JPH04352366A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH04352366A
JPH04352366A JP15590391A JP15590391A JPH04352366A JP H04352366 A JPH04352366 A JP H04352366A JP 15590391 A JP15590391 A JP 15590391A JP 15590391 A JP15590391 A JP 15590391A JP H04352366 A JPH04352366 A JP H04352366A
Authority
JP
Japan
Prior art keywords
type
conductivity type
semiconductor substrate
channel region
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15590391A
Other languages
Japanese (ja)
Inventor
Katsukichi Mitsui
克吉 光井
Shigeru Kusunoki
茂 楠
Masahide Inuishi
犬石 昌秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP15590391A priority Critical patent/JPH04352366A/en
Publication of JPH04352366A publication Critical patent/JPH04352366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce the frequency of the scattering of impurities of conductive carriers in a channel region and to restrain a drop in a mobility due to the scattering of the impurities of the conductive carriers by a method wherein one part of a single-crystal first-conductivity-type semiconductor substrate at a low impurity concentration is used as the surface of the channel region coming into contact with a gate insulating film. CONSTITUTION:N-type impurities are implanted deep into a P-type semiconductor substrate 1 by a high-energy ion implantation method; an N-type well 2 is formed. Part of the P-type semiconductor substrate 1 is left on the N-type well 2. The one part, of the P-type semiconductor substrate 1, which has been left on the N-type well 2 is used as a P-type channel region; a gate insulating film 4 and a gate electrode 5 are formed on its surface; and a source-drain region is formed. Since the impurity concentration of the P-type substrate 1 is low in this manner, the impurity concentration is low even in the P-type channel region using it. Consequently, a drop in a mobility due to the scattering of impurities of conductive carriers and the deterioration of the performance of a device itself due to it are not caused.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は半導体装置及びその製
造方法に関し、特にP型半導体基板上のN型ウエル内に
形成される、埋め込みチャネル型のP型MIS半導体装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method for manufacturing the same, and more particularly to a buried channel type P-type MIS semiconductor device formed in an N-type well on a P-type semiconductor substrate.

【0002】0002

【従来の技術】図3は従来の半導体装置を示す断面図で
ある。図において、1はP型半導体基板であり、2はP
型半導体基板内に不純物を注入して形成したN型ウエル
、3はN型ウエル2上に形成されたP型チャネル領域、
4はゲート絶縁膜で、このゲート絶縁膜4を介してチャ
ネル領域3上にゲート電極5が形成されている。また、
6はチャネル領域3の両側に設けられたP型ソース・ド
レイン拡散領域である。
2. Description of the Related Art FIG. 3 is a sectional view showing a conventional semiconductor device. In the figure, 1 is a P-type semiconductor substrate, 2 is a P-type semiconductor substrate, and 2 is a P-type semiconductor substrate.
3 is an N-type well formed by implanting impurities into a type semiconductor substrate; 3 is a P-type channel region formed on the N-type well 2;
4 is a gate insulating film, and a gate electrode 5 is formed on the channel region 3 via this gate insulating film 4. Also,
Reference numeral 6 denotes P-type source/drain diffusion regions provided on both sides of the channel region 3.

【0003】次にこの半導体装置の製造方法について説
明する。P型半導体基板1に不純物を注入してN型のウ
エル2を形成する。N型ウエル2表面に浅くP型不純物
の注入を行うことにより形成されたP型チャネル領域3
の表面にゲート絶縁膜4を形成し、該ゲート絶縁膜4上
の所定領域にゲート電極5を設ける。このゲート電極5
をマスクとしてP型不純物を注入し、ソース・ドレイン
領域6を形成する。
Next, a method for manufacturing this semiconductor device will be explained. An N-type well 2 is formed by implanting impurities into a P-type semiconductor substrate 1 . P-type channel region 3 formed by shallowly implanting P-type impurities into the surface of N-type well 2
A gate insulating film 4 is formed on the surface of the gate insulating film 4, and a gate electrode 5 is provided in a predetermined region on the gate insulating film 4. This gate electrode 5
P-type impurities are implanted using the mask as a mask to form source/drain regions 6.

【0004】従来の半導体装置は上記のように構成され
、P型チャネル領域3は基板内に不純物を注入して形成
されたN型のウエル2の表面にさらにP型不純物を注入
して形成しており、この半導体装置のチャネル部分にお
ける深さ方向に対する不純物分布は図4に示すようにな
る。
The conventional semiconductor device is constructed as described above, and the P-type channel region 3 is formed by further implanting P-type impurities into the surface of the N-type well 2, which is formed by implanting impurities into the substrate. The impurity distribution in the depth direction in the channel portion of this semiconductor device is as shown in FIG.

