JPH04235277A - Method and apparatus for sputtering - Google Patents

Method and apparatus for sputtering

Info

Publication number
JPH04235277A
JPH04235277A JP41913490A JP41913490A JPH04235277A JP H04235277 A JPH04235277 A JP H04235277A JP 41913490 A JP41913490 A JP 41913490A JP 41913490 A JP41913490 A JP 41913490A JP H04235277 A JPH04235277 A JP H04235277A
Authority
JP
Japan
Prior art keywords
target
magnetic
center
outer periphery
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41913490A
Other languages
Japanese (ja)
Inventor
Yoshito Kamatani
鎌谷 吉人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP41913490A priority Critical patent/JPH04235277A/en
Publication of JPH04235277A publication Critical patent/JPH04235277A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve utilizing efficiency of a target material by setting a magnetic elements for magnetron sputtering in annular-state to center and outer periphery of the target and making all polarities to the same side. CONSTITUTION:At least two sets of the magnetic elements in magnetic apparatus are constituted with permanent magnets having angle difference of within + or -60 deg. in the magnetizing direction or orientation to parallel face with target face 6. Then, these are set as the annular-state near the center and near the outer periphery of target 6 and all polarities of N pole or S pole in the permanent magnets constituting each magnetic element, are made to the same side to execute sputtering. By this method, high density plasma generating range near just above the target is widened, and the utilizing efficiency of target material is improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はグロー放電を利用する薄
膜形成方法及びその装置に係わり,特に,成膜物質から
成り,薄膜の原料と言えるターゲット材料の利用効率の
高いマグネトロンスパッタリング技術に関するものであ
る。
[Field of Industrial Application] The present invention relates to a method and apparatus for forming a thin film using glow discharge, and in particular to a magnetron sputtering technique that is highly efficient in the use of a target material, which is a film-forming substance and can be said to be the raw material for a thin film. be.

【0002】0002

【従来の技術】マグネトロンスパッタリング技術は,低
温高速スパッタリングとも呼ばれ,以前の2極スパッタ
リング等に比べて多くの長所を有するため広く利用され
ている。この技術の特徴は,電場と磁場が直交するいわ
ゆるマグネトロン放電を利用し,ターゲットの近傍に高
密度プラズマを発生させる点にある。
2. Description of the Related Art Magnetron sputtering technology, also called low-temperature high-speed sputtering, is widely used because it has many advantages over previous bipolar sputtering and the like. The feature of this technology is that it uses so-called magnetron discharge, in which electric and magnetic fields are orthogonal, to generate high-density plasma near the target.

【0003】図8〜図11は従来技術の1例として直径
8インチの円形プレーナーマグネトロンスパッタリング
カソードを有するスパッタリング方法及び装置を説明す
るもので,図8は主要構成を示し,図9はカソード部の
断面構造の概略とこれにより生成される高密度プラズマ
及びターゲットの侵食状態を示し,図10は図9に示し
た断面構造を有するカソード部の内部の配置された磁気
装置の発生する漏洩磁界のターゲット直上面の中心から
外周に到る範囲のターゲット面に対し水平方向の磁束密
度成分と,垂直方向の磁束密度成分を表す線図でターゲ
ット直上の漏洩磁界の磁束密度分布を示し,図11は図
9に示した断面構造を有するカソードにてターゲットと
して直径8インチの無酸素銅を用い寿命に到るまで使用
した場合のターゲット中心から外周までの範囲における
侵食状態を示している。
FIGS. 8 to 11 illustrate a sputtering method and apparatus having a circular planar magnetron sputtering cathode with a diameter of 8 inches as an example of the prior art. FIG. 8 shows the main structure, and FIG. 9 shows the structure of the cathode section. The outline of the cross-sectional structure, the high-density plasma generated thereby, and the erosion state of the target are shown. The magnetic flux density distribution of the leakage magnetic field directly above the target is shown in a diagram showing the magnetic flux density component in the horizontal direction and the magnetic flux density component in the vertical direction with respect to the target surface in the range from the center of the surface directly above to the outer periphery. 9 shows the state of corrosion in the range from the center of the target to the outer periphery when oxygen-free copper with a diameter of 8 inches is used as a target for the cathode having the cross-sectional structure shown in FIG. 9 and is used until the end of its life.

【0004】なお,図8〜図11において,1は永久磁
石から成る中央磁極,2は永久磁石から成る外周磁極,
4は中央磁極1と外周磁極2を磁気的に結合する軟磁性
体から成るヨーク,6は成膜物質より成るターゲット,
8は基板,11は中央磁極1と外周磁極2の間の磁気回
路により形成されるトンネル状の磁力線の模式図,14
はトンネル状の磁力線11により閉じ込められた環状の
プラズマの断面模式図,15はプラズマ14中のスパッ
タ用ガスイオンの衝突によりターゲット6が侵食された
部分を表す断面模式図,20は真空容器,21はカソー
ド部外壁,22はターゲット6およびカソード内部を冷
却する水配管,23はカソード部を真空容器に連結する
ための真空シール機能および電気絶縁機能を有する絶縁
体,24は必要に応じてプラズマポテンシャルを調整す
るために設けられたアノードリング,25は真空容器外
の電源からアノードリングへ給電するための電流導入端
子,26は真空容器に対してアノードリングを電気的に
絶縁し固定するための絶縁体,27は基板8を載置し冷
却または加熱され所定の温度を維持し真空容器20と電
気的に絶縁された基板載置手段,28は基板用アースシ
ールド,29は基板載置手段27と基板用アースシール
ド28を連結するための真空シール機能および電気絶縁
機能を有する絶縁体,30はスパッタ用のガスを導入す
る質量流量制御弁,31は真空容器20の内部を排気す
る排気装置,40はターゲット6およびカソード部にス
パッタリング用のプラズマを生成するために高電圧を給
電するスパッタ用高圧電源,41は必要に応じてアノー
ドリングに給電する電源を示す。
In FIGS. 8 to 11, 1 is a central magnetic pole made of a permanent magnet, 2 is an outer circumferential magnetic pole made of a permanent magnet,
4 is a yoke made of a soft magnetic material that magnetically couples the central magnetic pole 1 and the outer circumferential magnetic pole 2; 6 is a target made of a film-forming material;
8 is a substrate, 11 is a schematic diagram of tunnel-shaped lines of magnetic force formed by the magnetic circuit between the central magnetic pole 1 and the outer magnetic pole 2, 14
15 is a schematic cross-sectional view of an annular plasma confined by tunnel-shaped magnetic lines of force 11, 15 is a schematic cross-sectional view showing a portion of the target 6 eroded by the collision of sputtering gas ions in the plasma 14, 20 is a vacuum container, and 21 is an outer wall of the cathode section, 22 is a water pipe that cools the target 6 and the inside of the cathode, 23 is an insulator having a vacuum sealing function and an electrical insulation function for connecting the cathode section to a vacuum container, and 24 is a plasma potential as required. 25 is a current introduction terminal for supplying power to the anode ring from a power source outside the vacuum vessel, and 26 is an insulator for electrically insulating and fixing the anode ring from the vacuum vessel. 27 is a substrate mounting means on which the substrate 8 is mounted and is cooled or heated to maintain a predetermined temperature and is electrically insulated from the vacuum container 20; 28 is a ground shield for the substrate; 29 is the substrate mounting means 27; An insulator having a vacuum sealing function and an electrical insulation function for connecting the substrate earth shield 28, 30 a mass flow control valve for introducing gas for sputtering, 31 an exhaust device for evacuating the inside of the vacuum container 20, 40 Reference numeral 41 indicates a high voltage power source for sputtering that supplies high voltage to the target 6 and the cathode portion to generate plasma for sputtering, and 41 indicates a power source that supplies power to the anode ring as required.

