JP4389194B2 - Magnetic field heat treatment furnace - Google Patents

Magnetic field heat treatment furnace Download PDF

Info

Publication number
JP4389194B2
JP4389194B2 JP2002283316A JP2002283316A JP4389194B2 JP 4389194 B2 JP4389194 B2 JP 4389194B2 JP 2002283316 A JP2002283316 A JP 2002283316A JP 2002283316 A JP2002283316 A JP 2002283316A JP 4389194 B2 JP4389194 B2 JP 4389194B2
Authority
JP
Japan
Prior art keywords
magnetic field
permanent magnet
heat treatment
ring
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002283316A
Other languages
Japanese (ja)
Other versions
JP2004119822A (en
Inventor
義彦 栗山
誠 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002283316A priority Critical patent/JP4389194B2/en
Publication of JP2004119822A publication Critical patent/JP2004119822A/en
Application granted granted Critical
Publication of JP4389194B2 publication Critical patent/JP4389194B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
本発明は、MR(Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、MRAM(Magnetic Random Access Memory)等の製造プロセスにおいて、これらを形成するためのウェハ基板等を磁場中で熱処理する磁場中熱処理炉に関する。
【0002】
【従来の技術】
磁気ヘッドは一般に基板上に複数の強磁性層が積層された構造を有する。例えばGMRヘッドは強磁性層間に非磁性絶縁層が形成された構造を有する。またMRAMヘッドは基板側から順に反強磁性層、固定磁性層、非磁性導電層及びフリー磁性層とした構造を有する。固定磁性層は全体的に一方向に磁化されている。
【0003】
固定磁性層や反強磁性層を一方向に磁化するためには、基板上に磁性薄膜を形成した後、磁場中で熱処理を行なう必要がある。通常0.5 T(テスラ)以上の配向磁場を印加する必要があり、固定磁性層や反強磁性層の材質によっては1.0 Tを超える配向磁場が必要である。ウェハ基板に配向磁場を印加しながら熱処理するために、図15や特開2001-135543号公報に示すような真空熱処理炉がある。この真空熱処理炉は、冷却管112を備えた磁場発生用コイル113と、コイル113の内側に設けられた高周波コイル114と、高周波コイル114の内側に設けられた複数のウェハ基板110を保持する真空容器106とからなる。
【0004】
しかしながら、この磁場中熱処理炉の磁場発生手段は電磁石からなり、1.0 T以上の磁場を発生するためにはコイルに500〜800Aという大電流を流す必要があり、安全性の面から好ましくない。また大電流を用いるための設備が必要であるのみならず、磁場発生用に高額の電気代がかかり、また大電流により発生した熱を除去するために大量の冷却水を使用しなければならない。これらのために処理コストは高くならざるを得ない。さらに上記構成では漏洩磁束が非常に大きいために、人体に与える危険性を考慮すると設備スペース以外に安全確保のための大きな空きスペースを作らねばならないだけでなく、周囲の電子機器への影響を抑えるため装置を鉄やパーマロイ等の磁性体で囲う必要がある。
【0005】
超伝導コイルを用いると、大量の電力を使用しないで磁場を発生させることができる。超伝導コイルを用いる場合、電磁石に比べ励磁電流消費は抑えられるものの、超伝導状態を維持するため液体窒素又はヘリウムを常時消費しなければならず、運転コストが高い。また超伝導コイルを用いる方式では、磁場が変動すると局部的に超伝導状態が常伝導状態になってコイルが発熱し、放置すると装置全体の超伝導状態がくずれてしまう。さらに超伝導コイルは数T〜数10 Tの強磁場を発生できるが、電磁石と同様にその磁場強度に比例して強い漏洩磁場の範囲も広くなる。そのため、電磁石と同じ漏洩磁場の問題がある。
【0006】
励磁電流を使用しないで磁場強度を得るものとして、例えば”Journal of Applied Physics Vol. 86, No. 11, 1 December 1999” 及び “Journal of Applied Physics Vol. 64, No. 10, 15 November 1988”、及び特開平6-224027号に開示されたハルバッハ型磁気回路がある。このハルバッハ型磁気回路は磁化方向が異なる複数の永久磁石を組み合わせて合成磁場に方向性を持たせることができる。
【0007】
【発明が解決しようとする課題】
被熱処理品が磁気抵抗膜を有するウェハ基板の場合、磁気抵抗効果を安定的に向上させるためには通常1.0 T以上と大きな磁場が必要であるのみならず、磁場を磁性膜の磁化方向に対して平行かつ均一にする必要がある。しかしながら従来の電磁石を有する熱処理炉では、磁性膜と平行な均一磁場を発生させることができなかった。
また、ハルバッハ型磁気回路をこのような熱処理炉に用いた例はなく、効率化の面や磁気回路の構成等についての具体的な検討がなく技術的な問題があった。