【0005】[0005]

【発明が解決しようとする課題】従来の半導体装置及び
その製造方法は以上のように構成されているので、N型
ウエル2表面にP型不純物を導入してP型チャネル領域
3を得ており、従って不純物濃度ND のN型ウエル上
に不純物濃度NA のP型チャネル領域を得るためには
、該N型ウエルの濃度ND のN型不純物に対して濃度
ND のP型不純物が注入され、さらに得ようとするP
型チャネル領域に必要な濃度NA のP型不純物が注入
されなければならず、すなわち濃度(ND +NA )
のP型不純物を注入する必要がある。P型半導体基板1
の不純物濃度をNA.SUB とすれば、P型チャネル
領域中の全不純物濃度はNA.SUB +ND +(N
D +NA )となる。
[Problems to be Solved by the Invention] Since the conventional semiconductor device and its manufacturing method are constructed as described above, a P-type impurity is introduced into the surface of the N-type well 2 to obtain the P-type channel region 3. Therefore, in order to obtain a P-type channel region with an impurity concentration NA on an N-type well with an impurity concentration ND, a P-type impurity with a concentration ND is implanted into the N-type impurity with a concentration ND in the N-type well, and P trying to get
P-type impurity must be implanted in the required concentration NA in the type channel region, i.e., the concentration (ND + NA)
It is necessary to implant P-type impurities. P-type semiconductor substrate 1
The impurity concentration of NA. SUB, the total impurity concentration in the P-type channel region is NA. SUB +ND +(N
D + NA).

【0006】このように電気伝導領域であるP型チャネ
ル領域の全不純物濃度が高いため、伝導キャリアの不純
物散乱が頻繁になって伝導キャリアの移動度が低下し、
半導体装置の性能が低下するという問題点があった。
[0006] Since the total impurity concentration in the P-type channel region, which is an electrically conductive region, is high as described above, impurity scattering of conduction carriers becomes frequent and the mobility of conduction carriers decreases.
There was a problem that the performance of the semiconductor device deteriorated.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、伝導キャリアの不純物散乱の頻
度を小さくして伝導キャリアの移動度の低下を抑制した
高性能の半導体装置及びその製造方法を得ることを目的
とする。
The present invention was made to solve the above-mentioned problems, and provides a high-performance semiconductor device and its semiconductor device that suppresses the decrease in the mobility of conduction carriers by reducing the frequency of impurity scattering of conduction carriers. The purpose is to obtain a manufacturing method.

【0008】[0008]

【課題を解決するための手段】この発明に係る半導体装
置は、低不純物濃度の単結晶第1導電型半導体基板内の
第2導電型ウエル領域に形成され、その表面領域が第1
導電型である埋め込みチャネル領域と、チャネル領域上
のゲート絶縁膜を介して形成されたゲート電極とを備え
た半導体装置であって、上記ゲート絶縁膜に接するチャ
ネル領域の表面領域として前記低不純物濃度の単結晶第
1導電型半導体基板の一部を用いたものである。
[Means for Solving the Problems] A semiconductor device according to the present invention is formed in a second conductivity type well region in a single crystal first conductivity type semiconductor substrate with a low impurity concentration, and a surface region thereof is formed in a first conductivity type semiconductor substrate.
A semiconductor device comprising a buried channel region of a conductive type and a gate electrode formed through a gate insulating film on the channel region, wherein the surface region of the channel region in contact with the gate insulating film is doped with the low impurity concentration. A part of a single-crystal first conductivity type semiconductor substrate is used.

【0009】この発明に係る半導体装置の製造方法は、
低不純物濃度の単結晶第1導電型半導体基板内に第2導
電型ウエルを形成する工程と、該第2導電型ウエル内に
埋め込みチャネル型の第1導電型MIS半導体装置を形
成する工程とからなり、上記第1の工程において、第2
導電型不純物を高エネルギーイオン注入法により該第2
導電型ウエル上に前記低不純物濃度の単結晶第1導電型
半導体基板を残るよう第1導電型半導体基板内深く導入
して第2導電型ウエルを形成するものである。
The method for manufacturing a semiconductor device according to the present invention includes:
A step of forming a second conductivity type well in a single crystal first conductivity type semiconductor substrate with a low impurity concentration, and a step of forming a buried channel type first conductivity type MIS semiconductor device in the second conductivity type well. In the first step, the second
Conductivity type impurities are added to the second layer by high energy ion implantation.
A second conductivity type well is formed by introducing the low impurity concentration single crystal of the first conductivity type semiconductor substrate deep into the first conductivity type semiconductor substrate so as to remain on the conductivity type well.