【0005】[0005]

【発明が解決しようとする課題】マグネトロンスパッタ
リング技術の特徴である直交電磁界によるマグネトロン
放電は,カソード部近傍に設けられた磁気要素の作るタ
ーゲット直上近傍の漏洩磁界によって,スパッタ用のガ
ス分子から電離した電子,あるいはスパッタリング現象
により生じた2次電子が収束されるため,これらの電子
とスパッタ用ガス分子との衝突確率が高くなり,プラズ
マ密度が増大するため,スパッタリング速度(成膜速度
,堆積速度)が,以前の2極スパッタリング等に比べて
著しく向上した。
[Problems to be Solved by the Invention] Magnetron discharge using orthogonal electromagnetic fields, which is a feature of magnetron sputtering technology, ionizes gas molecules for sputtering due to the leakage magnetic field directly above the target created by the magnetic element installed near the cathode. electrons or secondary electrons generated by the sputtering phenomenon are converged, increasing the probability of collision between these electrons and sputtering gas molecules, increasing the plasma density. ) has been significantly improved compared to previous methods such as two-pole sputtering.

【0006】その反面,図9〜図11の示す様に,ター
ゲットの侵食状態(スパッタリングによりターゲット材
料が叩き出され,消費された状態)は,上記漏洩磁界に
収束された高密度プラズマ直下が最も激しく,特にター
ゲット直上面の中心から外周に到る範囲の磁束密度分布
において,ターゲット面に対し水平方向の磁束密度成分
が略最大値を示し,かつ,中心と外周の間で垂直方向の
磁束密度成分が正から負,又は,負から正に変化する位
置においては,マグネトロン放電を持続し侵食が進行す
る(成膜時間が推移する)につれて,著しくターゲット
材料が消費される。
On the other hand, as shown in FIGS. 9 to 11, the erosion state of the target (the state in which the target material is knocked out and consumed by sputtering) is most severe directly under the high-density plasma converged by the leakage magnetic field. In particular, in the magnetic flux density distribution in the range from the center of the surface directly above the target to the outer periphery, the horizontal magnetic flux density component with respect to the target surface has almost the maximum value, and the magnetic flux density component in the vertical direction between the center and the outer periphery At a position where the component changes from positive to negative or from negative to positive, the target material is significantly consumed as the magnetron discharge continues and erosion progresses (as the film formation time progresses).

【0007】従って,寿命に到ったターゲットの断面形
状は,図11に示すが如く,略V字形状の侵食形態をと
り,その体積利用率は,およそ20%程度であり,高価
なターゲット材料を用いて成膜する場合,特に問題とな
っていた。
[0007] Therefore, the cross-sectional shape of the target at the end of its life takes an approximately V-shaped erosion form, as shown in Fig. 11, and its volume utilization rate is approximately 20%. This was a particular problem when forming films using

【0008】また,略V字形状の侵食が進行するにつれ
,スパッタリング現象により叩き出されたターゲット粒
子の飛散方向が変化するため,ターゲットの消耗状態が
進行した場合,基板に堆積する膜厚分布を一定に保つ事
が困難であった。
Furthermore, as the approximately V-shaped erosion progresses, the scattering direction of the target particles ejected by the sputtering phenomenon changes, so when the target wears out, the thickness distribution of the film deposited on the substrate changes. It was difficult to keep it constant.

【0009】本発明は,前述の如き,低温高速成膜を可
能としたマグネトロンスパッタリング成膜技術に係わり
,特に薄膜の原料と言える成膜物質から成るターゲット
材料の利用効率の高いマグネトロンスパッタリング方法
及び装置を提供することにある。
The present invention relates to a magnetron sputtering film formation technology that enables low-temperature, high-speed film formation, as described above, and in particular to a magnetron sputtering method and apparatus that have high utilization efficiency of a target material made of a film-forming substance that can be considered as a raw material for thin films. Our goal is to provide the following.

【0010】0010

【課題を解決するための手段】上記の目的は,ターゲッ
トを載置し電圧を印加しうる構造で,かつ,冷却機能を
有するカソード部の近傍に磁気装置を配置したものにお
いて,該磁気装置の発生する磁界に関し,ターゲット直
上面の中心から外周に到る範囲の磁束密度分布において
,ターゲット面に対し水平方向の磁束密度分布が双峰特
性を示し,かつ,中心と外周の間で垂直方向の磁束密度
成分の傾きが略零となる様に,該磁気装置の少なくとも
2組の磁気要素をターゲット面に平行な面に対し磁化方
向,又は,配向が±60度以内の角度差を有する永久磁
石で構成し,一方をターゲット中心近傍に環状(又は楕
円状,又はレーストラック状)に配置し,他方をターゲ
ット外周近傍に環状(又は楕円状  ,又はレーストラ
ック状)に配置し,かつ,各磁気要素が共有する中心線
,及び,又は,中心線が連なって構成される平面に向か
って,該磁気要素(ターゲット中心近傍と外周近傍に環
状,又は楕円状,又はレーストラック状に配置した少な
くとも2組の磁気要素)を構成している永久磁石のN極
又はS極の極性を全て同一側とし,スパッタリングに寄
与するターゲット直上近傍の高密度プラズマの発生形態
,及び,又は,領域が広い状態で成膜する事により達成
される。
[Means for solving the problem] The above object is to provide a structure in which a target can be placed and a voltage can be applied, and a magnetic device is placed near a cathode portion having a cooling function. Regarding the generated magnetic field, in the magnetic flux density distribution in the range from the center of the surface directly above the target to the outer periphery, the magnetic flux density distribution in the horizontal direction with respect to the target surface exhibits a bimodal characteristic, and the magnetic flux density distribution in the vertical direction between the center and the outer periphery shows bimodal characteristics. At least two sets of magnetic elements of the magnetic device are made of permanent magnets whose magnetization directions or orientations have an angular difference within ±60 degrees with respect to a plane parallel to the target surface so that the slope of the magnetic flux density component is approximately zero. One is arranged in an annular shape (or elliptical shape or racetrack shape) near the target center, the other is arranged in an annular shape (or elliptical shape or racetrack shape) near the outer periphery of the target, and each magnetic The magnetic elements (at least two magnetic elements arranged in a ring shape, an ellipse shape, or a racetrack shape near the center of the target and near the outer periphery) are directed toward the center line shared by the elements and/or a plane formed by a series of center lines. The polarity of the N or S poles of the permanent magnets constituting the magnetic elements of the set are all on the same side, and the form of generation of high-density plasma directly above the target that contributes to sputtering and/or in a wide area. This is achieved by forming a film.

