びa8 でとりこれらのオアにより、カウンターa12
をクリアし、又同じくー1とHのオアでカウンターb1
3をクリアする。このカウンター12及び13は16サ
ンプルカウントし、17サンプル目より出力する。レジ
スター2ー8の出力が+1又はー1の時に逆の極性でク
リアされたカウンターb13の出力又はカウンターa1
2の出力とアンドゲートG1 又はG2 を取ることで
このゲートが成立することは、レジスター2ー8点に±
1LSB変化した16サンプル前後以内にLSB変化お
よびH信号が無い事になり、(i)の条件を検出する。
Further, each part will be explained in detail. Figure 4
The pattern extractor 3 will be explained. The output of F1 is shown in (i) with 17 samples or more and (ii) with 5 samples or more. OR circuits a24 and a8 take +1LSB and H from the outputs of registers 2-24 and 2-8, and by these ORs, counter a12
Clear and counter b1 again with the or of -1 and H
Clear 3. These counters 12 and 13 count 16 samples and output from the 17th sample. When the output of register 2-8 is +1 or -1, the output of counter b13 or counter a1 is cleared with the opposite polarity.
This gate is established by taking the output of 2 and the AND gate G1 or G2.
There is no LSB change and no H signal within around 16 samples where the 1LSB change occurs, and condition (i) is detected.

【0013】又これらの出力をレジスター2−8をはさ
んで±4サンプルレジスター2−4〜2−12 の出力
のオアゲートC4 〜C12をオアゲートG3 で検出
しアンドゲートG4およびアンドゲートG4 ’でそれ
ぞれアンドゲートを取る。これは(ii)の条件となる
。ここでC4 〜C12では同一極性以外入力している
が逆極性や、H信号があればG1 又はG2 が成立せ
ず結局(ii)の条件のみが成立する。これらの出力を
シフトレジスター4に入れる。 又F2 に関しては、同様にしてシフトレジスター2の
取り出し位置およびカウンター値を設定すれば良い。F
2 の(i’)の条件を5サンプル以上とすると、F1
のレジスター2−8に対応してレジスター2−4,又レ
ジスター2−24 の出力に対応してレジスター2−1
2 としカウンターを1/2の8サンプルとすると良い
。又ここでオアゲートG3 に相当するものは不要であ
る。ここで1つの1LSB変化に対応しF1 の出力が
あればF2 の条件とも合うためにF1 を生かしF2
を出力させない。このため±F1のオアゲートを取りデ
ーターの変化毎にラッチ14にF1 のフラッグをラッ
チするインバータ15を介し、ゲートG5又はG5’で
F1 があればF2 を禁止する。これによって長い周
期のものはF1 のみ、短いものはF2 のみとなり同
一に出力されない。
These outputs are sandwiched between registers 2-8 and OR gates C4 to C12 of the outputs of ±4 sample registers 2-4 to 2-12 are detected by OR gate G3, and are detected by AND gate G4 and AND gate G4', respectively. Take Andgate. This becomes condition (ii). Here, in C4 to C12, inputs other than the same polarity are input, but if there is a reverse polarity or an H signal, G1 or G2 will not hold, and in the end only condition (ii) will hold. These outputs are input into shift register 4. Regarding F2, the take-out position and counter value of the shift register 2 may be set in the same manner. F
If the condition (i') in 2 is 5 or more samples, then F1
Register 2-4 corresponds to register 2-8, and register 2-1 corresponds to the output of register 2-24.
2 and set the counter to 1/2 of 8 samples. Also, there is no need for something equivalent to ORGATE G3 here. Here, if there is an output of F1 in response to one 1LSB change, it will meet the conditions of F2, so F1 can be used to make use of F2.
is not output. Therefore, if F1 is present at gate G5 or G5', F2 is inhibited via an inverter 15 which takes an OR gate of ±F1 and latches a flag of F1 in a latch 14 every time the data changes. As a result, only F1 has a long period, and only F2 has a short period, so that they are not output the same.