【0008】
本発明の目的は、1.0T以上の均一な平行磁場を発生し得る磁気回路を用いて安全性が高く小型で高精度の磁場中熱処理炉を提供することである。
【0009】
【課題を解決するための手段】
複数の被熱処理品を一度に磁場中熱処理する場合、被熱処理品を加熱する手段の外周に水冷による冷却手段を含む熱処理炉壁を設けること、磁場発生手段として永久磁石セグメントを用いたハルバッハ型磁気回路とすること、望ましい永久磁石セグメントの分割数があること、磁気回路の軸方向長さが一定以上必要であること、磁場発生手段と被熱処理品の望ましい相対位置関係があること等の知見により、熱処理中被熱処理品の径方向に高精度で均一な平行磁場を印加することができることを発見し、本発明に想到した。
【0010】
本発明の磁場中熱処理炉は、隣接する磁石の磁化方向が互いに異なるように複数の永久磁石セグメントをリング状に組み合わせ、直径方向に磁束が流れるようにした1つのリング状永久磁石組立体からなる磁場発生手段と、前記リング状永久磁石組立体の中央空洞部内に位置し、外側から順に冷却手段を含む熱処理炉壁と、加熱手段と、複数の被熱処理品を保持する熱処理用保持具を備えた熱処理手段とを具備することを前提とする。
【0011】
前記磁場中熱処理炉において、冷却手段を含む熱処理炉壁内側は真空容器であることが好ましい。
前記磁場中熱処理炉において、前記冷却手段は前記磁場発生手段の少なくとも表面温度を磁場中熱処理装置が設置されている温度である室温に維持する能力を有していることが必要である。
前記冷却手段を含む熱処理炉壁の内部には冷却液や冷媒が流れる冷却管が配置され、前記冷却管の外周で前記リング状永久磁石組立体の内側に設けられたヒートシンク部材とを有することが好ましい。さらに前記リング状永久磁石組立体とヒートシンク部材の間には前記リング状永久磁石組立体の温度を室温に保つため断熱材を配置することが好ましい。
前記磁場中熱処理炉において、磁束密度の均一度が10%以内の磁場中で熱処理を行うために前記磁場発生手段の軸線方向磁場中心と、前記熱処理容器内に挿入される複数の被熱処理品の集合体の軸線方向中心とがほぼ一致していることが好ましい。リング状永久磁石組立体の磁極分割数は、中央空洞部に発生する磁場精度(磁場のねじれ、均一性)の点から12分割以上が好ましい。磁石の製造コストや組立性から12分割が最も好ましい。
前記リング状永久磁石組立体は200mm以上の内径及び300mm以上の外径を有し、かつ100mm以上の軸線方向長さを有するのが好ましい。
さらに磁束密度の均一度を15%以内にするために軸線方向長さはリング状永久磁石組立体の内径に係わらず、400mm以上にすることが好ましい。
また、漏洩磁束を低減するためには前記リング状永久磁石組立体は半径方向外側ほど軸線方向に短いことが必要である
前記リング状永久磁石組立体を構成する各永久磁石セグメントは、1.1 T以上の残留磁束密度及び1114 kA/m (14 kOe) 以上の保磁力を有するのが好ましい。
前記リング状永久磁石組立体の軸線方向長さHと外径Dとは2≦D/H≦10の件を満たすことが好ましい。
【0015】
以下、本発明の実施形態について説明する。
図1に示す磁場中熱処理炉は、加熱手段5からなる熱処理手段の外周に、冷却手段を含む熱処理炉壁3を介してリング状永久磁石組立体1を設けているので、軸(高さ)方向の比較的限られた範囲に対して水平面内で一方向の均一磁場を低コストで安定的に発生させることができる。これによって、比較的薄くて大径(例えば6−8インチ又はそれ以上)の磁性膜ウェハ基板Aを複数枚一度に熱処理するのに好適である。ここで被熱処理品は熱処理開始前から均一な平行磁場に配置されて磁性膜に均一な方向に磁気的な異方性を持たせることができる。最終的にはウェハ基板に形成された磁性膜または反強磁性膜について、その磁気特性が無くなる温度(キュリー温度またはネール温度)以上まで加熱し熱処理を行うため、当初磁場中に挿入配置されたときの磁場の影響は実質的には関係ない。
上記リング状永久磁石組立体1は磁化方向が互いに異なるように配向した複数の永久磁石セグメントをリング状に組み合わせたものである。永久磁石セグメントが特にNd−Fe−B系希土類永久磁石を用いるものは熱による減磁などの影響が大きいため、磁気特性を変動させないようにするためには磁場発生手段の表面温度を磁場中熱処理装置が設置されている温度(室温に維持するように冷却構造や断熱構造を永久磁石に対して働くように加熱手段と磁場発生手段の間に設置することが必要であり、これにより中央空洞内の磁場特性を一定に保つことができ、安定した熱処理性能を得ることが出来る。
【0016】
リング状永久磁石組立体1は、中央空洞部内に直径方向に磁束が流れるように構成している。中央空洞部内に流れる磁束の磁場精度(均一度及び磁場のねじれ)は、リング状永久磁石組立体1の内径と外径及び軸方向長さ(高さ)によりほぼ決まる。ここで、熱処理すべきウェハの直径を例えば5インチ、125mmとすると、ウェハ外周と冷却手段を含む熱処理炉壁3の内壁との隙間を22.5mm確保する場合、ヒータ5の厚さ(直径)は例えば5mmであり、この22.5mmの中にウェハ温度が一定となるようヒータ5が複数配置されるため冷却手段を含む熱処理炉壁3の内径は170mmとなる。冷却手段を含む熱処理炉壁3の壁厚は例えば10mmであり、各部材間のクリアランスの合計を5mmとして、リング状永久磁石組立体1の内径は200mmである。また、永久磁石の残留磁束密度Brが1.45Tとすると、中央空洞部20内の磁場強度が1Tを超えるには、図5に示すようにリング状永久磁石組立体1の内径Dが200mmの場合に、リング状永久磁石組立体の外径Dは300mm以上であるのが好ましく、またその軸線方向長さHは100mm以上であるのが好ましいことが分かる。磁場強度をシミュレーションにより計算した結果、図5に示すように磁場強度はリング状永久磁石組立体1の軸線方向長さに応じて変化し、リング状永久磁石組立体1が軸線方向長さが短くなると中央空洞部20内の磁場強度は小さくなることが分かった。この結果から分かるように、中央空洞部20内の磁束密度を1T以上とするためには、軸線方向長さは最低でも100mm以上は必要である。