【0011】[0011]

【作用】スパッタリング用のカソード部(成膜物質から
成るターゲットを載置し冷却が可能でプラズマ生成のた
めの放電電圧を印加できる構造体)の近傍に設けた磁気
装置に関し,該磁気装置の少なくとも2組の磁気要素を
ターゲット面と平行な面に対し,磁化方向,又は,配向
が±60度以内の角度差を有する永久磁石で構成し,一
方をターゲット中心近傍に環状(又は楕円状,又はレー
ストラック状)に配置し,他方をターゲット外周近傍に
環状(又は楕円状,又はレーストラック状)に配置し,
かつ,各磁気要素が共有する中心線,及び,又は,中心
線が連なって構成される平面に向かって,該磁気要素(
ターゲット中心近傍と外周近傍に環状,又は楕円状,又
はレーストラック状に配置した少なくとも2組の磁気要
素)を構成している永久磁石のN極又はS極の極性を全
て同一側とすることで,この磁気装置によりターゲット
直上面に発生される漏洩磁界の磁束密度分布の中心から
外周に到る範囲において,ターゲット面に対し水平方向
の磁束密度成分が双峰特性を示し,かつ,中心と外周の
間で垂直方向の磁束密度成分の傾きが略零となる。
[Operation] Regarding the magnetic device installed near the cathode part for sputtering (a structure that can place a target made of a film-forming material, cool it, and apply a discharge voltage for plasma generation), at least Two sets of magnetic elements are composed of permanent magnets whose magnetization directions or orientations have an angular difference within ±60 degrees with respect to a plane parallel to the target surface, and one set is annular (or elliptical, or one in a racetrack shape) and the other in an annular (or elliptical or racetrack shape) near the outer periphery of the target.
And, the magnetic element (
At least two sets of magnetic elements arranged in an annular, elliptical, or racetrack shape near the center of the target and near the outer periphery of the permanent magnets are configured such that the polarity of the N or S poles of the permanent magnets are all on the same side. , in the range from the center to the outer circumference of the magnetic flux density distribution of the leakage magnetic field generated directly above the target by this magnetic device, the magnetic flux density component in the horizontal direction to the target surface exhibits bimodal characteristics, and The slope of the magnetic flux density component in the vertical direction becomes approximately zero between.

【0012】このため,スパッタリングに寄与するター
ゲット直上近傍の高密度プラズマの発生形態,及び,又
は,領域が広い状態となり,成膜物質から成るターゲッ
ト材料の利用効率が向上し,また,ターゲットの消耗状
態が進行した場合でも侵食幅が殆ど変化しないため,ス
パッタリング現象により叩き出されたターゲット粒子の
飛散方向の変化が極めて少なく,基板に堆積する膜厚分
布を一定に保つ事が可能となる。
[0012] For this reason, the generation form and/or area of high-density plasma directly above the target that contributes to sputtering becomes wide, improving the utilization efficiency of the target material consisting of the film-forming substance, and reducing the consumption of the target. Even if the condition progresses, the erosion width hardly changes, so there is very little change in the scattering direction of the target particles ejected by the sputtering phenomenon, making it possible to maintain a constant thickness distribution of the film deposited on the substrate.

【0013】[0013]

【実施例】本発明の実施例を図1〜図4,及び,図5〜
図7により,以下説明する。図1〜図7において,1は
ターゲット6の面と平行な面に対し,磁化方向,又は,
配向が±60度以内の角度差を有する永久磁石から成る
中央磁極,2はターゲット6の面と平行な面に対し,磁
化方向,又は,配向が±60度以内の角度差を有する永
久磁石から成る外周磁極,3はターゲット6の面と平行
な面に対し,磁化方向,又は,配向が±60度以内の角
度差を有する永久磁石から成る中間磁極,4は中央磁極
1と外周磁極2を磁気的に結合する軟磁性体から成るヨ
ーク,6は成膜物質より成るターゲット,8は基板,1
1は中央磁極1と外周磁極2の間の磁気回路により形成
されるトンネル状の磁力線の模式図,14はトンネル状
の磁力線11により閉じ込められた環状のプラズマの断
面模式図,15はプラズマ14中のスパッタ用ガスイオ
ンの衝突によりターゲット6が侵食された部分を表す断
面模式図である。
[Example] Examples of the present invention are shown in FIGS. 1 to 4 and 5 to 4.
This will be explained below with reference to FIG. In FIGS. 1 to 7, 1 indicates the magnetization direction, or
A central magnetic pole made of a permanent magnet whose orientation has an angular difference within ±60 degrees, 2 is made of a permanent magnet whose magnetization direction or orientation has an angular difference within ±60 degrees with respect to a plane parallel to the surface of the target 6. 3 is an intermediate magnetic pole made of a permanent magnet whose magnetization direction or orientation has an angular difference within ±60 degrees with respect to a plane parallel to the surface of the target 6; 4 is a central magnetic pole 1 and an outer magnetic pole 2; A yoke made of a magnetically coupled soft magnetic material, 6 a target made of a film-forming material, 8 a substrate, 1
1 is a schematic diagram of the tunnel-shaped magnetic lines of force formed by the magnetic circuit between the central magnetic pole 1 and the outer magnetic pole 2; 14 is a schematic cross-sectional diagram of an annular plasma confined by the tunnel-shaped magnetic lines of force 11; 15 is a schematic diagram of the inside of the plasma 14. FIG. 3 is a schematic cross-sectional view showing a portion of the target 6 eroded by collision with sputtering gas ions.

【0014】20は真空容器,21はカソード部外壁,
22はターゲット6およびカソード内部を冷却する水配
管,23はカソード部を真空容器に連結するための真空
シール機能および電気絶縁機能を有する絶縁体,24は
必要に応じてプラズマポテンシャルを調整するために設
けられたアノードリング,25は真空容器外の電源から
アノードリングへ給電するための電流導入端子,26は
真空容器に対してアノードリングを電気的に絶縁し固定
するための絶縁体,27は基板8を載置し冷却または加
熱され所定の温度を維持し真空容器20と電気的に絶縁
された基板載置手段,28は基板用アースシールド,2
9は基板載置手段27と基板用アースシールド28を連
結するための真空シール機能および電気絶縁機能を有す
る絶縁体,30はスパッタ用のガスを導入する質量流量
制御弁,31は真空容器20の内部を排気する排気装置
,40はターゲット6およびカソード部にスパッタリン
グ用のプラズマを生成するために高電圧を給電するスパ
ッタ用高圧電源,41は必要に応じてアノードリングに
給電する電源を示す。
20 is a vacuum container, 21 is an outer wall of the cathode portion,
22 is a water pipe for cooling the target 6 and the inside of the cathode, 23 is an insulator having a vacuum sealing function and an electrical insulation function for connecting the cathode part to a vacuum container, and 24 is for adjusting the plasma potential as necessary. The anode ring provided, 25 is a current introduction terminal for supplying power to the anode ring from a power source outside the vacuum vessel, 26 is an insulator for electrically insulating and fixing the anode ring to the vacuum vessel, and 27 is a substrate. 8, a substrate mounting means that is cooled or heated to maintain a predetermined temperature and is electrically insulated from the vacuum container 20; 28 is a ground shield for the substrate;
9 is an insulator having a vacuum sealing function and an electrical insulation function for connecting the substrate mounting means 27 and the substrate earth shield 28; 30 is a mass flow control valve for introducing sputtering gas; 31 is an insulator for connecting the substrate mounting means 27 and the substrate earth shield 28; An exhaust device 40 evacuates the inside; 40 is a sputtering high-voltage power source that supplies high voltage to the target 6 and the cathode portion to generate plasma for sputtering; 41 is a power source that supplies power to the anode ring as required.