【0014】これらによりF1F1’,F2F2’の出
力のいずれかが所定の1LSB変化点に対応し現れシフ
トレジスター4に入力されシフトされる。ここでシフト
レジスター4はデーター生成のために用いられF1 と
F2 の入力タイミングはレジスター2−8と2−4に
対応して4サンプルF2 があとに出力されるために4
サンプル分入力を遅延するとタイミングが合うことにな
る。以上F1〜F2の状態を図5に示す。ここでシフト
レジスター4よりの出力の都合で便利が良いように+F
1およびーF1のオアを取り、±F1 信号(±1LS
B)と+F1 すなわち±1LSBのF1 による変化
点で+F1 により極性を示すサインビット(Sign
)とすることができ、同様に±F2 とサインビットと
をシフトレジスター4に入れる。
As a result, one of the outputs of F1F1' and F2F2' appears corresponding to a predetermined 1 LSB change point, and is input to the shift register 4 and shifted. Here, shift register 4 is used for data generation, and the input timing of F1 and F2 is 4 because 4 samples F2 are output later, corresponding to registers 2-8 and 2-4.
If you delay the input by a sample amount, the timing will be correct. The states of F1 and F2 above are shown in FIG. Here, for convenience of the output from shift register 4, +F
Take the OR of 1 and -F1 and get the ±F1 signal (±1LS
B) and +F1, that is, at the change point due to F1 of ±1LSB, the sign bit (Sign
) and similarly put ±F2 and the sign bit into the shift register 4.

【0015】次に図6にレジスター出力によりデーター
生成回路5のブロツク図を示す。各レジスター4−8〜
4−−8は、中央より左と右に分け左側のサインビット
出力はそのまま、右側ではインバーターIを介しサイン
ビットを反転する。又左右のデーターは中央をはさみそ
れぞれ同一データーとする。このデーターは図7に示す
ようにF1 に対してはデーターは8種でD11〜D1
8まで図のように正弦波の1/4サイクル分を用いると
良い。このデーターを各レジスター毎に±1LSB変化
すなわちF1 又はF2 が出力されているレジスター
より出力する。 例えばレジスター4−8にF1 レジスター4−−4 
にF2 があれば、これらのデーターが2ケ所より出力
される。もちろん、ここでこれらの極性であるSign
ビツトも同時に出力する。ここで4bitのデーターで
あればSign以外は3ビツトで表す。
Next, FIG. 6 shows a block diagram of the data generation circuit 5 based on register output. Each register 4-8~
4--8 is divided into left and right parts from the center, and the sign bit output on the left side remains unchanged, while the sign bit on the right side is inverted via the inverter I. Also, the left and right data should be the same data across the center. As shown in Figure 7, there are 8 types of data for F1, D11 to D1.
It is preferable to use 1/4 cycle of the sine wave up to 8 as shown in the figure. This data is output from the register to which ±1 LSB change, ie, F1 or F2, is output for each register. For example, F1 in register 4-8, register 4--4
If there is F2 in , these data will be output from two places. Of course, here these polarities are Sign
Bits are also output at the same time. Here, if the data is 4 bits, everything other than Sign is represented by 3 bits.

【0016】図8において、これらのデーター出力を全
加算器Σによって行う。データー加算は種々公知のため
省略する。各データーは、図6に示すように必要なデー
ター値に対応してワイアリングのみで生成できる。ここ
でデーターは図7のように正弦波の1/4部がD18〜
D11又はD24〜D21のように+のLSB変化入力
に対しては正データーが上昇し、中央をはさんで負のデ
ーターとなり逆転して0へ減少していく。ー1LSB変
化では、Signビツトが0であるためこの逆のデータ
ー変化となり負のデーターが増大していき中央をはさみ
正となり0へ向って減少する。
In FIG. 8, these data are output by a full adder Σ. Data addition is omitted because various methods are known. Each data can be generated only by wiring in accordance with the necessary data values as shown in FIG. Here, the data is as shown in Figure 7, where 1/4 part of the sine wave is D18~
In response to a + LSB change input like D11 or D24 to D21, positive data rises, becomes negative data across the center, and then reverses and decreases to 0. In the -1 LSB change, since the Sign bit is 0, the data changes in the opposite way, with negative data increasing, becoming positive across the center, and decreasing toward 0.

