JPH04350165A - Method and device for passing-type sputtering - Google Patents

Method and device for passing-type sputtering

Info

Publication number
JPH04350165A
JPH04350165A JP22375491A JP22375491A JPH04350165A JP H04350165 A JPH04350165 A JP H04350165A JP 22375491 A JP22375491 A JP 22375491A JP 22375491 A JP22375491 A JP 22375491A JP H04350165 A JPH04350165 A JP H04350165A
Authority
JP
Japan
Prior art keywords
target
magnetic pole
magnetic field
magnetic
solenoid coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22375491A
Other languages
Japanese (ja)
Inventor
Koji Nakajima
晃治 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP22375491A priority Critical patent/JPH04350165A/en
Publication of JPH04350165A publication Critical patent/JPH04350165A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To effectively utilize a target by expanding, contracting and moving plasma by so slight a superimposed magnetic field as not to affect a discharge state by an outer solenoid coil. CONSTITUTION:An inner magnetic pole 17A is annularly arranged with the center line of a rectangular target 5 as its axis. An outer magnetic pole 17B is annularly arranged outside. An intermediate magnetic pole 17C is annularly arranged between the inner and outer magnetic poles 17A and 17B. An outer solenoid coil 18 is set outside the outer magnetic pole 17B. The magnetization directions of the magnetic poles 17A, 17B and 17C are opposed to one another with the center line of the target 5 as the symmetry axis, and the magnetid force of the outer magnetic pole 17B is made relatively weak with respect to that of the inner magnetic pole 17A. The plasma is expanded, contracted and moved by so slight a superimposed magnetic filed as not to affect a discharge state by the outer solenoid coil 18 with a vertical magnetic field component on the upper surface of the target 5 and the gentle gradient by using this magnetic pole structure. A film is formed at a low cost in this way.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,矩形ターゲットを用い
た通過式スパッタリングにおいて,放電状態に影響しな
い程度の僅かな畳合磁界にてプラズマを拡縮移動させ,
ターゲットの有効利用を可能にした通過式スパッタリン
グ方法および装置に関するものである。
[Industrial Application Field] The present invention enables plasma to expand and contract in pass-through sputtering using a rectangular target using a small convoluted magnetic field that does not affect the discharge state.
The present invention relates to a pass-through sputtering method and apparatus that enable effective use of targets.

【0002】0002

【従来の技術】近年スパッタリング装置を用いて大面積
基板上に薄膜を均一に成膜する要求が増えてきた。従来
のマグネトロンスパッタリング装置においては,ターゲ
ット背面に配置された磁極からのターゲット上面への漏
れ磁界によってプラズマリングを形成していた。その結
果,ターゲット上面の漏れ磁界が不均一に分布している
ため,プラズマ密度に濃淡が生じ,高密度プラズマの領
域でターゲットの消費が顕著に進み,ターゲットを寿命
に至らしめていた。そのため,ターゲットの利用率が悪
く,高価なターゲットの場合には,大きな生産コストが
必要とされていた。
2. Description of the Related Art In recent years, there has been an increasing demand for uniformly forming thin films on large-area substrates using sputtering equipment. In conventional magnetron sputtering equipment, a plasma ring is formed by a leakage magnetic field from a magnetic pole placed on the back surface of the target to the top surface of the target. As a result, the leakage magnetic field on the top surface of the target was unevenly distributed, causing variations in plasma density, and consumption of the target increased significantly in areas of high-density plasma, leading to the end of the target's lifespan. As a result, the utilization rate of targets is poor, and in the case of expensive targets, large production costs are required.

【0003】従来より,プラズマリングをできるだけ均
一に広い範囲にわたって発生させる磁気回路の改良がな
されてきたが,充分な効果が得られていないのが現状で
ある。上記対策として,例えば,特開昭62−1144
12号公報に記載されているプラズマ制御式マグネトロ
ンスパッタリング装置が提案されている。これは,従来
方式のマグネトロン磁極によって形成された磁界に,内
周ソレノイドコイルと外周ソレノイドコイルによって生
じる磁界を畳合することで,プラズマ発生領域をターゲ
ット中心に対して拡縮移動させ,ターゲット利用率を向
上させようとするものであるが,このやり方では,プラ
ズマを拡縮移動する際に,プラズマを封じ込めている磁
界強さも変化し,そのため,プラズマの移動に伴って放
電インピーダンスが変わり,膜質の分布が生じる。また
,ターゲット寸法が大きくなるにしたがって,ソレノイ
ドコイルによる所望の磁界を発生させるには大電力が必
要となるが,コイル自身から大量の熱量が発生するため
,コイルの冷却が必要になる。しかし,コイルの絶縁と
冷却という相反する課題を満足する改善策がないため,
ソレノイドコイルに投入できる電力に限界が生じ,充分
なプラズマ移動が可能な畳合磁界が得られていないのが
現状である。
Conventionally, improvements have been made to magnetic circuits that generate plasma rings as uniformly and over a wide range as possible, but at present, sufficient effects have not been achieved. As a countermeasure for the above, for example, JP-A-62-1144
A plasma-controlled magnetron sputtering apparatus described in Japanese Patent No. 12 has been proposed. This combines the magnetic field created by the conventional magnetron magnetic poles with the magnetic fields generated by the inner and outer solenoid coils to expand and contract the plasma generation region with respect to the target center, thereby increasing the target utilization rate. However, with this method, when the plasma expands and contracts, the strength of the magnetic field that confines the plasma also changes, and as a result, the discharge impedance changes as the plasma moves, and the distribution of film quality changes. arise. Furthermore, as the target size increases, a large amount of electric power is required to generate the desired magnetic field by the solenoid coil, but since a large amount of heat is generated from the coil itself, the coil needs to be cooled. However, there is no improvement measure that satisfies the conflicting issues of coil insulation and cooling.
Currently, there is a limit to the power that can be input to the solenoid coil, and it is currently not possible to obtain a convoluted magnetic field that allows sufficient plasma movement.

【0004】0004

【発明が解決しようとする課題】本発明は上記点に鑑み
なされたもので,放電状態に影響しない程度の僅かな畳
合磁界にてプラズマを拡縮移動させ,ターゲットの有効
利用を可能にしたスパッタリング方法および装置を提供
することを目的としている。図4に示す従来方式の矩形
カソードを用いた通過式スパッタリング装置の図面を用
いて本発明が解決しようとする課題について説明する。
[Problems to be Solved by the Invention] The present invention has been made in view of the above points, and provides sputtering that enables effective use of targets by expanding and contracting plasma with a small convoluted magnetic field that does not affect the discharge state. The present invention aims to provide methods and apparatus. The problem to be solved by the present invention will be explained using a diagram of a conventional pass-through sputtering apparatus using a rectangular cathode shown in FIG.