【0010】0010

【作用】この発明においては、ゲート絶縁膜に接するチ
ャネル領域表面として低不純物濃度の単結晶第1導電型
半導体基板の一部を用いたから、チャネル領域において
伝導キャリアの不純物散乱の頻度が小さく、伝導キャリ
アの不純物散乱による移動度の低下が抑制でき、高性能
の半導体装置を得ることができる。
[Operation] In this invention, since a part of the single-crystal first conductivity type semiconductor substrate with a low impurity concentration is used as the surface of the channel region in contact with the gate insulating film, the frequency of impurity scattering of conduction carriers in the channel region is small, and the conduction Decrease in mobility due to impurity scattering of carriers can be suppressed, and a high-performance semiconductor device can be obtained.

【0011】またこの発明においては、低不純物濃度の
単結晶第1導電型半導体基板内に第2導電型ウエルを形
成する工程において、第2導電型不純物を高エネルギー
イオン注入法により該第2導電型ウエル上に前記低不純
物濃度の単結晶第1導電型半導体基板を残るよう第1導
電型半導体基板内深く導入して第2導電型ウエルを形成
するようにしたから、チャネル領域の不純物濃度が低く
、該チャネル領域における伝導キャリアの不純物散乱の
頻度が小さく、伝導キャリアの不純物散乱による移動度
の低下を抑制でき、高性能な半導体装置を得ることがで
きる。
Further, in the present invention, in the step of forming a second conductivity type well in a single crystal first conductivity type semiconductor substrate with a low impurity concentration, impurities of the second conductivity type are implanted into the second conductivity type by high energy ion implantation. Since the single crystal first conductivity type semiconductor substrate with low impurity concentration remains on the type well, the second conductivity type well is formed by introducing the semiconductor substrate deeply into the first conductivity type semiconductor substrate, so that the impurity concentration in the channel region is reduced. Therefore, the frequency of impurity scattering of conduction carriers in the channel region is low, it is possible to suppress a decrease in the mobility of conduction carriers due to impurity scattering, and a high-performance semiconductor device can be obtained.

【0012】0012

【実施例】以下、この発明の一実施例を図について説明
する。図1は本発明の一実施例による半導体装置の断面
図である。図において、図2と同一符号は同一部分を示
し、図2の半導体装置のチャネル領域3部分として半導
体基板1の一部が用いられた構成となっている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of a semiconductor device according to an embodiment of the present invention. In the figure, the same reference numerals as in FIG. 2 indicate the same parts, and the structure is such that a part of the semiconductor substrate 1 is used as the channel region 3 of the semiconductor device in FIG.

【0013】このように本実施例によれば、埋め込みチ
ャネル型のMOS半導体装置を上記のように構成し、P
型チャネル領域としてP型基板1の一部を用いているの
で、この半導体装置のチャネル部分の深さ方向に対する
不純物分布は図2に示すようになる。すなわちP型基板
1は不純物濃度が低いので、これを用いたP型チャネル
領域においても不純物濃度は低く、従って伝導キャリア
の不純物散乱による移動度の低下やそれに伴う装置自体
の性能の劣化が起こることはない。
As described above, according to this embodiment, a buried channel type MOS semiconductor device is constructed as described above, and P
Since a part of the P type substrate 1 is used as the type channel region, the impurity distribution in the depth direction of the channel portion of this semiconductor device is as shown in FIG. That is, since the P-type substrate 1 has a low impurity concentration, the impurity concentration is also low in the P-type channel region using this substrate, and therefore the mobility of conduction carriers is reduced due to impurity scattering, and the performance of the device itself is accordingly degraded. There isn't.