図6に軸線方向長さと中央空洞部20内の磁場均一度の関係を示すシミュレーション結果を示す。この例ではリング状永久磁石組立体1の内径Dは200mm、外径を右上に示す300〜1000mmに変えた場合のものである。図6は上記の結果を支持しており、軸線方向長さに応じて磁場均一度も向上することが分かる。例えば外径に関係なく軸線方向長さを400mm以上にすることにより磁場均一度は15%以内、500mm以上で10%以内にでき、磁場のねじれ(スキュー)角は2度以内にできる。
【0017】
他方、リング状永久磁石組立体1に使用する永久磁石は、1.1T以上の残留磁束密度及び1114kA/m(14kOe)以上の保磁力を有し、かつ軸線方向長さHと外径Dとは2≦D/H≦10の要件を満たすのが好ましい。この比D/Hが大きいほど、均一な磁場が軸線方向により広範囲に発生する。この範囲内であれば、リング状永久磁石組立体1全体の重量を少なくして大きな磁場を発生させることができる。
特に、漏洩磁束を低減するために、リング状永久磁石組立体1を半径方向外側ほど短くすることにより、軸線方向の漏洩磁場をより低減できることが分かった。このような構造により、リング状磁気回路の漏洩磁束を小さくすることができ、磁気回路の小型化及び軽量化が可能となる。
【0018】
本発明の磁場中熱処理炉において、熱処理手段は、図1に示すように鏡面を有するケース内に設けられた冷却管4を有する冷却手段を含む熱処理炉壁3と、その内側にカーボン製などの電気ヒータ等からなる加熱手段5とを具備し、冷却管4を有する冷却手段を含む熱処理炉壁3内には被熱処理品Aを複数枚載置した熱処理用保持具10が挿入される。この熱処理手段により、リング状永久磁石組立体1からなる磁場発生手段の磁場中心と被熱処理品A集合体の中心を一致させ易い。また加熱手段5と磁場発生手段との間に冷却手段3があるので、磁場発生手段の表面温度を磁場中熱処理装置が設置されている温度(室温に維持するようにして永久磁石への熱影響が遮断される。そのため被熱処理品である磁性膜のキュリー温度及びネール温度により異なるが、概略300〜500℃前後の熱処理温度にもかかわらず、永久磁石は熱劣化せず発生磁場強度も変動しない。なお熱処理手段を窒素ガス等の非酸化性雰囲気下に置いても良い。
また、従来、石英管等の真空容器内部にウェハ等の被熱処理品を配置し、石英管外部より電気ヒータにて加熱を行っていたが、石英管自体の熱容量が大きいため、ウェハ温度は制御設定温度と同じように昇温せず、そのため、処理温度が不均一になり生産性を悪化させていた。本発明では真空容器を取り除き熱処理炉壁内部を真空状態におくことを行った。これにより被処理品であるウェハ側近で加熱することができ、ウェハ温度の制御性が向上し、温度制御が容易となり、ウェハ温度の均一性を向上させて生産性を向上することができた。
【0019】
リング状永久磁石組立体1に用いる永久磁石としては、Baフェライト系磁石、Srフェライト系磁石、La及びCo添加のフェライト系磁石等のフェライト磁石の他に、Nd-Fe-B系磁石、Sm-Co系磁石、Sm-Fe-N系磁石等の希土類系磁石等が挙げられるが、特に高い残留磁束密度を有するNd-Fe-B系磁石が好ましい。永久磁石は焼結磁石に限らずボンド磁石でも良い。Nd-Fe-B系磁石は耐熱温度が低いので従来の熱処理炉に用いるのは困難であったが、熱処理手段と磁場発生手段との間に冷却手段を含む熱処理炉壁3を設けることにより本発明の磁場中熱処理炉に適用可能になった。
【0020】
以下、本発明をさらに詳細に説明する。
参考例1)
図1に示す磁場中熱処理炉の磁場発生手段は、リング状永久磁石組立体1を構成する永久磁石セグメントをいずれも1.4Tの残留磁束密度及び1192kA/mの保磁力を有するNd−Fe−B系永久磁石により形成した。図2はリング状永久磁石組立体1の横断面構造を示す。
この例では、リング状永久磁石組立体1は、磁化方向が異なる3種類の扇状永久磁石セグメント11,12,13を周方向に全部で12個配列することにより形成されている。扇永久磁石セグメント11,12,13は同一形状を有するので、扇形の中心角は30°、また磁極の磁化方向位相角は60°である。なお各永久磁石セグメント11,12,13の水平断面形状を扇形とする代わりに、台形等にしても良い。
リング状永久磁石組立体1における複数の永久磁石セグメントは、磁化方向が磁束の流れとほぼ一致するとともに、中央空洞部内を直径方向に磁束が流れるようにリング状に組み合わされている。このため、リング状永久磁石組立体1の合成磁場(矢印で示す)は中央空洞部20に半径方向に印加される。
この例では、リング状永久磁石組立体1の内径Dは350mm、外径Dは900mm、軸方向長さ(高さ)Hは600mmであった。
【0021】
本実施例の熱処理手段は、鏡面となるように内面をメッキ処理したステンレス板を有する水冷手段を含む熱処理炉壁3と、その熱処理炉壁3内の被熱処理品Aを加熱する電気ヒータ5とを具備する。水冷手段を含む熱処理炉壁3内に冷却管4が備えられている。水冷手段を含む熱処理炉壁3は水冷管4の他にヒートシンク板を有しても良く、ヒートシンク板は水冷管4とリング状永久磁石組立体1との間に設けられる。被熱処理品Aとして6〜8 インチのウェハ基板が想定されることから、水冷手段を含む熱処理炉壁内に配置された電気ヒータ5の内径は170〜220 mmであるのが好ましい。
水冷手段を含む熱処理炉壁3の一端はシール部材7により密封され、他端はシール用雄ネジ部8とシール用雌ネジ部9により密封されている。熱処理炉壁3の上部は密閉筒6により雄ネジ部8と密封されている。シール用雌ネジ部9の軸19には被熱処理品Aを熱処理炉壁3のほぼ中央部に保持するための熱処理用保持具10が備えられている。
熱処理用保持具10は、例えば磁性膜が形成されたウェハ基板を載置するためのトレーを約3〜10 mm間隔で25枚程度軸線方向に配置した構造を有する。トレー間隔は被熱処理材の直径に比例して大きくすることが好ましい。熱処理用保持具10は熱処理炉壁3内で水平面内に回転自在である。磁場印加方向調整のために被熱処理品Aが合成磁場と常に同方向となるように熱処理用保持具10を回転させるのが好ましい。