【0005】図4は従来方式の主要構成を示し,図5は
ターゲット上面への漏れ磁界分布とターゲットの侵食パ
ターンを示したものである。図4,図5において,1は
真空容器,2は基板を予め所定の温度に加熱しておく基
板加熱ヒータ,3は基板,3Aは基板移送用の搬送機構
,4は基板通過方向に開度調整可能なシャッタ,5は矩
形ターゲット,6は矩形カソード,7Aは棒状の中央磁
極,7Bは7Aを囲むように配置された環状の外周磁極
,8は中央磁極7Aと外周磁極7Bを磁気的に結合させ
る磁性体ヨーク,9Aはプラズマを封じ込めるための磁
力線の模式図,10Aはターゲット上面に磁力線9Aに
よって封じ込められたレーストラック状プラズマリング
の模式図,11は矩形カソード6に電力を供給する主放
電用高圧電源,12Aはターゲット上面の水平磁界成分
,13Aはターゲット上面の垂直磁界成分,14Aはレ
ーストラック状プラズマリングによって消費されたター
ゲット侵食パターンである。
FIG. 4 shows the main configuration of the conventional method, and FIG. 5 shows the leakage magnetic field distribution to the upper surface of the target and the erosion pattern of the target. 4 and 5, 1 is a vacuum container, 2 is a substrate heater that heats the substrate to a predetermined temperature, 3 is a substrate, 3A is a transport mechanism for transferring the substrate, and 4 is an opening in the direction of substrate passage. Adjustable shutter, 5 is a rectangular target, 6 is a rectangular cathode, 7A is a rod-shaped central magnetic pole, 7B is an annular outer magnetic pole arranged to surround 7A, 8 is a magnetically connected central magnetic pole 7A and outer peripheral magnetic pole 7B. A magnetic yoke to be coupled, 9A is a schematic diagram of magnetic lines of force for confining plasma, 10A is a schematic diagram of a racetrack-shaped plasma ring confined by magnetic lines of force 9A on the upper surface of the target, 11 is a main discharge that supplies power to the rectangular cathode 6 12A is the horizontal magnetic field component on the upper surface of the target, 13A is the vertical magnetic field component on the upper surface of the target, and 14A is the target erosion pattern consumed by the racetrack plasma ring.

【0006】基板3は真空容器1に図示していないゲー
トバルブを介して搬入され,基板ヒータ2によって加熱
され,さらに,搬送機構3Aによってターゲット上面を
等速度で通過する。その際,ターゲット背面に配置され
た中央磁極7Aと外周磁極7Bによって発生した漏れ磁
界によって,ターゲット上面に生じたレーストラック状
プラズマリング10Aにより矩形ターゲット5がスパッ
タされ,通過中の基板3に成膜される。ターゲット上面
での漏れ磁界の強さによって,封じ込められたプラズマ
密度に分布が生じてしまい,このためターゲット侵食が
不均一に進行してしまう。図5はターゲット上面の磁界
分布とターゲット侵食パターンを示したものであるが,
垂直磁界成分13Aが略零を横切る位置でターゲットの
侵食14Aが顕著に進行し,略V字谷に消費されてしま
う。そのため,ターゲットの利用率が極めて悪く高価な
ターゲツト5を用いた場合には,生産コストが多くかか
るということから深刻な問題になっている。
[0006] The substrate 3 is carried into the vacuum chamber 1 via a gate valve (not shown), heated by the substrate heater 2, and then passed over the upper surface of the target at a constant speed by the transport mechanism 3A. At this time, the rectangular target 5 is sputtered by the racetrack-shaped plasma ring 10A generated on the upper surface of the target due to the leakage magnetic field generated by the central magnetic pole 7A and the outer peripheral magnetic pole 7B placed on the back of the target, and a film is formed on the substrate 3 as it passes. be done. The strength of the leakage magnetic field on the top surface of the target causes a distribution in the confined plasma density, which causes target erosion to proceed unevenly. Figure 5 shows the magnetic field distribution on the top surface of the target and the target erosion pattern.
At a position where the vertical magnetic field component 13A crosses substantially zero, target erosion 14A progresses significantly and is consumed into a substantially V-shaped valley. Therefore, when the target 5, which has an extremely low target utilization rate and is expensive, is used, it becomes a serious problem because the production cost is high.

【0007】次に,上記の改善策として考えた図7に示
すプラズマ制御式スパッタリング装置の図面を用いて本
発明が解決しようとする課題について説明する。図7は
プラズマ制御式スパッタリング装置の主要構成を示し,
図8はターゲット上面への漏れ磁界分布の操作によるタ
ーゲット侵食パターンの関係を示したものである。図7
,図8において,図4,図5と同じ符号のものは,図4
,図5のものと同じものを示す。
Next, the problem to be solved by the present invention will be explained using a drawing of a plasma-controlled sputtering apparatus shown in FIG. 7, which was considered as an improvement measure for the above. Figure 7 shows the main configuration of the plasma-controlled sputtering equipment.
FIG. 8 shows the relationship of the target erosion pattern by manipulating the leakage magnetic field distribution to the upper surface of the target. Figure 7
, In Fig. 8, the same symbols as Figs. 4 and 5 refer to Fig. 4.
, which shows the same as that in FIG.

【0008】図7,図8において,15Aは中央磁極7
Aと外周磁極7Bの間に配置された内周ソレノイドコイ
ル,15Bは外周磁極の外側に囲むように配置された外
周ソレノイドコイル,12Bは内周ソレノイドコイル1
5Aと外周ソレノイドコイル15Bをプラス方向(コイ
ルの内側に磁力線が向かう方向)に励磁した場合のター
ゲット上面の水平磁界成分,13Bはその場合のターゲ
ット上面の垂直磁界成分,9Bはその場合のプラズマを
封じ込めるための磁力線の模式図,10Bはターゲット
上面に磁力線9Bによって封じ込められたレーストラッ
ク状プラズマリングの模式図,14Bはその場合のター
ゲット侵食パターン,12Cは内周ソレノイドコイル1
5Aと外周ソレノイドコイル15Bをマイナス方向(コ
イルの外側に磁力線が向かう方向)に励磁した場合のタ
ーゲット上面の水平磁界成分,13Cはその場合のター
ゲット上面の垂直磁界成分,9Cはその場合のプラズマ
を封じ込めるための磁力線の模式図,10Cはターゲッ
ト上面に磁力線9Cによって封じ込められたレーストラ
ック状プラズマリングの模式図,14Cはその場合のタ
ーゲット侵食パターン,16はレーストラック状プラズ
マリングを10B〜10A〜10Cまで拡縮移動させる
ことで総合的に得られるターゲット侵食パターンである
In FIGS. 7 and 8, 15A indicates the central magnetic pole 7.
Inner circumferential solenoid coil arranged between A and outer circumferential magnetic pole 7B, 15B is an outer circumferential solenoid coil arranged so as to surround the outer circumferential magnetic pole, 12B is inner circumferential solenoid coil 1
5A and the horizontal magnetic field component on the top surface of the target when the outer solenoid coil 15B is excited in the positive direction (the direction in which the lines of magnetic force go toward the inside of the coil), 13B is the vertical magnetic field component on the top surface of the target in that case, and 9B is the plasma in that case. A schematic diagram of magnetic lines of force for containment, 10B is a schematic diagram of a racetrack-shaped plasma ring confined on the upper surface of the target by magnetic lines of force 9B, 14B is the target erosion pattern in that case, and 12C is the inner circumferential solenoid coil 1
5A and the horizontal magnetic field component on the top surface of the target when the outer solenoid coil 15B is excited in the negative direction (the direction in which the lines of magnetic force go toward the outside of the coil), 13C is the vertical magnetic field component on the top surface of the target in that case, and 9C is the plasma in that case. A schematic diagram of magnetic lines of force for confinement, 10C is a schematic diagram of a racetrack-shaped plasma ring confined by magnetic lines of force 9C on the upper surface of the target, 14C is the target erosion pattern in that case, 16 is a racetrack-shaped plasma ring 10B to 10A to 10C This is the target erosion pattern that can be comprehensively obtained by scaling up and down.