【0015】なお,スパッタ用高圧電源40はターゲッ
トの材質により,直流電源,又は,高周波電源と高周波
整合装置を用いる。
Note that the high voltage power source 40 for sputtering uses a DC power source or a high frequency power source and a high frequency matching device depending on the material of the target.

【0016】以上の主要構成要素からなる図1に示す本
発明の第1の実施例の装置全体は以下のように動作する
The entire apparatus of the first embodiment of the present invention shown in FIG. 1, which consists of the above main components, operates as follows.

【0017】基板8を基板載置手段27に載置した後,
排気装置31により,真空容器20の内部を所定のバッ
クグラウンド(高真空)まで排気すると同時に,基板載
置手段27を温度制御して基板8を所定の温度に保つ。 その後,スパッタ用のアルゴンガス(これに限定するも
のでは無い)を質量流量制御弁30より導入し,所定の
ガス圧力に調整する。
After placing the substrate 8 on the substrate mounting means 27,
The exhaust device 31 evacuates the inside of the vacuum container 20 to a predetermined background (high vacuum), and at the same time controls the temperature of the substrate mounting means 27 to maintain the substrate 8 at a predetermined temperature. Thereafter, argon gas for sputtering (not limited to this) is introduced through the mass flow control valve 30 and adjusted to a predetermined gas pressure.

【0018】ターゲット6に電気的に接続されたカソー
ド部外壁21へスパッタ用高圧電源40から電力を供給
すると,磁力線11に閉じ込められたスパッタリング用
の高密度プラズマ14が発生する。この磁力線11は,
中央磁極1及び外周磁極2がターゲット6の面と平行な
面に対し,磁化方向,又は,配向が±60度以内の角度
差を有する永久磁石から構成され,環状に配置している
ので,ターゲット直上面に発生される漏洩磁界の磁束密
度分布の中心から外周に到る範囲において,ターゲット
面に対し水平方向の磁束密度成分が双峰特性を示し,か
つ,中心と外周の間で垂直方向の磁束密度成分の傾きが
略零となる。
When power is supplied from the high voltage power source 40 for sputtering to the outer wall 21 of the cathode section electrically connected to the target 6, high-density plasma 14 for sputtering confined in the lines of magnetic force 11 is generated. This line of magnetic force 11 is
The central magnetic pole 1 and the outer magnetic pole 2 are composed of permanent magnets whose magnetization directions or orientations have an angular difference within ±60 degrees with respect to a plane parallel to the surface of the target 6, and are arranged in an annular manner. In the range from the center to the outer periphery of the magnetic flux density distribution of the leakage magnetic field generated directly above the target surface, the horizontal magnetic flux density component with respect to the target surface exhibits bimodal characteristics, and the vertical direction between the center and the outer periphery shows bimodal characteristics. The slope of the magnetic flux density component becomes approximately zero.

【0019】このため,スパッタリングに寄与するター
ゲット6直上近傍の高密度プラズマ14の発生形態,及
び,又は,領域が広い状態となる。この高密度プラズマ
14中のアルゴンガスイオンは陰極降下(カソードフォ
ール)により加速されターゲット6の広い範囲に衝突し
,ターゲット原子をたたき出す。たたき出されたターゲ
ット原子が基板8表面に堆積し,スパッタリング成膜機
能を果たすと同時に,ターゲット6の広い範囲において
侵食が進行する。
For this reason, the high-density plasma 14 directly above the target 6, which contributes to sputtering, is generated in a wide manner and/or in a wide area. The argon gas ions in this high-density plasma 14 are accelerated by cathode fall and collide with a wide range of the target 6, knocking out target atoms. The ejected target atoms are deposited on the surface of the substrate 8 and function as a sputtering film, and at the same time, erosion progresses over a wide range of the target 6.

【0020】上記の構成および動作により,成膜物質か
ら成るターゲット材料の利用効率が向上し,また,ター
ゲットの消耗状態が進行した場合でも侵食幅が殆ど変化
しないため,スパッタリング現象により叩き出されたタ
ーゲット粒子の飛散方向の変化が極めて少なく,基板に
堆積する膜厚分布を一定に保つ事が可能となる。
[0020] The above configuration and operation improve the utilization efficiency of the target material made of the film-forming substance, and the erosion width hardly changes even when the target wears out. Changes in the scattering direction of target particles are extremely small, making it possible to maintain a constant thickness distribution of the film deposited on the substrate.

【0021】なお,図1には,基板搬送手段,基板昇降
手段,基板回転手段,リアクティブスパッタ用ガス導入
手段,シャッタ,ビューポート,真空計等は図示してい
ないが,必要に応じて使用が可能で,図1に示す構成に
限定するものではない。
Although the substrate transport means, substrate lifting means, substrate rotation means, reactive sputtering gas introducing means, shutter, view port, vacuum gauge, etc. are not shown in FIG. 1, they may be used as necessary. is possible, and is not limited to the configuration shown in FIG.

【0022】図2は,本発明の第1の実施例で図1に示
したものに関し,直径8インチの円形ターゲット用を例
にとり,そのカソード部の断面構造の概略とそれにより
生成される高密度プラズマ及びターゲットの侵食状態を
示し,主にカソード部の磁気要素に関し,従来技術との
違いを以下説明する。
FIG. 2 shows the outline of the cross-sectional structure of the cathode part of the first embodiment of the present invention shown in FIG. 1, using a circular target with a diameter of 8 inches, and the height generated thereby. The density plasma and the erosion state of the target are shown below, and the differences from the prior art will be explained mainly regarding the magnetic elements of the cathode section.

【0023】中央磁極1と外周磁極2はターゲット6の
面と平行な面に対し,配向が+45度,及び,−45度
(±60度以内)の角度差を有する永久磁石を環状に配
置しているので,これらの磁気要素がターゲット6上に
作る漏洩磁界の磁力線11は,図7に示す従来技術のも
のに比べ,扁平したトンネル形状に成り,ターゲット6
に対し略垂直な電界と略平行な磁力線11とが直交する
領域が広く,直交電磁界によるマグネトロン放電の範囲
が広くなる。従って,ターゲット6上面に発生するプラ
ズマ14は,幅の広い環状,又は楕円状,又はレースト
ラック状となり,ターゲット6の利用効率が向上する。
The central magnetic pole 1 and the outer magnetic pole 2 are made of permanent magnets arranged in an annular manner with orientations of +45 degrees and −45 degrees (within ±60 degrees) relative to a plane parallel to the target 6. Therefore, the magnetic field lines 11 of the leakage magnetic field created by these magnetic elements on the target 6 have a flattened tunnel shape compared to the conventional technique shown in FIG.
The area where the electric field substantially perpendicular to the magnetic field 11 intersects at right angles with the substantially parallel magnetic lines 11 is wide, and the range of magnetron discharge due to the orthogonal electromagnetic field becomes wide. Therefore, the plasma 14 generated on the upper surface of the target 6 has a wide annular shape, an elliptical shape, or a racetrack shape, and the utilization efficiency of the target 6 is improved.