熱処理用保持具10の上端、中央及び下端に備えられた熱電対により温度を測定し、電気ヒータ5の温度をPID制御する。シール部7には吸気口が備えられている。排気口は密閉筒6上部に設けられ真空ポンプ(図示せず)と接続しており、熱処理炉壁3内を真空状態に維持する。例えば、被熱処理品Aが磁性薄膜を形成した基板の場合、約1×10-5〜1×10-6 Paの真空状態で熱処理するのが好ましい。吸気口は窒素ガスボンベと接続されており、必要に応じて熱処理炉壁3内を不活性雰囲気にする。
複数の強磁性層膜と反強磁性層膜に非磁性絶縁層を介して積層した磁性膜を備えた複数のウェハ基板を熱処理用保持具10のトレー上に配列し、熱処理炉壁3内に挿入する。このとき、積み重ねた基板全体の中心をリング状永久磁石組立体1の軸方向長さの中心と一致させる。
シール用雄ネジ部8にシール用雌ネジ部9を螺着させて熱処理炉壁3を気密状態にした後、真空ポンプにより熱処理炉壁3内を排気し、1×10-5〜1×10-6 Paの真空度とした。
【0022】
次に、図14の熱処理工程図で示すように電気ヒータ5により300℃まで30℃/minで加熱する。他方冷却管4には冷却水を流しリング状永久磁石組立体1の電気ヒータ側の外周表面温度を磁場中熱処理装置が設置されている室温に維持する。300℃にウェハ基板を保ちながらウェハ表面に酸化膜が生成しないように窒素ガスをパージし、ウェハ基板上に生成された強磁性膜のキュリー温度でかつ反強磁性膜のネール温度以上の温度、例えば300℃±3%の温度に30−60分間保持しアニールする。その後窒素ガスのパージと排気を行いながら熱処理炉壁3内の温度を10℃/minで冷却し、ウェハ温度が150℃以下になったところでウェハを炉内から取り出す。ここで、ウェハ温度が降温時、すなわちキュリー温度及びネール温度を通過するときに一方向に均一な磁場が印加されていれば、磁性膜はその方向に磁気的に配向し、その温度以下では磁性膜は磁場の影響は受けない。よって、当初空洞部内に磁場が存在していてもウェハの磁性膜にとって実質的な問題はない。
なお本明細書において用語「磁場中熱処理」を用いているが、この熱処理は「アニーリング」と呼ぶことができるものである。
【0023】
次に表1から、中央空洞部20内の磁場は軸線方向磁場中心で±5.7%以内と均一であることが確認された。また図4に示すように、ウェハ基板が備えられるリング状永久磁石組立体の中央空洞部20の中心から半径100mm内の磁束密度Y成分の変化を見た。横軸は磁石厚みで軸線方向中心からの距離を示している。Y=0〜100mmの半径範囲内で1Tで且つ磁場均一度10%以内にるのは±100mmの範囲であることが分かる。また最大地点(Y=100)では±120mmで10%以下の均一な磁場強度が得られた。各測定位置の磁場スキュー角度は全て2°以内であった。このような磁場中熱処理を行なったウェハ基板を用いて形成した磁気ヘッドの磁気特性は良好であり、不良率は0であった。
磁気回路端面より軸線方向に350mm離れた位置での漏洩磁場は10mT以下と小さく、また磁気回路側面から1m離れた位置での漏洩磁場も1mT以下と小さかった。
【0024】

Figure 0004389194
【0025】
参考例2)
GMR薄膜用磁場中熱処理を行うため、1.40〜1.50Tの磁場を発生するために磁場発生手段であるリング状磁石組立体を、内径220mm、外径900mm、軸方向長さ600mmにて円周方向に12分割した磁極で構成することにより、6インチのウェハ基板にて、ウェハ基板のスタック高さ160mmの範囲にて、磁場均一度3%以内、磁場のスキュー角(ねじれ角)1°以内を達成した。
【0026】
(比較例1)
ヒータを中央空洞部ではなく、軸方向でリング磁気回路外に出る位置に備えた。それ以外は実施例1と同様にして実験を行った。熱処理台の各位置において温度分布にバラツキが発生し、各磁気ヘッドの磁気特性にもバラツキが発生した。
【0027】
(比較例2)
冷却管と断熱手段を外し、それ以外は実施例1と同様に実験を行なった。熱処理台の各位置において温度分布のバラツキは発生しなかったが、熱処理中のヒータの熱によりリング状永久石組立体の永久磁石が減磁してしまい、十分な磁場強度を得ることができなかった。
【0028】
(実施例)
図3では、リング状永久磁石組立体の軸線方向長さ(高さ)について半径方向外側に向かって徐々に短くなる構成とした。この構造により、軸線方向の漏洩磁場をより低減することができた。これによりリング状永久磁石組立体の小型化及び軽量化が可能であり、磁場中熱処理炉全体を低くすることができる。
【0029】
リング状永久磁石組立体1の内径が大きくなるに従い、磁気回路の各永久磁石セグメントは一個の永久磁石片で構成することが困難となる。そのため、複数の永久磁石片を組み合わせて各永久磁石セグメントを構成するのが好ましい。このリング状永久石組立体の永久磁石セグメントの一例を図7に示す。この例では永久磁石セグメントは半径方向に配列された3つの永久磁石片からなるが、一般に2個以上の永久磁石片を使用すればよい。内側の永久磁石片は外半径Ra及び軸線方向長さLaを有し、中央の永久磁石片は内半径Ra、外半径Rb及び軸線方向長さLbを有し、外側の永久磁石片は内半径Rb、外半径Rc及び軸線方向長さLcを有する。各永久磁石片の軸線方向長さはLa>Lb>Lcであり、外側に向かって段階的に短くなる。
【0030】
図8は、第1の永久磁石片41及び第2の永久磁石片42を組み合わせた永久磁石セグメントの例を示す。図示の例では第1の永久磁石片41を4つ、第2の永久磁石片42を2つ組み合わせているが、奇数個組合せても良い。図中の矢印は各永久磁石片の磁化方向を示す。
小さな永久磁石セグメントの場合、1個の永久磁石片で構成できる。この永久磁石セグメントにおいては、漏洩磁場を低減するために、例えば図9(a)及び図9(b)に示すように、永久磁石の軸線方向断面をほぼ台形にするのが好ましい。