【0009】図7に示すものにおいては,図4に示した
従来技術と同様に,基板3は真空容器1に図示していな
いゲートバルブを介して搬入され,基板ヒータ2によっ
て加熱され,さらに,搬送機構によってターゲット上面
を等速度で通過する。その際,ターゲット背面に配置さ
れた中央磁極7Aと外周磁極7Bによって発生した漏れ
磁界に,内周ソレノイドコイル15Aと外周ソレノイド
コイル15Bによって生じる磁界を畳合することでター
ゲット上面にできたプラズマリングを10B〜10A〜
10Cのようにターゲット中心に対して拡縮移動させな
がら矩形ターゲット5をスパッタし,通過中の基板3に
成膜される。ターゲット侵食の顕著なV字谷の位置がタ
ーゲット中心に対して拡縮移動できるため,図4のもの
に比べて,ターゲットの有効利用が可能となる。
In the device shown in FIG. 7, similarly to the prior art shown in FIG. 4, a substrate 3 is carried into a vacuum container 1 via a gate valve (not shown), heated by a substrate heater 2, and further, The transport mechanism passes over the top surface of the target at a constant speed. At this time, a plasma ring is formed on the top surface of the target by combining the leakage magnetic field generated by the central magnetic pole 7A and the outer magnetic pole 7B placed on the back of the target with the magnetic fields generated by the inner solenoid coil 15A and the outer solenoid coil 15B. 10B~10A~
As shown in 10C, a rectangular target 5 is sputtered while expanding and contracting with respect to the center of the target, and a film is formed on the substrate 3 as it passes. Since the position of the V-shaped valley where target erosion is noticeable can be expanded or contracted with respect to the center of the target, the target can be used more effectively than in the case shown in FIG.

【0010】図8はターゲット上面の磁界分布とターゲ
ット侵食パターンを示したものであるが,ターゲット侵
食の顕著な略V字谷の位置を移動させるためには垂直磁
界成分13Aを13B〜13Cと増減させる必要がある
。しかし,それに伴って,水平磁界成分12Aも12B
〜12Cと変わり放電電圧にも影響を与えてしまう。 放電電圧の上昇に伴って反跳分子のエネルギも増加し,
膜にダメージを与えてしまい,膜質に不均一な分布が生
じてしまう。さらに,ターゲット上面の垂直磁界成分1
3Aを13B〜13Cと増減させるためには,内外周の
ソレノイドコイルにて大きな畳合磁界を発生させる必要
があるが,コイルに大電流を投入しなくてはならず,そ
れに伴ってコイル自身から大量の熱量が発生し,コイル
の冷却が必要になってくる。もともと,コイル自身は絶
縁性を高めるべく素線表面に熱伝導性の悪い絶縁被覆を
しているため,冷却効率が極めて悪い,すなわち,絶縁
性と冷却効率といった相反する課題を満足する方法がな
く,コイルの冷却が不充分のため,プラズマを動かすた
めに必要な大きさの磁界を発生した状態で連続運転でき
てなかった。
FIG. 8 shows the magnetic field distribution on the upper surface of the target and the target erosion pattern. In order to move the position of the approximately V-shaped valley where target erosion is noticeable, the vertical magnetic field component 13A is increased or decreased from 13B to 13C. It is necessary to do so. However, along with this, the horizontal magnetic field component 12A is also 12B
~12C, which also affects the discharge voltage. As the discharge voltage increases, the energy of the recoil molecules also increases,
This will damage the film and cause uneven distribution of film quality. Furthermore, the vertical magnetic field component 1 on the top surface of the target
In order to increase or decrease 3A from 13B to 13C, it is necessary to generate a large convoluted magnetic field in the inner and outer solenoid coils, but a large current must be applied to the coil, and along with this, a large amount of current is generated from the coil itself. A large amount of heat is generated, and the coil needs to be cooled. Originally, the coil itself has an insulating coating with poor thermal conductivity on the surface of the wire to improve insulation, so the cooling efficiency is extremely poor.In other words, there is no way to satisfy the conflicting issues of insulation and cooling efficiency. However, due to insufficient cooling of the coil, continuous operation was not possible while generating a magnetic field of the size necessary to move the plasma.

【0011】[0011]

【課題を解決するための手段】本発明は上記点に鑑みな
されたもので,外周ソレノイドコイルの作動により,放
電状態に影響しない程度の僅かな畳合磁界にてプラズマ
を拡縮移動させ,ターゲット有効利用を可能にしたスパ
ッタリング方法および装置を提供することを目的として
いる。本発明は,矩形ターゲットの長軸方向の中心線を
対称軸として環状(レーストラック状)に配置された内
周磁極と,同一の対称軸にて該内周磁極の外側を囲むよ
うに環状に配置された外周磁極と,内周磁極と外周磁極
の間に環状に配置された中間磁極と,さらに,外周磁極
の外側を囲むように配置された外周ソレノイドコイルに
よって構成され,内周磁極と外周磁極ならびに中間磁極
の磁化の方向がターゲット中心線を対称軸に向かい合う
ように配置し,かつ,内周磁極の磁力に対して外周磁極
の磁力が相対的に弱くなるようにした磁極構造を用い,
ターゲット上面の垂直磁界成分を緩やかな勾配にするこ
とで,垂直磁界成分が略零となる領域を大きくとり,外
周ソレノイドコイルによる僅かな畳合磁界量でプラズマ
移動させることが可能となり,結果として,実現可能な
ソレノイドコイルの冷却構造で,放電状態を大きく変え
ることなく,プラズマ発生領域を矩形ターゲット中心線
に対して拡縮移動させることができ,ターゲットの利用
効率を飛躍的に向上させ得るようにした。
[Means for Solving the Problems] The present invention has been made in view of the above points, and aims to expand and contract plasma by operating a peripheral solenoid coil with a small convoluted magnetic field that does not affect the discharge state, thereby making the target effective. The purpose of the present invention is to provide a sputtering method and apparatus that can be used. The present invention has an inner circumferential magnetic pole arranged in an annular shape (racetrack shape) with the center line in the longitudinal direction of a rectangular target as an axis of symmetry, and an annular magnetic pole arranged in an annular manner so as to surround the outside of the inner circumferential magnetic pole with the same axis of symmetry. It consists of an outer circumferential magnetic pole, an intermediate magnetic pole arranged annularly between the inner circumferential magnetic pole and the outer circumferential magnetic pole, and an outer circumferential solenoid coil arranged so as to surround the outside of the outer circumferential magnetic pole. Using a magnetic pole structure in which the direction of magnetization of the magnetic pole and the intermediate magnetic pole is arranged so that the target center line faces the axis of symmetry, and the magnetic force of the outer magnetic pole is relatively weaker than the magnetic force of the inner magnetic pole,
By making the vertical magnetic field component on the top surface of the target gentle, it is possible to increase the region where the vertical magnetic field component is approximately zero, and it is possible to move the plasma with a small amount of convoluted magnetic field from the outer solenoid coil. With a realizable solenoid coil cooling structure, the plasma generation area can be expanded or contracted with respect to the center line of the rectangular target without significantly changing the discharge state, dramatically improving target usage efficiency. .