【0024】図3は本発明の第1の実施例で図2に示し
た断面構造を有するカソード部の内部に配置された磁気
装置の発生する漏洩磁界のターゲット6直上面の中心か
ら外周に到る範囲のターゲット面に対し水平方向の磁束
密度成分と,垂直方向の磁束密度成分を表す線図でター
ゲット6直上の漏洩磁界の磁束密度分布を示し,従来技
術との違いを以下説明する。
FIG. 3 shows a first embodiment of the present invention, in which a leakage magnetic field generated by a magnetic device disposed inside a cathode having the cross-sectional structure shown in FIG. 2 reaches from the center of the surface directly above the target 6 to the outer circumference. The magnetic flux density distribution of the leakage magnetic field directly above the target 6 is shown in a diagram showing the magnetic flux density component in the horizontal direction and the magnetic flux density component in the vertical direction with respect to the target surface in the range of the target surface, and the difference from the conventional technology will be explained below.

【0025】図2に示しているが,中央磁極1である永
久磁石のN極から発せられる磁力線は,ターゲット6上
を広範囲に漏洩する磁力線11と中央磁極1の永久磁石
のS極に向かう小ループを描く磁力線に大別され,磁力
線11は外周磁極2である永久磁石のS極に達する。ま
た,外周磁極2である永久磁石のN極からそれ自身のS
極に向かう小ループを描く磁力線がターゲット6の外周
近傍で発生する。
As shown in FIG. 2, the lines of magnetic force emitted from the north pole of the permanent magnet, which is the central magnetic pole 1, are divided into magnetic lines 11, which leak over a wide area on the target 6, and small lines of force, which are directed toward the south pole of the permanent magnet, which is the central magnetic pole 1. It is roughly divided into lines of magnetic force that draw a loop, and the line of magnetic force 11 reaches the S pole of the permanent magnet, which is the outer magnetic pole 2. Also, from the N pole of the permanent magnet, which is the outer magnetic pole 2, to its own S
Lines of magnetic force that draw a small loop toward the pole are generated near the outer periphery of the target 6.

【0026】図3のターゲット6直上面の中心から外周
に到る範囲の磁束密度分布において,ターゲット面に対
し水平方向の磁束密度成分の双峰特性が強く現れ,かつ
,中心と外周の間で垂直方向の磁束密度成分の傾きが略
零となる範囲が約40mmと広くできるのは,従来技術
が中央磁極1と外周磁極2の間の磁力線11を主体に利
用しているのに対し,中央及び外周の各々の永久磁石の
N極からそれ自身のS極に向かう小ループを描く磁力線
をもターゲット6上の漏洩磁界に積極的に利用,あるい
は作用させているからで,このために,中央及び外周磁
極である永久磁石をターゲット面と平行な面に対し,磁
化方向,又は,配向が±60度以内の角度差に成る様に
傾斜させ,かつ,各磁気要素が共有する中心線,及び,
又は,中心線が連なって構成される平面に向かって,該
磁気要素(ターゲット中心近傍と外周近傍に環状,又は
楕円状,又はレーストラック状に配置した少なくとも2
組の磁気要素)を構成している永久磁石のN極又はS極
の極性を全て同一側としている。
In the magnetic flux density distribution in the range from the center of the surface directly above the target 6 to the outer periphery in FIG. 3, a bimodal characteristic of the magnetic flux density component in the horizontal direction to the target surface appears strongly, and The reason why the range in which the gradient of the vertical magnetic flux density component is approximately zero can be widened to about 40 mm is that the conventional technology mainly uses the magnetic lines of force 11 between the central magnetic pole 1 and the outer magnetic pole 2, whereas the central This is because the lines of magnetic force that draw a small loop from the N pole of each permanent magnet on the outer periphery to its own S pole are also actively used or made to act on the leakage magnetic field on the target 6. The permanent magnet, which is the outer magnetic pole, is tilted with respect to a plane parallel to the target surface so that the magnetization direction or orientation has an angular difference within ±60 degrees, and the center line shared by each magnetic element, and ,
Or, the magnetic elements (at least two magnetic elements arranged in an annular, elliptical, or racetrack shape near the center of the target and near the outer periphery) toward a plane formed by continuous center lines.
The polarities of the N or S poles of the permanent magnets constituting the set of magnetic elements are all on the same side.

【0027】図4は本発明の第1の実施例で図2に示し
た断面構造を有するカソードにてターゲット6として直
径8インチの無酸素銅を用い寿命に到るまで使用した場
合のターゲット中心から外周までの範囲における侵食状
態を示している。本発明の図4と従来技術である図11
に示したターゲット6の侵食状態を比較すれば明らかな
様にターゲット利用効率が約2倍程度,向上している。
FIG. 4 shows the center of the target in the first embodiment of the present invention in which oxygen-free copper with a diameter of 8 inches is used as the target 6 in a cathode having the cross-sectional structure shown in FIG. 2 and is used until the end of its life. It shows the state of erosion in the range from to the outer periphery. FIG. 4 of the present invention and FIG. 11 of the prior art
As is clear from the comparison of the erosion state of the target 6 shown in Fig. 2, the target utilization efficiency has been improved by about twice.

【0028】これは,従来技術がターゲット6直上面の
中心から外周に到る範囲の磁束密度分布において,ター
ゲット面に対し水平方向の磁束密度成分が略最大値を示
し,かつ,中心と外周の間で垂直方向の磁束密度成分が
正から負,又は,負から正に変化する位置にスパッタリ
ングに寄与する高密度プラズマ14(直交電磁界による
マグネトロン放電)が集中しているのに対し,本発明に
よれば,前述の図3に示した様に,ターゲット面に対し
水平方向の磁束密度成分の双峰特性が強く現れ,かつ,
中心と外周の間で垂直方向の磁束密度成分の傾きが略零
となる範囲が広いために,高密度プラズマ14の密度分
布が広範囲で略一様であり,この状態でターゲット6の
侵食が進行するからである。
This is because in the conventional technology, in the magnetic flux density distribution in the range from the center of the surface directly above the target 6 to the outer periphery, the magnetic flux density component in the horizontal direction with respect to the target surface has approximately the maximum value, and the magnetic flux density component between the center and the outer periphery In contrast, the high-density plasma 14 (magnetron discharge due to orthogonal electromagnetic fields) that contributes to sputtering is concentrated at the position where the vertical magnetic flux density component changes from positive to negative or from negative to positive. According to the above-mentioned Figure 3, a strong bimodal characteristic of the magnetic flux density component in the horizontal direction with respect to the target surface appears, and
Since there is a wide range in which the slope of the vertical magnetic flux density component is approximately zero between the center and the outer periphery, the density distribution of the high-density plasma 14 is approximately uniform over a wide range, and the erosion of the target 6 progresses in this state. Because it does.

【0029】図5〜図7は,本発明の第2〜第4の実施
例を示したカソード部断面の概略図である。
5 to 7 are schematic cross-sectional views of cathode portions showing second to fourth embodiments of the present invention.