【0014】次にこの半導体装置の製造方法について説
明する。高エネルギーイオン注入法によりP型半導体基
板1内深くにN型不純物を注入してN型ウエル2を形成
する。この時、形成されたN型ウエル2上にP型半導体
基板1の一部が残るようにする。このN型ウエル2上に
残されたP型半導体基板1の一部をP型チャネル領域と
して、この表面にゲート絶縁膜4、ゲート電極5を形成
し、該ゲート電極5をマスクとして不純物を注入しソー
ス・ドレイン領域を形成する。
Next, a method for manufacturing this semiconductor device will be explained. An N-type well 2 is formed by implanting N-type impurities deep into the P-type semiconductor substrate 1 using a high-energy ion implantation method. At this time, a portion of the P-type semiconductor substrate 1 is left on the formed N-type well 2. A part of the P-type semiconductor substrate 1 left on the N-type well 2 is used as a P-type channel region, a gate insulating film 4 and a gate electrode 5 are formed on this surface, and impurities are implanted using the gate electrode 5 as a mask. Then, source/drain regions are formed.

【0015】このように本実施例によれば、P型基板1
にN型の不純物注入によりN型のウエルを形成する工程
において、形成されたN型ウエル2の表面上にP型基板
1の一部が残るように不純物の注入を行ったので、この
残されたP型基板1の一部をチャネル領域として用いる
ことで、従来のようにP型チャネル領域の全不純物濃度
が高くなることがなく、伝導キャリアの不純物散乱によ
る移動度の低下を抑制することができる半導体装置を得
ることができる。
As described above, according to this embodiment, the P-type substrate 1
In the step of forming an N-type well by implanting N-type impurities, the impurity was implanted so that a part of the P-type substrate 1 remained on the surface of the formed N-type well 2. By using a part of the P-type substrate 1 as a channel region, the total impurity concentration in the P-type channel region does not become high as in the conventional case, and it is possible to suppress a decrease in the mobility of conductive carriers due to impurity scattering. It is possible to obtain a semiconductor device with high performance.

【0016】[0016]

【発明の効果】以上のように、この発明にかかる半導体
装置によれば、ゲート絶縁膜に接するチャネル領域表面
として低不純物濃度の単結晶第1導電型半導体基板の一
部を用いたから、チャネル領域において伝導キャリアの
不純物散乱の頻度が小さく、伝導キャリアの不純物散乱
による移動度の低下が抑制でき、高性能の半導体装置を
得ることができる。
As described above, according to the semiconductor device of the present invention, since a part of the single crystal first conductivity type semiconductor substrate with a low impurity concentration is used as the channel region surface in contact with the gate insulating film, the channel region In this method, the frequency of impurity scattering of conduction carriers is low, and a decrease in mobility of conduction carriers due to impurity scattering can be suppressed, and a high-performance semiconductor device can be obtained.

【0017】またこの発明にかかる半導体装置の製造方
法によれば、低不純物濃度の単結晶第1導電型半導体基
板内に第2導電型ウエルを形成する工程において、第2
導電型不純物を高エネルギーイオン注入法により該第2
導電型ウエル上に前記低不純物濃度の単結晶第1導電型
半導体基板を残るよう第1導電型半導体基板内深く導入
して第2導電型ウエルを形成するようにしたから、チャ
ネル領域の不純物濃度が低く、該チャネル領域における
伝導キャリアの不純物散乱の頻度が小さく、伝導キャリ
アの不純物散乱による移動度の低下を抑制でき、高性能
な半導体装置を得ることができる。
Further, according to the method for manufacturing a semiconductor device according to the present invention, in the step of forming a second conductivity type well in a single crystal first conductivity type semiconductor substrate with a low impurity concentration, a second conductivity type well is formed.
Conductivity type impurities are added to the second layer by high energy ion implantation.
Since the single-crystal first conductivity type semiconductor substrate with low impurity concentration remains on the conductivity type well, the impurity concentration in the channel region is reduced by introducing the semiconductor substrate deeply into the first conductivity type semiconductor substrate to form the second conductivity type well. is low, the frequency of impurity scattering of conduction carriers in the channel region is low, it is possible to suppress a decrease in the mobility of conduction carriers due to impurity scattering, and a high-performance semiconductor device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例による半導体装置を示す断
面図である。
FIG. 1 is a sectional view showing a semiconductor device according to an embodiment of the present invention.

【図2】この発明の一実施例による半導体装置のチャネ
ル部分の不純物分布図である。
FIG. 2 is an impurity distribution diagram of a channel portion of a semiconductor device according to an embodiment of the present invention.

【図3】従来の半導体装置を示す断面図である。FIG. 3 is a cross-sectional view showing a conventional semiconductor device.