【0012】0012

【作用】ターゲット背面に配置された内周磁極と外周磁
極と中間磁極によって発生した漏れ磁界に,外周ソレノ
イドコイルによって生じる磁界を畳合させることで,タ
ーゲット上面にできたプラズマリングをターゲット中心
に対して拡縮移動させながら矩形ターゲットをスパッタ
し,通過中の基板に成膜する。そして,ターゲット上面
の垂直磁界成分を緩やかな勾配にし,垂直磁界成分が略
零となる領域が大きくなるようにした。
[Operation] By combining the leakage magnetic field generated by the inner circumferential magnetic pole, outer circumferential magnetic pole, and intermediate magnetic pole placed on the back of the target with the magnetic field generated by the outer circumferential solenoid coil, the plasma ring formed on the upper surface of the target is directed toward the target center. The rectangular target is sputtered while expanding and contracting, and a film is formed on the substrate as it passes. Then, the vertical magnetic field component on the upper surface of the target was made to have a gentle slope, so that the region where the vertical magnetic field component was approximately zero was made large.

【0013】[0013]

【実施例】図1により本発明の実施例について説明する
。図1は本発明の主要構成を示すもので,図2はターゲ
ット上面への漏れ磁界分布の操作によるターゲットの侵
食パターンの関係を示したものである。図1,図2にお
いて,図4,図5と同じ符号のものは,図4,図5のも
のと同じものを示す。
[Embodiment] An embodiment of the present invention will be explained with reference to FIG. FIG. 1 shows the main structure of the present invention, and FIG. 2 shows the relationship between the erosion pattern of the target and the manipulation of the leakage magnetic field distribution on the upper surface of the target. In FIGS. 1 and 2, the same reference numerals as in FIGS. 4 and 5 indicate the same components as in FIGS. 4 and 5.

【0014】図1,図2において,17Aはターゲット
中心線に対称軸として環状(レーストラック状)に配置
された内周磁極,17Bは同一の対称軸にて該内周磁極
17Aの外側を囲むように環状に配置された外周磁極,
17Cは内周磁極17Aと外周磁極17Bの間に同一の
対称軸にて環状に配置された中間磁極,18は同一の対
称軸にて外周磁極の外側に囲むように配置された外周ソ
レノイドコイルであり,内周磁極17Aと外周磁極17
Bならびに中間磁極17Cの磁化方向はターゲット中心
線を対称軸に向かい合っている。19Aは外周ソレノイ
ドコイル18を励磁しない場合のターゲット上面の水平
磁界成分,20Aはその場合のターゲット上面の垂直磁
界成分,21Aはその場合のプラズマを封じ込めるため
の磁力線の模式図,22Aはターゲット上面に磁力線2
1Aによって封じ込まれたレーストラック状プラズマリ
ングの模式図,23Aはその場合のターゲット侵食パタ
ーン,19Bは外周ソレノイドコイル18をプラス方向
(コイルの内側に磁力線が向かう方向)に励磁した場合
のターゲット上面の水平磁界成分,20Bはその場合の
ターゲット上面の垂直磁界成分,21Bはその場合のプ
ラズマを封じ込めるための磁力線の模式図,22Bはタ
ーゲット上面に磁力線21Bによって封じ込めれたレー
ストラック状プラズマリングの模式図,23Bはその場
合のターゲット侵食パターン,19Cは外周ソレノイド
コイル18をマイナス方向(コイルの外側に磁力線が向
かう方向)に励磁した場合のターゲット上面の水平磁界
成分,20Cはその場合のターゲット上面の垂直磁界成
分,21Cはその場合のプラズマを封じ込めるための磁
力線の模式図,22Cはターゲット上面に磁力線21C
によって封じ込まれたレーストラック状プラズマリング
の模式図,23Cはその場合のターゲット侵食パターン
,24はレーストラック状プラズマリングを22A〜2
2B〜22Cまで拡縮移動させることで総合的に得られ
るターゲット侵食パターンである。
In FIGS. 1 and 2, 17A is an inner magnetic pole arranged in a ring shape (racetrack shape) with the axis of symmetry about the target center line, and 17B is the same axis of symmetry that surrounds the outside of the inner magnetic pole 17A. The outer magnetic poles are arranged in an annular manner,
17C is an intermediate magnetic pole arranged in an annular manner between the inner circumferential magnetic pole 17A and the outer circumferential magnetic pole 17B with the same axis of symmetry, and 18 is an outer circumferential solenoid coil arranged so as to surround the outer circumferential magnetic pole with the same axis of symmetry. Yes, inner magnetic pole 17A and outer magnetic pole 17
The magnetization directions of B and the intermediate magnetic pole 17C face the target center line with the axis of symmetry. 19A is a horizontal magnetic field component on the top surface of the target when the outer solenoid coil 18 is not excited, 20A is a vertical magnetic field component on the top surface of the target in that case, 21A is a schematic diagram of magnetic lines of force for confining plasma in that case, and 22A is a diagram on the top surface of the target. magnetic field lines 2
A schematic diagram of a racetrack-shaped plasma ring confined by 1A, 23A is the target erosion pattern in that case, and 19B is the upper surface of the target when the outer solenoid coil 18 is excited in the positive direction (the direction in which the lines of magnetic force go toward the inside of the coil). 20B is the vertical magnetic field component on the upper surface of the target in that case, 21B is a schematic diagram of the magnetic lines of force for confining the plasma in that case, 22B is a diagram of the racetrack-shaped plasma ring confined on the upper surface of the target by the magnetic lines of force 21B. In the figure, 23B is the target erosion pattern in that case, 19C is the horizontal magnetic field component on the top surface of the target when the outer solenoid coil 18 is excited in the negative direction (the direction in which the lines of magnetic force are directed to the outside of the coil), and 20C is the target erosion pattern on the top surface in that case. Vertical magnetic field component, 21C is a schematic diagram of the magnetic field lines for confining the plasma in that case, 22C is the magnetic field line 21C on the top surface of the target
23C is a schematic diagram of a racetrack-shaped plasma ring confined by 23C, the target erosion pattern in that case, 24 shows a racetrack-shaped plasma ring 22A to 2
This is a target erosion pattern comprehensively obtained by expanding and contracting from 2B to 22C.