上記各例では、磁化方向が異なる3種類の永久磁石を組合せてリング状永久磁石組立体に使用したが、図10に示すように磁化方向が異なる2種類の永久磁石43,44により磁気回路を構成することもできる。
【0031】
本発明においては、このリング状永久磁石組立体は等分割された永久磁石セグメントの磁極をリング状に配置して構成されるが、この分割する磁極数は多いほど理想的なハルバッハ型磁気回路に近づくが、この磁気回路を製品化するにおいて無限に分割数を増やすことは磁極を構成する磁石において様々な種類の磁化方向をもつ磁石を製造しなくてはならないため、磁石の加工コストが増大し磁気回路の製造コストが高くなってしまう。
図11は磁極分割数と磁場均一度の関係を示す検討結果である。縦軸に磁場均一度を、横軸に分割数を示している。リング状永久磁石組立体の中央空洞部の内径200mmの中心から直径120mm内の磁場均一度について調べた。軸方向高さは150mmから数種変化させ、また外径も数種変化させた。しかしその傾向は変わらなかった。このデータが示すように12分割以上では均一度の向上は見込めないことが分かった。
図12は磁極分割数とスキュー角(ねじれ角)の関係を示す検討結果である。縦軸にスキュー角を、横軸に分割数を示している。リング状永久磁石組立体の中央空洞部の内径、外径、軸方向高さ等の条件は図11と同一としている。このデータが示すように12分割以上では均一度の向上は見込めないことが分かった。図12は中央空洞部の軸方向距離と磁束密度の関係を磁極数8個と12個の場合の比較を示す試験結果である。120mmの内径及び200mmの外径を有するリング状永久磁石組立体の中央空洞部の磁場(T)を空洞部中心からの距離をパラメータに測定した。縦軸に磁束密度を、横軸に中心からの軸線方向距離を示している。このデータより中央空洞部20の磁場は、一周の永久磁石セグメントの数が12個の場合は8個の場合よりも5%程度大きいことが分かった。
以上のことより、磁気特性上や組立性などを含めたパフォーマンスから最適な分割数は12個であることが分かった。
【0032】
【発明の効果】
本発明の磁場中熱処理炉では、複数枚の磁性膜基板のような被熱処理品に均一な平行磁場を印加できるので、熱処理した磁性膜基板の品質が一様に安定する。本発明の磁場中熱処理炉は、石英管等の容器が無い、また漏洩磁場が小さいため磁気シールドの必要性がなく装置全体を小型化することができる。また磁場発生用電力を必要としないため、設備コスト及び運転コストを低減することができるのみならず、磁場発生用コイルの発熱に伴う問題もない。
リング状永久磁石組立体の中央空洞部内に設ける冷却手段には、熱処理温度による永久磁石の特性劣化を起こさない量の冷却水を流せば良い。従って、本発明の磁場中熱処理炉は運転コストが低い。
また、磁場発生用コイルに通電する大電力が不必要であるため、電源設備コスト等が省け設置スペースも少なくて良い。さらには漏洩磁束は電流を用いて磁場を発生させるものより遥かに小さく、周囲の作業者に与える影響は皆無であり、製造工程におけるライン構成も容易になる。これらを加味すると設備コストのみだけではなく、ライン構成が容易でコンパクト、運転コストも大幅に低減できる省エネルギーな磁場中真空熱処理を提供できる。
【図面の簡単な説明】
【図1】本発明の参考例に係る磁場中熱処理炉を示す要部断面図である。
【図2】図1の磁場中熱処理炉に用いるリング状永久磁石組立体の一例を示す要部横断面図である。
【図3】リング状永久磁石組立体の実施例を示す要部断面図である。
【図4】リング状永久磁石組立体の軸線方向に沿った中央空洞部内の磁場強度分布を示すグラフである。
【図5】リング状永久磁石組立体の外径及び軸線方向長さに対する中央空洞部内の磁束密度の依存性を示すグラフである。
【図6】リング状永久磁石組立体の軸線方向長さに対する中央空洞部内の磁場均一度を示すグラフである。
【図7】複数の永久磁石片からなる永久磁石セグメントの一例を示す平面図及び断面図である。
【図8】複数の永久磁石片からなる永久磁石セグメントの他の例を示す平面図である。
【図9】永久磁石セグメントの断面形状の一例を示す平面図及び断面図である。
【図10】磁化方向が異なる2種類の永久磁石からなるリング状永久磁石組立体の一例を示す平面図である。
【図11】磁極分割数と磁場均一度の関係を示す特性線図である。
【図12】磁極分割数とスキュー角(ねじれ角)の関係を示す特性線図である。
【図13】周方向に8個の永久磁石セグメントからなるリング状永久磁石組立体と12個の永久磁石セグメントからなるリング状永久磁石組立体について、リング状永久磁石組立体の中央空洞部内の軸線上の磁束密度とリング状永久磁石組立体の中心からの軸線方向距離との関係を示す特性線図である。
【図14】磁場中熱処理の一例を示す工程図である。
【図15】電磁石を有する従来の磁場中熱処理炉を示す概略断面図である。
【符号の説明】
1、1A:リング状永久磁石組立体、3:冷却手段、4:水冷管
5:加熱手段(ヒータ)、6:熱処理容器(真空容器)、7:シール部
8:シール雄ネジ部、9:シール雌ネジ部、10:熱処理用保持具
110:保持部材、112:冷却構造、113:コイル、114:高周波コイル
20:中央空洞部、21、22、23:永久磁石セグメント
40:分割型永久磁石、41、42、43、44:セグメント磁石(小磁石)[0001]
The present invention relates to a heat treatment furnace in a magnetic field for heat-treating a wafer substrate and the like for forming them in a magnetic field in a manufacturing process of an MR (Magnetic Resistive) head, a GMR (Giant Magnetic Resistive) head, an MRAM (Magnetic Random Access Memory), and the like. .