【0017】これにより、図2に示したd1 又はd2
 等に対応したデーターを得る。図5の加算出力では、
図2のCのデーターのように1つの生成出力となり、上
位データーに加えることでビット拡張されたなめらかな
歪の少いデーターが得られる。
[0017] As a result, d1 or d2 shown in FIG.
Obtain data corresponding to etc. In the addition output of Fig. 5,
As shown in data C in FIG. 2, this becomes one generated output, and by adding it to the upper data, bit-expanded smooth data with little distortion can be obtained.

【0018】実施例では、データー生成を2種で説明し
たが、もちろん増加させ広い周波数範囲に対応させるこ
ともでき、さらに、2LSB変化などにおいても対応さ
せることができ、1つの変化に対し対応し発生させるデ
ーターは1つであっても次々に変化点の出力データーの
全加算をしているため最終データーのつながりが図のよ
うになめらかで広い周波数の変化の波形に対応できる。
In the embodiment, two types of data generation have been explained, but of course it is possible to increase the frequency range to correspond to a wide frequency range, and it is also possible to correspond to a 2LSB change, etc., and it is possible to correspond to a single change. Even if only one data is generated, the output data of the changing points are added up one after another, so the final data connection can correspond to a waveform with a smooth and wide frequency change as shown in the figure.

【0019】[0019]

【発明の効果】上記のように本発明によると小信号によ
るLSB変化があっても出力信号をなめらかに広い周波
数変化の波形に対応することができパルス性歪発生によ
る雑音を除去することができる。
[Effects of the Invention] As described above, according to the present invention, even if there is an LSB change due to a small signal, the output signal can smoothly correspond to a waveform with a wide frequency change, and noise caused by pulse distortion can be removed. .

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のブロツク図。FIG. 1 is a block diagram of the present invention.

【図2】波形を説明するための図。FIG. 2 is a diagram for explaining waveforms.

【図3】差分抽出を示すブロック図。FIG. 3 is a block diagram showing difference extraction.

【図4】パターン抽出器を説明するブロック図。FIG. 4 is a block diagram illustrating a pattern extractor.

【図5】タイミングを示す図。FIG. 5 is a diagram showing timing.

【図6】データ生成回路のブロック図。FIG. 6 is a block diagram of a data generation circuit.

【図7】データ生成された信号を説明するための図。FIG. 7 is a diagram for explaining data-generated signals.

【図8】加算を示すブロック図である。FIG. 8 is a block diagram showing addition.

【符号の説明】 1        差分抽出回路 2ー1〜n  シフトレジスター 3        パターン抽出部 4        シフトレジスター 5        データ生成回路 6        シフトレジスター 7        加算回路[Explanation of symbols] 1 Difference extraction circuit 2-1~n Shift register 3       Pattern extraction section 4 Shift register 5 Data generation circuit 6 Shift register 7 Adder circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  所定のワードビット長よりなるサンプ
ルデーター列をDA変換する装置に於て、サンプルデー
ター間の差分を抽出しデーター間の微少レベル変化およ
び変化間隔を検出する手段と、微少レベル変化の前後の
数サンプルにわたり上記検出に応じたサンプルデーター
のLSB以下のデーターを生成する手段と、各微少レベ
ル変化のデーター生成出力を加算し一つの下位データー
とする手段を具備し上位のサンプルデーターに加えLS
B以下のビットにより微少レベル変化の前後にわたりな
めらかなレベル変化とすることを特徴とするビット拡張
装置。
1. An apparatus for DA converting a sample data string having a predetermined word bit length, comprising means for extracting a difference between sample data and detecting minute level changes and change intervals between the data; It is equipped with means for generating data less than or equal to the LSB of the sample data corresponding to the above detection over several samples before and after the detection, and means for adding the data generation output of each minute level change to form one lower data, and adding the data to the upper sample data. Added LS
A bit expansion device characterized by making a smooth level change before and after a slight level change using bits of B or less.
JP3153702A 1991-05-30 1991-05-30 Bit length expansion device Expired - Lifetime JPH0773187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3153702A JPH0773187B2 (en) 1991-05-30 1991-05-30 Bit length expansion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3153702A JPH0773187B2 (en) 1991-05-30 1991-05-30 Bit length expansion device