【0030】図5は,本発明の第2の実施例で,中央磁
極1と外周磁極2はターゲット6の面と平行な面に対し
,磁化方向が各々+45度と−45度(±60度以内)
の角度差を有する永久磁石を環状に配置したもので,第
1の実施例で示した中央及び外周磁極の構成要素である
永久磁石を斜め配置するのに比べ,組立を容易にした構
造のものを示している。
FIG. 5 shows a second embodiment of the present invention, in which the central magnetic pole 1 and the outer magnetic pole 2 have magnetization directions of +45 degrees and -45 degrees (±60 degrees, respectively) with respect to a plane parallel to the surface of the target 6. (within)
It has a structure in which permanent magnets having an angular difference of It shows.

【0031】図6は,本発明の第3の実施例で,中央磁
極1と外周磁極2はターゲット6の面と平行な面に対し
,磁化方向又は配向が0度(±60度以内)の角度差を
有する永久磁石を環状に配置したもので,第1の実施例
で示した中央及び外周磁極の構成要素である永久磁石を
斜め配置するのに比べ,組立を容易にした構造であるが
,ターゲット6直上面の中心から外周に到る範囲の磁束
密度分布において,ターゲット面に対し水平方向の磁束
密度成分の双峰特性が極端に強く現れるため,中央磁極
1と外周磁極2の間に永久磁石で構成した中間磁極3を
環状に配置し補正したものを示す。なお,永久磁石で構
成した中間磁極3を環状に配置する代わりにソレノイド
形状の電磁石を中央磁極1と外周磁極2の間に配置して
も,同様の補正効果が得られる。
FIG. 6 shows a third embodiment of the present invention, in which the central magnetic pole 1 and the outer magnetic pole 2 have a magnetization direction or orientation of 0 degrees (within ±60 degrees) with respect to a plane parallel to the surface of the target 6. This is a structure in which permanent magnets with different angles are arranged in a ring shape, making assembly easier compared to the diagonal arrangement of permanent magnets, which are the components of the central and outer magnetic poles, as shown in the first embodiment. , in the magnetic flux density distribution in the range from the center of the surface directly above the target 6 to the outer periphery, the bimodal characteristic of the magnetic flux density component in the horizontal direction with respect to the target surface appears extremely strong. The intermediate magnetic poles 3 made of permanent magnets are arranged in a ring shape and corrected. Note that the same correction effect can be obtained by arranging a solenoid-shaped electromagnet between the central magnetic pole 1 and the outer circumferential magnetic pole 2 instead of arranging the intermediate magnetic pole 3 made of a permanent magnet in an annular shape.

【0032】図7は,本発明の第4の実施例で,中央磁
極1と外周磁極2はターゲット6の面と平行な面に対し
,磁化方向又は配向が0度(±60度以内)の角度差を
有する永久磁石の小片を複数組合せ,環状に配置したも
ので,第1の実施例で示した中央および外周磁極の構成
要素である永久磁石を斜め配置するものと同様の効果が
得られる構造のものを示している。
FIG. 7 shows a fourth embodiment of the present invention, in which the central magnetic pole 1 and the outer magnetic pole 2 have a magnetization direction or orientation of 0 degrees (within ±60 degrees) with respect to a plane parallel to the surface of the target 6. A plurality of small pieces of permanent magnets having different angles are combined and arranged in a ring shape, and the same effect as that of the diagonal arrangement of permanent magnets, which are the components of the central and outer magnetic poles shown in the first embodiment, can be obtained. It shows the structure.

【0033】本発明の実施例では,ターゲット6中心に
対して基板8中心が相対的に移動しないものについて説
明したが,移動するものでも良く,また,カソード部の
形状は円形に限らず楕円形や矩形でも適用可能で,ロー
ル等による搬送手段で移送されるフィルム状の基板,カ
ルーセルと呼ばれる回転するドラムに載置された基板,
ターゲット面に対し並行移送される搬送手段に載置され
た単数または複数の基板等へ片面又は,両面同時成膜す
る場合にも適用が可能で,図1に限定されるものではな
い。また,ターゲット6と基板8は,完全に平行で対向
配置する必要は無く,多少の角度を持たせて配置しても
良い。
In the embodiments of the present invention, the center of the substrate 8 does not move relative to the center of the target 6, but it may move, and the shape of the cathode portion is not limited to a circle but may be an ellipse. It can also be applied to film-like substrates that are transported by means such as rolls, substrates that are placed on a rotating drum called a carousel, or rectangular shapes.
It can also be applied to the case where a film is simultaneously formed on one or both sides of one or more substrates placed on a transport means that is transported in parallel to the target surface, and is not limited to FIG. 1. Further, the target 6 and the substrate 8 do not need to be arranged completely parallel and facing each other, but may be arranged at a slight angle.

【0034】なお,図1,図2及び図5〜図7に示す本
発明の第1〜第4の実施例で示した各永久磁石のN極,
S極の極性を全く逆にしても,同様の効果が得られる。 また,各永久磁石は環状又は楕円状の一体成形品を着磁
したもの,小片磁石を環状又は楕円状に集積したものの
いずれでも良い。
Note that the N pole of each permanent magnet shown in the first to fourth embodiments of the present invention shown in FIGS. 1, 2, and 5 to 7,
The same effect can be obtained even if the polarity of the S pole is completely reversed. Further, each permanent magnet may be either a magnetized integral molded article in the shape of a ring or an ellipse, or a magnet formed by collecting small piece magnets in the shape of a ring or an ellipse.

【0035】さらに,図1及び図2では,中央磁極1と
外周磁極2を磁気的に結合する軟磁性体から成るヨーク
4を用いたものを示したが,永久磁石として残留磁束密
度がおよそ1T程度ある希土類磁石等を採用した場合,
ヨークを省いてもほぼ同等の効果が得られる。
Furthermore, although FIGS. 1 and 2 show a yoke 4 made of a soft magnetic material that magnetically couples the central magnetic pole 1 and the outer magnetic pole 2, the residual magnetic flux density is approximately 1T as a permanent magnet. If a certain degree of rare earth magnet etc. is used,
Almost the same effect can be obtained even if the yoke is omitted.

【0036】[0036]