[0002]
[Prior art]
A magnetic head generally has a structure in which a plurality of ferromagnetic layers are stacked on a substrate. For example, the GMR head has a structure in which a nonmagnetic insulating layer is formed between ferromagnetic layers. Further, the MRAM head has a structure including an antiferromagnetic layer, a pinned magnetic layer, a nonmagnetic conductive layer, and a free magnetic layer in order from the substrate side. The pinned magnetic layer is entirely magnetized in one direction.
[0003]
In order to magnetize the pinned magnetic layer and the antiferromagnetic layer in one direction, it is necessary to heat-treat in a magnetic field after forming a magnetic thin film on the substrate. Usually, it is necessary to apply an orientation magnetic field of 0.5 T (tesla) or more, and an orientation magnetic field exceeding 1.0 T is required depending on the material of the pinned magnetic layer and the antiferromagnetic layer. In order to perform heat treatment while applying an orientation magnetic field to a wafer substrate, there is a vacuum heat treatment furnace as shown in FIG. This vacuum heat treatment furnace is a vacuum for holding a magnetic field generating coil 113 provided with a cooling pipe 112, a high-frequency coil 114 provided inside the coil 113, and a plurality of wafer substrates 110 provided inside the high-frequency coil 114. Container 106.
[0004]
However, the magnetic field generating means of the heat treatment furnace in the magnetic field is composed of an electromagnet, and in order to generate a magnetic field of 1.0 T or more, it is necessary to flow a large current of 500 to 800 A to the coil, which is not preferable from the viewpoint of safety. Moreover, not only equipment for using a large current is required, but also an expensive electricity bill is required for generating a magnetic field, and a large amount of cooling water must be used to remove heat generated by the large current. For these reasons, the processing cost must be high. Furthermore, since the magnetic flux leakage is extremely large in the above configuration, considering the danger to the human body, not only the equipment space but also a large free space for ensuring safety must be created, and the influence on surrounding electronic devices is suppressed. Therefore, it is necessary to surround the device with a magnetic material such as iron or permalloy.
[0005]
When a superconducting coil is used, a magnetic field can be generated without using a large amount of electric power. When a superconducting coil is used, although the excitation current consumption can be suppressed as compared with an electromagnet, liquid nitrogen or helium must always be consumed in order to maintain the superconducting state, and the operation cost is high. In the method using a superconducting coil, when the magnetic field fluctuates, the superconducting state is locally changed to the normal conducting state, and the coil generates heat. Furthermore, although the superconducting coil can generate a strong magnetic field of several T to several tens of T, the range of a strong leakage magnetic field is widened in proportion to the magnetic field strength like an electromagnet. Therefore, there is the same problem of the leakage magnetic field as the electromagnet.
[0006]
For example, “Journal of Applied Physics Vol. 86, No. 11, 1 December 1999” and “Journal of Applied Physics Vol. 64, No. 10, 15 November 1988” And a Halbach type magnetic circuit disclosed in JP-A-62-224027. In this Halbach type magnetic circuit, a plurality of permanent magnets having different magnetization directions can be combined to give directionality to the synthesized magnetic field.
[0007]
[Problems to be solved by the invention]
When the heat-treated product is a wafer substrate having a magnetoresistive film, not only a large magnetic field of 1.0 T or more is usually required in order to stably improve the magnetoresistive effect, but the magnetic field with respect to the magnetization direction of the magnetic film. Must be parallel and uniform. However, a conventional heat treatment furnace having an electromagnet could not generate a uniform magnetic field parallel to the magnetic film.
Further, there is no example in which the Halbach type magnetic circuit is used in such a heat treatment furnace, and there is a technical problem because there is no specific examination on the efficiency and the configuration of the magnetic circuit.
[0008]
An object of the present invention is to provide a magnetic field in a heat treatment furnace of the high-precision high compact safety by using a magnetic circuit that obtained by generating a more uniform parallel magnetic field 1.0 T.
[0009]
[Means for Solving the Problems]
When heat-treating a plurality of heat-treated products in a magnetic field at a time, a heat treatment furnace wall including a cooling means by water cooling is provided on the outer periphery of the means for heating the heat-treated products, and a Halbach magnet using a permanent magnet segment as a magnetic field generating means. Based on the knowledge that the circuit has a desirable number of divisions of permanent magnet segments, that the axial length of the magnetic circuit is more than a certain level, and that there is a desirable relative positional relationship between the magnetic field generating means and the product to be heat treated. During the heat treatment, it was discovered that a highly accurate and uniform parallel magnetic field can be applied in the radial direction of the heat-treated product, and the present invention has been conceived.