【0015】従来技術と同様に,基板3は真空容器1に
ゲートバルブを介して搬入され,基板ヒータ2によって
加熱され,さらに搬送機構によってターゲット上面を等
速度で通過する。その際ターゲット背面に配置された内
周磁極17Aと外周磁極17Bと中間磁極17Cによっ
て発生した漏れ磁界に,外周ソレノイドコイル18によ
って生じる磁界を畳合することでターゲット上面にでき
たプラズマリングを22A〜22B〜22Cのようにタ
ーゲット中心に対して拡縮移動させながら矩形ターゲッ
ト5をスパッタし,通過中の基板3に成膜される。ター
ゲット侵食の顕著な略V字谷の位置がターゲット中心に
対して拡縮移動できるためターゲットの有効利用が可能
となる。
Similar to the prior art, the substrate 3 is carried into the vacuum chamber 1 via the gate valve, heated by the substrate heater 2, and then passed over the target surface at a constant speed by the transfer mechanism. At that time, the leakage magnetic field generated by the inner circumferential magnetic pole 17A, the outer circumferential magnetic pole 17B, and the intermediate magnetic pole 17C arranged on the back of the target is combined with the magnetic field generated by the outer circumferential solenoid coil 18, thereby forming a plasma ring on the upper surface of the target. As shown in 22B to 22C, a rectangular target 5 is sputtered while being expanded and contracted relative to the center of the target, and a film is formed on the substrate 3 as it passes. Since the position of the approximately V-shaped valley where target erosion is noticeable can be expanded or contracted with respect to the center of the target, the target can be used effectively.

【0016】図2はターゲット上面の磁界分布とターゲ
ット侵食パターンを示したものであるが,ターゲット侵
食の顕著な略V字谷の位置を移動させるためには垂直磁
界成分20Aを20B〜20Cと増減させる必要がある
が,略零点を横切る位置での垂直磁界成分は,図8に示
すプラズマ制御式スパッタリング装置の場合と比べて緩
やかな勾配になっているため,僅かな畳合磁界でプラズ
マを拡縮移動させることができ,それに伴って水平磁界
成分19Aは19B〜19Cとほとんど変化せず,プラ
ズマ移動による放電状態への影響はほとんどないことに
なる。そのため,膜質分布が生ずることなく,さらに,
僅かな畳合磁界でよいために,ソレノイドコイルへの負
荷が少なくてすみ,実現可能な冷却構造にて所望の発生
磁界を得ることができ,かつ,ターゲットの有効利用が
可能となり,高価なターゲットを用いた場合の大面積基
板への低コスト成膜として威力を発揮する。
FIG. 2 shows the magnetic field distribution on the upper surface of the target and the target erosion pattern. In order to move the position of the approximately V-shaped valley where target erosion is noticeable, the vertical magnetic field component 20A is increased or decreased from 20B to 20C. However, since the vertical magnetic field component at the position crossing the zero point has a gentle slope compared to the plasma-controlled sputtering equipment shown in Figure 8, it is possible to expand and contract the plasma with a small convoluted magnetic field. As a result, the horizontal magnetic field component 19A hardly changes from 19B to 19C, and the plasma movement has almost no influence on the discharge state. Therefore, there is no film quality distribution, and
Since only a small convoluted magnetic field is required, the load on the solenoid coil is small, the desired generated magnetic field can be obtained with a feasible cooling structure, and the target can be used effectively, making it possible to reduce the burden on expensive targets. It is effective for low-cost film formation on large-area substrates when using

【0017】次に,本発明の実施例について,以下の運
転条件により説明する。 (比較例1)ターゲット外形寸法は8インチ×25イン
チ,厚さ6mm,磁極構造は従来方式で,中央磁極は幅
18mmで高さ28mmで長さ400mmの棒状希土類
磁石で残留磁束密度10000Gauss,上面がN極
になるよう配置されている。外周磁極は幅18mmで高
さ28mmで600mm×200mmの略口形状をした
希土類磁石で残留磁束密度10000Gauss,上面
がS極になるよう中央磁極の外側を囲むように配置され
ている。中央磁極と外周磁極を磁気的に結合する磁性体
ヨークの比透磁率は2500で,ターゲットには銅を用
いた。図6(A)はターゲット上面の漏れ磁界分布で,
図6(B)はターゲットの侵食パターンを示したもので
ある。ターゲットの侵食パターンは略V字谷となってお
りターゲット利用率が18%と低い値であった。
Next, an embodiment of the present invention will be explained using the following operating conditions. (Comparative example 1) Target external dimensions are 8 inches x 25 inches, thickness 6 mm, magnetic pole structure is conventional method, center magnetic pole is bar-shaped rare earth magnet with width 18 mm, height 28 mm, length 400 mm, residual magnetic flux density 10000 Gauss, upper surface is arranged so that it becomes the north pole. The outer magnetic pole is a rare earth magnet having a width of 18 mm, a height of 28 mm, and an approximate shape of 600 mm x 200 mm, and has a residual magnetic flux density of 10,000 Gauss, and is arranged so as to surround the outside of the central magnetic pole so that the upper surface becomes the S pole. The relative magnetic permeability of the magnetic yoke that magnetically couples the central magnetic pole and the outer magnetic pole was 2500, and copper was used as the target. Figure 6(A) shows the leakage magnetic field distribution on the top surface of the target.
FIG. 6(B) shows the erosion pattern of the target. The target erosion pattern was approximately a V-shaped valley, and the target utilization rate was as low as 18%.