【発明の効果】本発明によれば,スパッタリング用のカ
ソード部(成膜物質から成るターゲットを載置し冷却が
可能でプラズマ生成のための放電電圧を印加できる構造
体)の近傍に設けた磁気装置に関し,該磁気装置の少な
くとも2組の磁気要素をターゲット面と平行な面に対し
磁化方向,又は,配向が±60度以内の角度差を有する
永久磁石で構成し,一方をターゲット中心近傍に環状(
又は楕円状,又はレーストラック状)に配置し,他方を
ターゲット外周近傍に環状(又は楕円状,又はレースト
ラック状)に配置し,かつ,各磁気要素が共有する中心
線ないしは中心線が連なって構成される平面に向かって
該磁気要素(ターゲット中心近傍と外周近傍に環状,又
は楕円状,又はレーストラック状に配置した少なくとも
2組の磁気要素)を構成している永久磁石のN極又はS
極の極性を全て同一側とすることで,ターゲット直上面
に発生される漏洩磁界の磁束密度分布の中心から外周に
到る範囲において,ターゲット面に対し水平方向の磁束
密度成分が双峰特性を示し,かつ,中心と外周の間で垂
直方向の磁束密度成分の傾きが略零となるため,スパッ
タリングに寄与するターゲット直上近傍の高密度プラズ
マの発生形態ないしは領域が広い状態となり,成膜物質
から成るターゲット材料の利用効率が向上し,また,タ
ーゲットの消耗状態が進行した場合でも侵食幅が殆ど変
化しないため,スパッタリング現象により叩き出された
ターゲット粒子の飛散方向の変化が極めて少なく,基板
に堆積する膜厚分布を一定に保つ事が可能なスパッタリ
ング方法及び装置を提供できる。
[Effects of the Invention] According to the present invention, a magnetic field is provided near the cathode section for sputtering (a structure on which a target made of a film-forming material can be placed and cooled, and on which a discharge voltage for plasma generation can be applied). Regarding the device, at least two sets of magnetic elements of the magnetic device are composed of permanent magnets whose magnetization directions or orientations have an angular difference within ±60 degrees with respect to a plane parallel to the target surface, and one of the magnetic elements is arranged near the center of the target. Annular (
The other magnetic elements are arranged in an annular shape (or an elliptical shape or a racetrack shape) near the outer periphery of the target, and the center lines shared by each magnetic element or the center lines are connected. The north pole or south pole of the permanent magnet that constitutes the magnetic element (at least two sets of magnetic elements arranged in an annular, elliptical, or racetrack shape near the center of the target and near the outer periphery) toward the plane of construction.
By setting the polarity of all the poles on the same side, the magnetic flux density component in the horizontal direction to the target surface exhibits bimodal characteristics in the range from the center to the outer periphery of the magnetic flux density distribution of the leakage magnetic field generated directly above the target. In addition, since the slope of the vertical magnetic flux density component between the center and the outer periphery is approximately zero, the generation form or region of high-density plasma directly above the target that contributes to sputtering is wide, and the formation of In addition, the erosion width hardly changes even when the target wears out, so there is very little change in the scattering direction of the target particles ejected by the sputtering phenomenon, and they do not accumulate on the substrate. It is possible to provide a sputtering method and apparatus that can maintain a constant film thickness distribution.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の第1の実施例の構成を示す装置全体の
断面概略図である。
FIG. 1 is a schematic cross-sectional view of the entire device showing the configuration of a first embodiment of the present invention.

【図2】本発明の第1の実施例で,図1の一部拡大図で
あり,主に,カソード部の断面構造の概略とそれにより
生成される高密度プラズマ及びターゲットの侵食状態を
示したカソード部の断面概略図である。
[Fig. 2] This is a partially enlarged view of Fig. 1 in the first embodiment of the present invention, and mainly shows the outline of the cross-sectional structure of the cathode part and the high-density plasma generated thereby and the erosion state of the target. FIG. 3 is a schematic cross-sectional view of a cathode section.

【図3】本発明の第1の実施例で,図2に示した断面構
造を有するカソード部の内部に配置された磁気装置の発
生する漏洩磁界のターゲット直上面の中心から外周に到
る範囲のターゲット面に対し水平方向の磁束密度成分と
,垂直方向の磁束密度成分を表す線図である。
FIG. 3: In the first embodiment of the present invention, the range of the leakage magnetic field generated by the magnetic device placed inside the cathode section having the cross-sectional structure shown in FIG. 2 from the center of the surface directly above the target to the outer periphery. FIG. 2 is a diagram showing a magnetic flux density component in the horizontal direction and a magnetic flux density component in the vertical direction with respect to the target surface.

【図4】本発明の第1の実施例で,図2に示した断面構
造を有するカソードでターゲット中心から外周までの範
囲における侵食状態を示す断面模式図である。
FIG. 4 is a schematic cross-sectional view showing the state of erosion in the range from the center of the target to the outer periphery of the cathode having the cross-sectional structure shown in FIG. 2 in the first embodiment of the present invention.

【図5】本発明の第2の実施例を示したカソード部の断
面概略図である。
FIG. 5 is a schematic cross-sectional view of a cathode section showing a second embodiment of the present invention.

【図6】本発明の第3の実施例を示したカソード部の断
面概略図である。
FIG. 6 is a schematic cross-sectional view of a cathode section showing a third embodiment of the present invention.

【図7】本発明の第4の実施例を示したカソード部の断
面概略図である。
FIG. 7 is a schematic cross-sectional view of a cathode section showing a fourth embodiment of the present invention.

【図8】従来技術の主要構成を示す装置全体の断面概略
図である。
FIG. 8 is a schematic cross-sectional view of the entire device showing the main components of the prior art.

【図9】従来技術のカソード部の断面概略図である。FIG. 9 is a schematic cross-sectional view of a conventional cathode section.

【図10】図9に示した断面構造を有するカソード部の
内部に配置された磁気装置の発生する漏洩磁界のターゲ
ット直上面の中心から外周に到る範囲のターゲット面に
対し水平方向の磁束密度成分と,垂直方向の磁束密度成
分を表す線図である。
10: Magnetic flux density in the horizontal direction with respect to the target surface in the range from the center of the surface directly above the target to the outer periphery of the leakage magnetic field generated by the magnetic device placed inside the cathode part having the cross-sectional structure shown in FIG. FIG. 4 is a diagram showing magnetic flux density components and vertical magnetic flux density components.

【図11】図9に示した断面構造を有するカソードでタ
ーゲット中心から外周までの範囲における従来技術によ
る侵食状態を示す断面模式図である。
11 is a schematic cross-sectional view showing the state of erosion according to the prior art in the range from the center of the target to the outer periphery of the cathode having the cross-sectional structure shown in FIG. 9; FIG.

【符号の説明】[Explanation of symbols]