[0010]
The magnetic field heat treatment furnace of the present invention comprises a single ring-shaped permanent magnet assembly in which a plurality of permanent magnet segments are combined in a ring shape so that the magnetization directions of adjacent magnets are different from each other so that magnetic flux flows in the diameter direction. A magnetic field generating means, a heat treatment furnace wall including cooling means in order from the outside, located in the central cavity of the ring-shaped permanent magnet assembly, a heating means, and a heat treatment holder for holding a plurality of heat treated articles It is assumed that the heat treatment means is provided.
[0011]
In the magnetic field heat treatment furnace, the inside of the heat treatment furnace wall including the cooling means is preferably a vacuum vessel.
In the magnetic field heat treatment furnace, the cooling means needs to have an ability to maintain at least the surface temperature of the magnetic field generating means at room temperature , which is a temperature at which the magnetic field heat treatment apparatus is installed.
A cooling pipe through which a cooling liquid or a refrigerant flows is disposed inside the heat treatment furnace wall including the cooling means, and a heat sink member provided inside the ring-shaped permanent magnet assembly on the outer periphery of the cooling pipe. preferable. Furthermore, it is preferable to arrange a heat insulating material between the ring-shaped permanent magnet assembly and the heat sink member in order to keep the temperature of the ring-shaped permanent magnet assembly at room temperature.
In the heat treatment furnace in a magnetic field, in order to perform heat treatment in a magnetic field having a magnetic flux density uniformity of 10% or less, an axial magnetic field center of the magnetic field generating means and a plurality of heat treated products inserted into the heat treatment container It is preferable that the axial center of the aggregate is substantially coincident. The number of magnetic pole divisions of the ring-shaped permanent magnet assembly is preferably 12 divisions or more from the viewpoint of magnetic field accuracy (magnetic field twist and uniformity) generated in the central cavity. Twelve divisions are most preferable from the manufacturing cost and assembly property of a magnet.
The ring-shaped permanent magnet assembly preferably has an inner diameter of 200 mm or more, an outer diameter of 300 mm or more, and an axial length of 100 mm or more.
Further, in order to keep the uniformity of the magnetic flux density within 15%, the axial length is preferably 400 mm or more regardless of the inner diameter of the ring-shaped permanent magnet assembly.
In order to reduce the leakage magnetic flux, the ring-shaped permanent magnet assembly needs to be shorter in the axial direction toward the outer side in the radial direction.
Each permanent magnet segment constituting the ring-shaped permanent magnet assembly preferably has a residual magnetic flux density of 1.1 T or more and a coercive force of 1114 kA / m (14 kOe) or more.
It is preferable to satisfy the conditions of the the axial length H and an outer diameter D of the ring-shaped permanent magnet assembly 2 ≦ D / H ≦ 10.
[0015]
Embodiments of the present invention will be described below.
The magnetic field heat treatment furnace shown in FIG. 1 is provided with the ring-shaped permanent magnet assembly 1 on the outer periphery of the heat treatment means including the heating means 5 via the heat treatment furnace wall 3 including the cooling means. A uniform magnetic field in one direction can be stably generated at a low cost in a horizontal plane with respect to a relatively limited range of directions. This is suitable for heat-treating a plurality of magnetic film wafer substrates A having a relatively thin and large diameter (for example, 6-8 inches or more) at a time. Here, the product to be heat-treated can be arranged in a uniform parallel magnetic field before the start of heat treatment, so that the magnetic film can have magnetic anisotropy in a uniform direction. When the magnetic film or antiferromagnetic film finally formed on the wafer substrate is heated up to a temperature (Curie temperature or Neel temperature) or higher at which the magnetic properties disappear, it is initially inserted in the magnetic field. The effect of the magnetic field is virtually irrelevant.
The ring-shaped permanent magnet assembly 1 is a combination of a plurality of permanent magnet segments oriented so as to have different magnetization directions in a ring shape. Since permanent magnet segments using Nd-Fe-B rare earth permanent magnets are particularly affected by heat demagnetization, the surface temperature of the magnetic field generating means is heat-treated in a magnetic field in order not to change the magnetic characteristics. It is necessary to install a cooling structure and a heat insulation structure between the heating means and the magnetic field generation means so as to work against the permanent magnet so as to maintain the temperature at which the apparatus is installed ( room temperature ) , and thereby the central cavity The internal magnetic field characteristics can be kept constant, and stable heat treatment performance can be obtained.
[0016]
The ring-shaped permanent magnet assembly 1 is configured such that a magnetic flux flows in the diameter direction in the central cavity. The magnetic field accuracy (homogeneity and magnetic field twist) of the magnetic flux flowing in the central cavity is substantially determined by the inner and outer diameters and the axial length (height) of the ring-shaped permanent magnet assembly 1. Here, when the diameter of the wafer to be heat-treated is, for example, 5 inches and 125 mm, the thickness (diameter) of the heater 5 is obtained when a clearance of 22.5 mm is secured between the wafer outer periphery and the inner wall of the heat treatment furnace wall 3 including the cooling means. Is 5 mm, for example, and a plurality of heaters 5 are arranged in this 22.5 mm so that the wafer temperature is constant, so that the inner diameter of the heat treatment furnace wall 3 including the cooling means is 170 mm. The wall thickness of the heat treatment furnace wall 3 including the cooling means is, for example, 10 mm, the total clearance between the members is 5 mm, and the inner diameter of the ring-shaped permanent magnet assembly 1 is 200 mm. Further, the residual magnetic flux density Br of the permanent magnets and 1.45 T, the magnetic field strength in the central cavity 20 exceeds 1T, the inner diameter D 0 of the ring-shaped permanent magnet assembly 1 as shown in FIG. 5 200 mm In this case, the outer diameter D of the ring-shaped permanent magnet assembly is preferably 300 mm or more, and the axial length H thereof is preferably 100 mm or more. As a result of calculating the magnetic field strength by simulation, as shown in FIG. 5, the magnetic field strength changes according to the axial length of the ring-shaped permanent magnet assembly 1, and the ring-shaped permanent magnet assembly 1 has a short axial length. Then, it was found that the magnetic field strength in the central cavity 20 becomes small. As can be seen from this result, in order to set the magnetic flux density in the central cavity 20 to 1 T or more, the axial length must be at least 100 mm.