【0018】(比較例2)比較例1の従来方式の磁極構
造において中央磁極と外周磁極の間に素線径3mmで巻
数130回で断面形状50mm×40mmで外形寸法5
30mm×150mmの略口形状した内周ソレノイドコ
イルが配置されている。外周磁極の外側には素線径3m
mで巻数130回で断面形状50mm×40mmで外形
寸法720mm×350mmの略口形状した外周ソレノ
イドコイルが配置されている。図9(A)はターゲット
上面の漏れ磁界分布で,図9(B)はターゲットの侵食
パターンを示したものである。図中,添え字#1が記さ
れたものは,内周ソレノイドコイルへの励磁電流を+(
プラス)40A,外周ソレノイドコイルへの励磁電流を
+(プラス)20A(励磁電流のプラス方向:コイルの
内側に磁力線が向かう方向)流した場合のものである。 添え字#2が記されたものは,内周ソレノイドコイルへ
の励磁電流を−(マイナス)30A,外周ソレノイドコ
イルへの励磁電流を−(マイナス)40A(励磁電流の
マイナス方向:コイルの外側に磁力線が向かう方向)流
した場合のものである。添え字#3が記されたものは,
内外周ソレノイドコイルとも励磁電流を流さない場合の
ものである。
(Comparative Example 2) In the conventional magnetic pole structure of Comparative Example 1, the wire diameter was 3 mm, the number of turns was 130, the cross-sectional shape was 50 mm x 40 mm, and the external dimension was 5.
An inner circumferential solenoid coil approximately in the shape of a mouth measuring 30 mm x 150 mm is arranged. There is a wire diameter of 3m on the outside of the outer magnetic pole.
An approximately mouth-shaped outer circumferential solenoid coil with a cross-sectional shape of 50 mm x 40 mm and external dimensions of 720 mm x 350 mm is arranged. FIG. 9(A) shows the leakage magnetic field distribution on the upper surface of the target, and FIG. 9(B) shows the erosion pattern of the target. In the figure, the subscript #1 indicates that the excitation current to the inner solenoid coil is +(
(plus) 40 A, and an excitation current of + (plus) 20 A to the outer solenoid coil (positive direction of excitation current: direction in which the lines of magnetic force go toward the inside of the coil). Items with suffix #2 have an excitation current of -(minus) 30A to the inner solenoid coil, and -(minus) 40A to the outer solenoid coil (minus direction of excitation current: towards the outside of the coil). (in the direction in which the lines of magnetic force are heading). Those marked with subscript #3 are
This is the case where no excitation current flows through either the inner or outer solenoid coil.

【0019】ソレノイドコイルへの励磁電流を操作する
ことで,ターゲットの侵食の顕著な略V字谷の位置がタ
ーゲット中心線に対して拡縮移動できるためターゲット
利用効率が40%と改善ができた。しかし,プラズマを
動かすためには,垂直磁界成分で±300Gaussと
いう大きな畳合磁界が必要であり,実現可能な冷却構造
によるコイルでは1時間の連続運転しかもたない。さら
に,コイルによる磁界を畳合することで水平磁界成分も
変化し,放電電圧で350v〜580vというように放
電状態にも影響を与えた。例えば,透明導電膜のように
放電状態によって膜質に影響を及ぼすような膜種につい
ては,膜内でプラズマを動かすことに伴って膜質に分布
が生じてしまう。
By manipulating the excitation current to the solenoid coil, the position of the approximately V-shaped valley where the target is markedly eroded can be expanded or contracted with respect to the target center line, thereby improving the target utilization efficiency by 40%. However, in order to move the plasma, a large convoluted magnetic field with a perpendicular magnetic field component of ±300 Gauss is required, and a coil with a realizable cooling structure can only last for one hour of continuous operation. Furthermore, by convolving the magnetic fields from the coils, the horizontal magnetic field component also changed, which affected the discharge state, with the discharge voltage ranging from 350v to 580v. For example, for film types such as transparent conductive films whose film quality is affected by discharge conditions, the film quality will vary as plasma is moved within the film.

【0020】(実施例)ターゲット寸法ならびに材質は
比較例と同じものを用いた。本発明の磁極構造は,内周
磁極の断面形状29mm×40mmで外形寸法400m
m×60mmの略□形状をした希土類磁石で残留磁束密
度10000Gauss,ターゲット中心線が対称軸に
なるようN極が互いに向かい合っている。外周磁極の断
面形状15mm×40mmで外形寸法600mm×20
0mmの略□形状をした希土類磁石で残留磁束密度60
00Gaussと内周磁極に比べて相対的に弱い磁力で
,ターゲット中心線が対称軸になるようN極が互いに向
かい合っている。内周磁極と外周磁極の間にある中間磁
極の断面形状48mm×25mmで外形寸法500mm
×150mmの略□形状をした希土類磁石で残留磁束密
度10000Gauss,他の磁極に比べてバッキング
プレートより35mm離れており,ターゲット中心線が
対称軸になるようN極が互いに向かい合っている。さら
に,外周磁極の外側に素線径3mmで巻数130回で断
面形状50mm×40mmで外形寸法720mm×35
0mmの略□形状をした外周ソレノイドコイルが配置さ
れている。
(Example) The target dimensions and material used were the same as in the comparative example. The magnetic pole structure of the present invention has an inner circumference magnetic pole with a cross-sectional shape of 29 mm x 40 mm and an external dimension of 400 m.
It is a rare earth magnet having a substantially □ shape of m x 60 mm, has a residual magnetic flux density of 10,000 Gauss, and has north poles facing each other so that the target center line is the axis of symmetry. The cross-sectional shape of the outer magnetic pole is 15 mm x 40 mm, and the external dimensions are 600 mm x 20.
0mm approximately □-shaped rare earth magnet with residual magnetic flux density of 60
00 Gauss has a relatively weak magnetic force compared to the inner circumferential magnetic pole, and the north poles face each other so that the target center line becomes the axis of symmetry. The cross-sectional shape of the intermediate magnetic pole between the inner magnetic pole and the outer magnetic pole is 48 mm x 25 mm, and the external dimension is 500 mm.
It is a rare earth magnet in the shape of approximately □ x 150 mm, has a residual magnetic flux density of 10,000 Gauss, is 35 mm farther from the backing plate than other magnetic poles, and has N poles facing each other so that the target center line becomes the axis of symmetry. Furthermore, on the outside of the outer magnetic pole, the wire diameter is 3 mm, the number of turns is 130, the cross section is 50 mm x 40 mm, and the external dimensions are 720 mm x 35 mm.
A solenoid coil having an approximately square shape with a diameter of 0 mm is arranged.

【0021】図3(A)はターゲット上面の漏れ磁界分
布で,図3(B)はターゲットの侵食パターンを示した
ものである。図中,添え字#1が記されたものは,外周
ソレノイドコイルへの励磁電流を+(プラス)20A(
励磁電流のプラス方向:コイルの内側に磁力線が向かう
方向)流した場合のものである。添え字#2が記された
ものは,外周ソレノイドコイルへの励磁電流を−(マイ
ナス)20A(励磁電流のマイナス方向:コイルの外側
に磁力線が向かう方向)流した場合のものである。添え
字#3が記されたものは,外周ソレノイドコイルに励磁
電流を流さない場合のものである。外周ソレノイドコイ
ルへの励磁電流を操作することで,ターゲットの侵食の
顕著な略V字谷の位置がターゲット中心線に対して拡縮
移動できるためターゲット利用効率が45%と改善でき
た。またプラズマを動かすために,垂直磁界成分で±5
0Gaussという僅かな畳合磁界で済むため,実現可
能な冷却構造のコイルで連続運転が可能となった。さら
に,コイルによる磁界を畳合することで水平磁界成分も
ほとんど変化せず,放電電圧で350v〜375vとい
うように放電状態の変化も僅かである。
FIG. 3(A) shows the leakage magnetic field distribution on the upper surface of the target, and FIG. 3(B) shows the erosion pattern of the target. In the diagram, the subscript #1 indicates that the excitation current to the outer solenoid coil is + (plus) 20A (
This is when the excitation current is passed in the positive direction (the direction in which the lines of magnetic force are directed towards the inside of the coil). The subscript #2 indicates the case where an excitation current of - (minus) 20 A (minus direction of excitation current: direction in which the lines of magnetic force are directed toward the outside of the coil) is applied to the outer circumferential solenoid coil. The subscript #3 indicates the case where no excitation current is passed through the outer solenoid coil. By manipulating the excitation current to the outer solenoid coil, the position of the approximately V-shaped valley where the target is markedly eroded can be expanded or contracted with respect to the target center line, thereby improving target utilization efficiency by 45%. In addition, in order to move the plasma, the vertical magnetic field component is ±5
Since only a small convoluted magnetic field of 0 Gauss is required, continuous operation is possible with a coil with a feasible cooling structure. Furthermore, by convolving the magnetic fields from the coils, the horizontal magnetic field component hardly changes, and the discharge state changes only slightly, with the discharge voltage ranging from 350v to 375v.