1  中央磁極 2  外周磁極 3  中間磁極 4  軟磁性体ヨーク 6  ターゲット 8  基板 11  磁力線の模式図 14  プラズマの断面模式図 15  ターゲットの侵食を表す断面模式図20  真
空容器 21  カソード部外壁 22  水配管 23,26,29  絶縁体 24  アノードリング 25  電流導入端子 27  基板載置手段 28  基板用アースシールド 30  質量流量制御弁 31  排気装置 40  スパッタ用高圧電源 41  電源
1 Central magnetic pole 2 Outer magnetic pole 3 Intermediate magnetic pole 4 Soft magnetic yoke 6 Target 8 Substrate 11 Schematic diagram of lines of magnetic force 14 Schematic cross-sectional diagram of plasma 15 Schematic cross-sectional diagram showing target erosion 20 Vacuum vessel 21 Cathode outer wall 22 Water piping 23, 26, 29 Insulator 24 Anode ring 25 Current introduction terminal 27 Substrate mounting means 28 Substrate earth shield 30 Mass flow control valve 31 Exhaust device 40 High voltage power source for sputtering 41 Power source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  単数又は複数の基板を保持,又は,カ
ソード部に対し相対的に運動を与える基板載置手段と,
該基板の堆積面と所定の間隔を隔てて対向する成膜物質
から成るターゲッ卜と,該ターゲットを載置し電圧を印
加しうる構造で,かつ,冷却機能を有するカソード部の
近傍に磁気装置を配置したものにおいて,該磁気装置の
発生する磁界に関し,ターゲット直上面の中心から外周
に到る範囲の磁束密度分布において,ターゲット面に対
し水平方向の磁束密度成分が双峰特性を示し,かつ,中
心と外周の間で垂直方向の磁束密度成分の傾きが略零と
なる様に,該磁気装置の少なくとも2組の磁気要素をタ
ーゲット面と平行な面に対し磁化方向,又は,配向が±
60度以内の角度差を有する永久磁石で構成し,一方を
ターゲット中心近傍に環状に配置し,他方をターゲット
外周近傍に環状に配置し,かつ,各磁気要素が共有する
中心線ないしは中心線が連なって構成される平面に向か
って,該磁気要素を構成している永久磁石のN極又はS
極の極性を全て同一側として用い,スパッタリングに寄
与するターゲット直上近傍の高密度プラズマの発生形態
ないしは領域を広い状態で成膜するようにしたことを特
徴とするスパッタリング方法。
[Claim 1] Substrate mounting means for holding one or more substrates or for providing movement relative to a cathode part;
A target made of a film-forming material facing the deposition surface of the substrate at a predetermined distance, and a magnetic device located near a cathode section that has a structure on which the target can be placed and a voltage can be applied, and that has a cooling function. With regard to the magnetic field generated by the magnetic device, in the magnetic flux density distribution in the range from the center of the surface directly above the target to the outer periphery, the magnetic flux density component in the horizontal direction with respect to the target surface exhibits bimodal characteristics, and , the magnetization direction or orientation of at least two sets of magnetic elements of the magnetic device is set to ± with respect to a plane parallel to the target surface so that the gradient of the vertical magnetic flux density component between the center and the outer periphery is approximately zero.
It is composed of permanent magnets having an angular difference within 60 degrees, one of which is arranged in a ring near the center of the target, and the other arranged in a ring near the outer periphery of the target, and the center line or center line that is shared by each magnetic element is The N pole or S pole of the permanent magnet constituting the magnetic element faces toward the continuous plane.
A sputtering method characterized by using all poles with the same polarity and depositing a film in a wide state or in a wide area of high-density plasma generation directly above the target that contributes to sputtering.
【請求項2】  単数又は複数の基板を保持,又は,カ
ソード部に対し相対的に運動を与える基板載置手段と,
該基板の堆積面と所定の間隔を隔てて対向する成膜物質
から成るターゲットと,該ターゲットを載置し電圧を印
加しうる構造で,かつ,冷却機能を有するカソード部の
近傍に磁気装置を配置したものにおいて,該磁気装置の
少なくとも2組の磁気要素をターゲット面と平行な面に
対し,磁化方向,又は,配向が±60度以内の角度差を
有する永久磁石で構成し,一方をターゲット中心近傍に
環状に配置し,他方をターゲット外周近傍に環状に配置
し,かつ,各磁気要素が共有する中心線ないしは中心線
が連なって構成される平面に向かって,該磁気要素を構
成している永久磁石のN極又はS極の極性を全て同一側
としたことを特徴とするスパッタリグ装置。
[Claim 2] Substrate mounting means for holding one or more substrates or for providing movement relative to the cathode part;
A target made of a film-forming material faces the deposition surface of the substrate at a predetermined distance, and a magnetic device is provided near a cathode portion that has a structure on which the target can be placed and a voltage can be applied, and has a cooling function. In the arrangement, at least two sets of magnetic elements of the magnetic device are composed of permanent magnets whose magnetization directions or orientations have an angular difference within ±60 degrees with respect to a plane parallel to the target surface, and one of the magnetic elements is arranged in the direction of the target. The magnetic elements are arranged in a ring shape near the center, and the other is arranged in a ring shape near the outer periphery of the target, and the magnetic elements are arranged toward a center line shared by each magnetic element or a plane formed by a series of center lines. A sputtering apparatus characterized in that the polarities of the N poles or S poles of the permanent magnets are all on the same side.
JP41913490A 1990-12-28 1990-12-28 Method and apparatus for sputtering Pending JPH04235277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41913490A JPH04235277A (en) 1990-12-28 1990-12-28 Method and apparatus for sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41913490A JPH04235277A (en) 1990-12-28 1990-12-28 Method and apparatus for sputtering

Publications (1)

Publication Number Publication Date
JPH04235277A true JPH04235277A (en) 1992-08-24

Family

ID=18526812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41913490A Pending JPH04235277A (en) 1990-12-28 1990-12-28 Method and apparatus for sputtering

Country Status (1)

Country Link
JP (1) JPH04235277A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099841A1 (en) * 2001-06-06 2002-12-12 Applied Materials, Inc. High performance magnetron for dc sputtering systems
KR20140126297A (en) 2012-01-30 2014-10-30 히타치 긴조쿠 가부시키가이샤 Magnetic field generator for magnetron sputtering
WO2019167438A1 (en) * 2018-02-27 2019-09-06 国立研究開発法人産業技術総合研究所 Magnetron sputtering cathode and magnetron sputtering devise using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099841A1 (en) * 2001-06-06 2002-12-12 Applied Materials, Inc. High performance magnetron for dc sputtering systems
KR20140126297A (en) 2012-01-30 2014-10-30 히타치 긴조쿠 가부시키가이샤 Magnetic field generator for magnetron sputtering
WO2019167438A1 (en) * 2018-02-27 2019-09-06 国立研究開発法人産業技術総合研究所 Magnetron sputtering cathode and magnetron sputtering devise using same

Similar Documents

Publication Publication Date Title
US4960073A (en) Microwave plasma treatment apparatus
US4842707A (en) Dry process apparatus
US5865961A (en) Magnetron sputtering apparatus and method
CN1341159A (en) Plasma deposition method and apparatus with magnetic bucket and concentric plasma and material source
JPH05507963A (en) Equipment for depositing material into high aspect ratio holes
JPH0353065A (en) Sputtering device
US10854434B2 (en) Magnetron, magnetron sputtering chamber, and magnetron sputtering apparatus
KR20020081156A (en) Magnetron plasma etching apparatus
CN103374705A (en) Magnetron sputtering device
US6432285B1 (en) Planar magnetron sputtering apparatus
US9028659B2 (en) Magnetron design for extended target life in radio frequency (RF) plasmas
CN115011941A (en) Permanent magnet selective coating method based on variable magnetic field magnetron sputtering coating device
WO2018175689A1 (en) Magnetron sputtering source for insulating target materials
EP1144713B1 (en) High target utilization magnetic arrangement for a truncated conical sputtering target
JPH04235277A (en) Method and apparatus for sputtering
CN101646799B (en) Magnetron source for deposition on large substrates
JPH04276069A (en) Method and device for sputtering
JP5853487B2 (en) Discharge electrode and discharge method
JPH0517869A (en) Sputtering method and device
JP3298180B2 (en) Thin film forming equipment
CN219861543U (en) Magnetron sputtering system
JPH04318165A (en) Sputtering method and system therefor
JPWO2019167438A1 (en) Magnetron Sputtering Cathode and Magnetron Sputtering Equipment Using It
JPH04235278A (en) Method and apparatus for sputtering
KR100713223B1 (en) Faced target sputtering apparatus and the cathode gun thereof