【図4】従来の半導体装置のチャネル部分の不純物分布
図である。
FIG. 4 is an impurity distribution diagram of a channel portion of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1  P型半導体基板 2  N型ウエル 3  P型チャネル領域 4  ゲート絶縁膜 5  ゲート電極 6  P型ソース・ドレイン拡散領域 1 P-type semiconductor substrate 2 N type well 3 P-type channel region 4 Gate insulating film 5 Gate electrode 6 P-type source/drain diffusion region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  低不純物濃度の単結晶第1導電型半導
体基板内の第2導電型ウエル領域に形成され、その表面
領域が第1導電型である埋め込みチャネル領域と、チャ
ネル領域上のゲート絶縁膜を介して形成されたゲート電
極とを備えた半導体装置において、上記ゲート絶縁膜に
接するチャネル領域の表面領域として前記低不純物濃度
の単結晶第1導電型半導体基板の一部を用いたことを特
徴とする半導体装置。
1. A buried channel region formed in a second conductivity type well region in a single crystal first conductivity type semiconductor substrate with a low impurity concentration, the surface region of which is of the first conductivity type, and a gate insulating layer on the channel region. In a semiconductor device including a gate electrode formed through a film, a part of the single crystal first conductivity type semiconductor substrate with a low impurity concentration is used as a surface region of a channel region in contact with the gate insulating film. Characteristic semiconductor devices.
【請求項2】  低不純物濃度の単結晶第1導電型半導
体基板内に第2導電型ウエルを形成する工程と、該第2
導電型ウエル内に埋め込みチャネル型の第1導電型MI
S半導体装置を形成する工程とを含む半導体装置の製造
方法において、上記第1の工程は、第2導電型不純物を
高エネルギーイオン注入法により該第2導電型ウエル上
に前記低不純物濃度の単結晶第1導電型半導体基板を残
るよう第1導電型半導体基板内深く導入して第2導電型
ウエルを形成する工程であることを特徴とする半導体装
置の製造方法。
2. A step of forming a second conductivity type well in a single crystal first conductivity type semiconductor substrate with a low impurity concentration;
A buried channel type first conductivity type MI in a conductivity type well.
In the method for manufacturing a semiconductor device, the first step includes forming a second conductivity type impurity into the second conductivity type well by a high energy ion implantation method. 1. A method for manufacturing a semiconductor device, comprising a step of forming a second conductivity type well by introducing the crystalline semiconductor substrate deeply into the first conductivity type semiconductor substrate such that the first conductivity type semiconductor substrate remains.
JP15590391A 1991-05-29 1991-05-29 Semiconductor device and manufacture thereof Pending JPH04352366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15590391A JPH04352366A (en) 1991-05-29 1991-05-29 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15590391A JPH04352366A (en) 1991-05-29 1991-05-29 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04352366A true JPH04352366A (en) 1992-12-07

Family

ID=15616038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15590391A Pending JPH04352366A (en) 1991-05-29 1991-05-29 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04352366A (en)

Similar Documents

Publication Publication Date Title
JP3489871B2 (en) MOS transistor and manufacturing method thereof
KR100302187B1 (en) Method for fabricating semiconductor device
JP2897004B2 (en) CMOSFET manufacturing method
JPH09270466A (en) Semiconductor device and manufacture thereof
US5536959A (en) Self-aligned charge screen (SACS) field effect transistors and methods
JPH08153873A (en) Semiconductor device and fabrication thereof
US6054357A (en) Semiconductor device and method for fabricating the same
JPH1084045A (en) Semiconductor integrated circuit device and its manufacturing method
JPH04152536A (en) Manufacture of mis semiconductor device
JPH0346238A (en) Manufacture of semiconductor device
JPH0350771A (en) Semiconductor device
KR20000031366A (en) Semiconductor device and production method thereof
JPH04352366A (en) Semiconductor device and manufacture thereof
KR960000229B1 (en) Making method of vertical channel mosfet using trench structure
JP2757491B2 (en) Method for manufacturing semiconductor device
JPH11220128A (en) Mosfet and manufacture thereof
KR20040002215A (en) Method for manufacturing a transistor
JP3194805B2 (en) Semiconductor device
KR100588787B1 (en) Fabricating method of semiconductor device
JPH02219237A (en) Mis type semiconductor device
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor
JPH07321303A (en) Mos device and its manufacturing
KR100537272B1 (en) Method for fabricating of semiconductor device
KR100223994B1 (en) N type field effect metal oxide semiconductor device and manufacturing thereof
KR100244264B1 (en) Manufacturing method of semiconductor device