【0022】[0022]

【発明の効果】本発明においては,外周ソレノイドコイ
ルにより,放電状態に影響しない程度の僅かな畳合磁界
でプラズマを拡縮移動させ得るので,ターゲット侵食の
顕著な略V字谷の位置をターゲット中心に対して拡縮移
動でき,ターゲットの有効利用が可能となる。また,タ
ーゲット背面に配置された内周磁極と外周磁極と中間磁
極によって発生した漏れ磁界に,外周ソレノイドコイル
によって生じる磁界を畳合させることで,ターゲット上
面にできたプラズマリングをターゲット中心に対して拡
縮移動させながら矩形ターゲットをスパッタすることが
でき,ターゲット上面の垂直磁界成分を緩やかな勾配に
し,垂直磁界成分が略零となる領域を大きくなるように
することができる。そして,僅かな畳合磁界でプラズマ
を拡縮移動させることができ,それに伴って水平磁界成
分はほとんど変化せず,プラズマ移動による放電状態へ
の影響はほとんどないことになる。そのため,膜質分布
が生ずることなく,さらに,僅かな畳合磁界でよいため
に,ソレノイドコイルへの負荷が少なくてすみ,実現可
能な冷却構造にて所望の発生磁界を得ることができ,か
つ,ターゲットの有効利用が可能となり,高価なターゲ
ットを用いた場合の大面積基板への低コスト成膜として
威力を発揮することもできる。
[Effects of the Invention] In the present invention, the plasma can be expanded and contracted by the outer circumferential solenoid coil with a small convoluted magnetic field that does not affect the discharge state. It is possible to scale and move the target, allowing for effective use of the target. In addition, by combining the leakage magnetic field generated by the inner circumferential magnetic pole, outer circumferential magnetic pole, and intermediate magnetic pole placed on the back of the target with the magnetic field generated by the outer circumferential solenoid coil, the plasma ring formed on the upper surface of the target is directed toward the target center. A rectangular target can be sputtered while being expanded or contracted, and the vertical magnetic field component on the upper surface of the target can be made to have a gentle gradient, so that the region where the vertical magnetic field component is approximately zero can be made large. The plasma can be expanded and contracted with a small convoluted magnetic field, and the horizontal magnetic field component hardly changes accordingly, meaning that the plasma movement has almost no effect on the discharge state. Therefore, there is no film quality distribution, and since only a small convoluted magnetic field is required, the load on the solenoid coil is small, and the desired generated magnetic field can be obtained with a feasible cooling structure. Targets can be used more effectively, and even when expensive targets are used, they can be used to form films at low cost on large-area substrates.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の方法を実施するための装置の1実施例
を示す縦断面図である。
FIG. 1 is a longitudinal sectional view of an embodiment of an apparatus for carrying out the method of the invention.

【図2】本発明の1実施例において,ターゲット上面へ
の漏れ磁界分布の操作とターゲットの侵食パターンの関
係を示す線図である。
FIG. 2 is a diagram showing the relationship between the manipulation of the leakage magnetic field distribution on the upper surface of the target and the erosion pattern of the target in one embodiment of the present invention.

【図3(A)】本発明の1実施例におけるターゲット上
面の漏れ磁界分布状態を示す線図である。
FIG. 3(A) is a diagram showing a leakage magnetic field distribution state on the upper surface of a target in one embodiment of the present invention.

【図3(B)】本発明の1実施例におけるターゲットの
侵食パターンを示すターゲットの断面図である。
FIG. 3(B) is a cross-sectional view of a target showing an erosion pattern of the target in one embodiment of the present invention.

【図4】本発明に類した従来の装置の第1例を示す縦断
面図である。
FIG. 4 is a longitudinal sectional view showing a first example of a conventional device similar to the present invention.

【図5】前記第1例において,ターゲット上面への漏れ
磁界分布の操作とターゲットの侵食パターンの関係を示
す線図である。
FIG. 5 is a diagram showing the relationship between the manipulation of the leakage magnetic field distribution to the upper surface of the target and the erosion pattern of the target in the first example.

【図6(A)】前記第1例におけるターゲット上面の漏
れ磁界分布状態を示す線図である。
FIG. 6(A) is a diagram showing the leakage magnetic field distribution state on the upper surface of the target in the first example.

【図6(B)】前記第1例におけるターゲットの侵食パ
ターンを示すターゲットの断面図である。
FIG. 6(B) is a cross-sectional view of the target showing the erosion pattern of the target in the first example.

【図7】本発明に類した従来の装置の第2例を示す縦断
面図である。
FIG. 7 is a longitudinal sectional view showing a second example of a conventional device similar to the present invention.

【図8】前記第2例において,ターゲット上面への漏れ
磁界分布の操作とターゲットの侵食パターンの関係を示
す線図である。
FIG. 8 is a diagram showing the relationship between the manipulation of the leakage magnetic field distribution to the upper surface of the target and the erosion pattern of the target in the second example.

【図9(A)】前記第2例におけるターゲット上面の漏
れ磁界分布状態を示す線図である。
FIG. 9(A) is a diagram showing the leakage magnetic field distribution state on the upper surface of the target in the second example.

【図9(B)】前記第2例におけるターゲットの侵食パ
ターンを示すターゲットの断面図である。
FIG. 9(B) is a cross-sectional view of the target showing the erosion pattern of the target in the second example.