Publications (2)

Publication Number Publication Date
JPH04354208A true JPH04354208A (en) 1992-12-08
JPH0773187B2 JPH0773187B2 (en) 1995-08-02

Family

ID=15568248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3153702A Expired - Lifetime JPH0773187B2 (en) 1991-05-30 1991-05-30 Bit length expansion device

Country Status (1)

Country Link
JP (1) JPH0773187B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066216A (en) * 1991-08-30 1994-01-14 Nippon Columbia Co Ltd Bit length extending device
JP2011095739A (en) * 2009-10-01 2011-05-12 Panasonic Corp Audio signal processor and method for processing the same
EP2372712A3 (en) * 2010-03-03 2015-04-15 Yamaha Corporation Quantization bit rate expansion method and quantization bit rate expansion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287717A (en) * 1986-06-06 1987-12-14 Matsushita Electric Ind Co Ltd Digital/analog conversion circuit
JPH05304474A (en) * 1991-05-18 1993-11-16 Nippon Columbia Co Ltd Digital/analog converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62287717A (en) * 1986-06-06 1987-12-14 Matsushita Electric Ind Co Ltd Digital/analog conversion circuit
JPH05304474A (en) * 1991-05-18 1993-11-16 Nippon Columbia Co Ltd Digital/analog converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066216A (en) * 1991-08-30 1994-01-14 Nippon Columbia Co Ltd Bit length extending device
JP2011095739A (en) * 2009-10-01 2011-05-12 Panasonic Corp Audio signal processor and method for processing the same
EP2372712A3 (en) * 2010-03-03 2015-04-15 Yamaha Corporation Quantization bit rate expansion method and quantization bit rate expansion device

Also Published As

Publication number Publication date
JPH0773187B2 (en) 1995-08-02

Similar Documents

Publication Publication Date Title
JPH0421215A (en) Digital/analog converter
JPH02214224A (en) Digital/analog converter
EP0302553B1 (en) Electric circuit for use in an A/D converter
JP2802027B2 (en) Asynchronous digital threshold detector for digital data storage channel
JPH04354208A (en) Bit length expanding device
JPH0773186B2 (en) Digital-to-analog converter
JPH0555919A (en) Analog/digital conversion system
US5457457A (en) Digital to analog conversion device which decreases low level high frequency noise
JP3171026B2 (en) Frequency spectrum analyzer
JP3312538B2 (en) Sound signal processing device
US4272721A (en) Analog-to-digital converter alignment circuit
JP3003198B2 (en) Pulse width modulator
JPH066217A (en) Bit length expanding device
JP3336823B2 (en) Sound signal processing device
JPH066216A (en) Bit length extending device
JP3158003B2 (en) Digital sync separation circuit
JP2004112014A5 (en)
JPH10242859A (en) Method and device for bit length extension, and digital audio reproducing device
JPH05145422A (en) Pulse modulation system and d/a converter
JPH0435575A (en) Synchronizing signal separating circuit for muse signal
JPH01204526A (en) Method and circuit for suppressing quantized noise
JP2924418B2 (en) D / A converter
JPS60126922A (en) A/d converting device
JPS60130261A (en) Main scanning line density converting system
JPH03102265A (en) Maximum value detecting circuit

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980616

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316354

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R316Z02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S343 Written request for registration of root pledge or change of root pledge

Free format text: JAPANESE INTERMEDIATE CODE: R316350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 16

EXPY Cancellation because of completion of term