【符号の説明】[Explanation of symbols]

1  真空容器 2  基板加熱ヒータ 3  基板 4  シャッタ 5  矩形ターゲット 6  矩形カソード 7A  中央磁極 7B  外周磁極 8  磁性体ヨーク 9A,9B,9C  磁力線 10A,10B,10C  レーストラック状プラズマ
リング 11  主放電用高圧電源 12A,12B,12C  ターゲット上面の水平磁界
成分 13A,13B,13C  ターゲット上面の垂直磁界
成分 14A,14B,14C  ターゲット侵食パターン1
5A  内周ソレノイドコイル 15B  外周ソレノイドコイル 16  ターゲットの総合侵食パターン17A  内周
磁極 17B  外周磁極 17C  中間磁極 18  外周ソレノイドコイル 19A,19B,19C  ターゲット上面の水平磁界
成分 20A,20B,20C  ターゲット上面の垂直磁界
成分 21A,21B,21C  磁力線 22A,22B,22C  レーストラック状プラズマ
リング
1 Vacuum vessel 2 Substrate heater 3 Substrate 4 Shutter 5 Rectangular target 6 Rectangular cathode 7A Central magnetic pole 7B Outer magnetic pole 8 Magnetic yokes 9A, 9B, 9C Magnetic lines of force 10A, 10B, 10C Racetrack plasma ring 11 High voltage power source for main discharge 12A , 12B, 12C Horizontal magnetic field components on the top surface of the target 13A, 13B, 13C Vertical magnetic field components on the top surface of the target 14A, 14B, 14C Target erosion pattern 1
5A Inner circumferential solenoid coil 15B Outer circumferential solenoid coil 16 Target general erosion pattern 17A Inner circumferential magnetic pole 17B Outer circumferential magnetic pole 17C Intermediate magnetic pole 18 Outer circumferential solenoid coil 19A, 19B, 19C Horizontal magnetic field component on the upper surface of the target 20A, 20B, 20C Vertical magnetic field on the upper surface of the target Components 21A, 21B, 21C Magnetic field lines 22A, 22B, 22C Racetrack-shaped plasma ring

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  矩形ターゲットの長軸方向の中心線を
対称軸として環状に配置された内周磁極と,同一の対称
軸にて該内周磁極の外側を囲むように環状に配置された
外周磁極と,内周磁極と外周磁極の間に環状に配置され
た中間磁極と,さらに,外周磁極の外側を囲むように配
置された外周ソレノイドコイルによって構成され,内周
磁極と外周磁極ならびに中間磁極の磁化の方向がターゲ
ット中心線を対称軸に向かい合うように配置し,かつ,
内周磁極の磁力に対して外周磁極の磁力が相対的に弱く
なるようにした磁極構造を用い,ターゲット上面の垂直
磁界成分を緩やかな勾配にすることで,外周ソレノイド
コイルにより放電状態に影響しない程度の僅かな畳合磁
界にてプラズマを拡縮移動させるようにした通過式スパ
ッタリング方法。
Claim 1: An inner circumferential magnetic pole arranged in an annular manner with the center line in the long axis direction of a rectangular target as an axis of symmetry, and an outer circumference arranged annularly so as to surround the outside of the inner circumferential magnetic pole with the same axis of symmetry. It consists of a magnetic pole, an intermediate magnetic pole arranged in an annular manner between the inner circumferential magnetic pole and the outer circumferential magnetic pole, and an outer circumferential solenoid coil arranged so as to surround the outside of the outer circumferential magnetic pole. The direction of magnetization of the target is arranged so that the center line of the target faces the axis of symmetry, and
By using a magnetic pole structure in which the magnetic force of the outer circumferential magnetic pole is relatively weaker than the magnetic force of the inner circumferential magnetic pole, and by creating a gentle slope of the vertical magnetic field component on the top surface of the target, the outer solenoid coil does not affect the discharge state. A pass-through sputtering method in which plasma is expanded and contracted using a slightly convoluted magnetic field.
【請求項2】  矩形ターゲットの長軸方向の中心線を
対称軸として環状に配置された内周磁極と,同一の対称
軸にて該内周磁極の外側を囲むように環状に配置された
外周磁極と,内周磁極と外周磁極の間に環状に配置され
た中間磁極と,さらに,外周磁極の外側を囲むように配
置された外周ソレノイドコイルによって構成され,内周
磁極と外周磁極ならびに中間磁極の磁化の方向がターゲ
ット中心線を対称軸に向かい合うように配置し,かつ,
内周磁極の磁力に対して外周磁極の磁力が相対的に弱く
した磁極構造にて,ターゲット上面の垂直磁界成分を緩
やかな勾配にし得るように構成したことを特徴とする通
過式スパッタリング装置。
[Claim 2] An inner circumferential magnetic pole arranged in an annular manner with the center line in the long axis direction of the rectangular target as an axis of symmetry, and an outer circumference arranged annularly so as to surround the outside of the inner circumferential magnetic pole with the same axis of symmetry. It consists of a magnetic pole, an intermediate magnetic pole arranged in an annular manner between the inner circumferential magnetic pole and the outer circumferential magnetic pole, and an outer circumferential solenoid coil arranged so as to surround the outside of the outer circumferential magnetic pole. The direction of magnetization of the target is arranged so that the center line of the target faces the axis of symmetry, and
A pass-through sputtering apparatus characterized by a magnetic pole structure in which the magnetic force of the outer circumferential magnetic pole is relatively weaker than the magnetic force of the inner circumferential magnetic pole, so that the vertical magnetic field component on the upper surface of the target can be made to have a gentle gradient.
JP22375491A 1991-05-28 1991-05-28 Method and device for passing-type sputtering Pending JPH04350165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22375491A JPH04350165A (en) 1991-05-28 1991-05-28 Method and device for passing-type sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22375491A JPH04350165A (en) 1991-05-28 1991-05-28 Method and device for passing-type sputtering

Publications (1)

Publication Number Publication Date
JPH04350165A true JPH04350165A (en) 1992-12-04

Family

ID=16803187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22375491A Pending JPH04350165A (en) 1991-05-28 1991-05-28 Method and device for passing-type sputtering

Country Status (1)

Country Link
JP (1) JPH04350165A (en)

Similar Documents

Publication Publication Date Title
JP5283084B2 (en) Magnetron sputtering equipment
US4865709A (en) Magnetron sputter apparatus and method for forming films by using the same apparatus
US4673482A (en) Sputtering apparatus
CN102420091A (en) Composite magnetic control sputtering cathode
TW201908503A (en) Magnetic thin film deposition chamber and thin film deposition device
US8535494B2 (en) Rotary magnet sputtering apparatus
JPS6320304B2 (en)
US6249200B1 (en) Combination of magnets for generating a uniform external magnetic field
JPS5825475A (en) Sputtering device
JPH04350165A (en) Method and device for passing-type sputtering
JP4389194B2 (en) Magnetic field heat treatment furnace
JP4423586B2 (en) Heat treatment furnace in magnetic field
JP4305810B2 (en) Heat treatment furnace in magnetic field and heat treatment method using the same
JP2910952B2 (en) Pass-through sputtering method and apparatus
JPH0517869A (en) Sputtering method and device
Liu et al. Design assessments of a refined dc magnetron sputter with multiple magnetron arrangements
JPH04276069A (en) Method and device for sputtering
JPH04346662A (en) Sputtering method and its apparatus
JP4056112B2 (en) Magnetron sputtering equipment
JP2003171765A (en) Film deposition apparatus
JPH04318165A (en) Sputtering method and system therefor
JPS59116376A (en) Confronting target type sputtering device
JPH0480357A (en) Sputtering system and its target electrode
JPH04235277A (en) Method and apparatus for sputtering
JPH07138750A (en) Static confronting target sputtering method and device