FIG. 6 shows a simulation result showing the relationship between the axial length and the magnetic field uniformity in the central cavity 20. Inside diameter D 0 in this example ring-shaped permanent magnet assembly 1 is of the case of changing the 300~1000mm indicating 200 mm, an outer diameter in the upper right. FIG. 6 supports the above results, and it can be seen that the uniformity of the magnetic field is improved according to the axial length. For example, by setting the axial length to 400 mm or more regardless of the outer diameter, the magnetic field uniformity can be within 15%, 500 mm or more and within 10%, and the magnetic field twist (skew) angle can be within 2 degrees.
[0017]
On the other hand, the permanent magnet used for the ring-shaped permanent magnet assembly 1 has a residual magnetic flux density of 1.1 T or more, a coercive force of 1114 kA / m (14 kOe) or more, and an axial length H and an outer diameter D. Satisfies the requirement of 2 ≦ D / H ≦ 10. The larger this ratio D / H, the more uniform the magnetic field is generated in the axial direction. Within this range, the entire ring-shaped permanent magnet assembly 1 can be reduced in weight to generate a large magnetic field.
In particular , it has been found that the leakage magnetic field in the axial direction can be further reduced by shortening the ring-shaped permanent magnet assembly 1 toward the radially outer side in order to reduce the leakage magnetic flux. With such a structure, the leakage magnetic flux of the ring-shaped magnetic circuit can be reduced, and the magnetic circuit can be reduced in size and weight.
[0018]
In the magnetic field heat treatment furnace of the present invention, the heat treatment means includes a heat treatment furnace wall 3 including a cooling means having a cooling pipe 4 provided in a case having a mirror surface as shown in FIG. A heat treatment holder 10 including a plurality of heat treated articles A is inserted into a heat treatment furnace wall 3 including a cooling means having a cooling pipe 4 and a heating means 5 made of an electric heater or the like. By this heat treatment means, the center of the magnetic field of the magnetic field generation means comprising the ring-shaped permanent magnet assembly 1 and the center of the heat-treated product A assembly can be easily matched. Further, since there is a cooling means 3 between the heating means 5 and the magnetic field generating means, the surface temperature of the magnetic field generating means is maintained at the temperature ( room temperature ) at which the magnetic field heat treatment apparatus is installed. Impact is cut off. Therefore, although it varies depending on the Curie temperature and the Neel temperature of the magnetic film that is a heat-treated product, the permanent magnet does not thermally deteriorate and the generated magnetic field strength does not fluctuate despite the heat treatment temperature of approximately 300 to 500 ° C. The heat treatment means may be placed in a non-oxidizing atmosphere such as nitrogen gas.
Conventionally, heat-treated products such as wafers have been placed inside a vacuum vessel such as a quartz tube and heated by an electric heater from the outside of the quartz tube. However, since the heat capacity of the quartz tube itself is large, the wafer temperature is controlled. The temperature was not raised in the same way as the set temperature, and therefore the processing temperature became non-uniform and the productivity deteriorated. In the present invention, the vacuum vessel was removed and the inside of the heat treatment furnace wall was placed in a vacuum state. As a result, it was possible to heat the wafer near the wafer to be processed, thereby improving the controllability of the wafer temperature, facilitating temperature control, improving the uniformity of the wafer temperature, and improving the productivity.
[0019]
Permanent magnets used in the ring-shaped permanent magnet assembly 1 include Ba ferrite magnets, Sr ferrite magnets, ferrite magnets such as La and Co-added ferrite magnets, Nd-Fe-B magnets, Sm- Examples include rare earth magnets such as Co magnets and Sm—Fe—N magnets, but Nd—Fe—B magnets having a particularly high residual magnetic flux density are preferred. The permanent magnet is not limited to a sintered magnet but may be a bonded magnet. Nd-Fe-B magnets were difficult to use in conventional heat treatment furnaces because of their low heat-resistant temperature, but this was achieved by providing a heat treatment furnace wall 3 including a cooling means between the heat treatment means and the magnetic field generation means. Applicable to the heat treatment furnace in the magnetic field of the invention.
[0020]
Hereinafter, the present invention will be described in more detail .
( Reference Example 1)
The magnetic field generating means of the in-magnetic-field heat treatment furnace shown in FIG. 1 has Nd-Fe- having a residual magnetic flux density of 1.4T and a coercive force of 1192 kA / m for each of the permanent magnet segments constituting the ring-shaped permanent magnet assembly 1. It formed with the B system permanent magnet. FIG. 2 shows a cross-sectional structure of the ring-shaped permanent magnet assembly 1.
In this example, the ring-shaped permanent magnet assembly 1 is formed by arranging a total of 12 fan-shaped permanent magnet segments 11, 12, 13 having different magnetization directions in the circumferential direction. Since fan-shaped permanent magnet segments 11, 12 and 13 have the same shape, fan-shaped central angle is 30 °, also the magnetization direction phase angle of the magnetic pole is 60 °. Note that the horizontal cross-sectional shape of each permanent magnet segment 11, 12, 13 may be a trapezoid instead of a sector.
The plurality of permanent magnet segments in the ring-shaped permanent magnet assembly 1 are combined in a ring shape so that the magnetization direction substantially coincides with the flow of magnetic flux and the magnetic flux flows in the diameter direction in the central cavity. For this reason, the synthetic magnetic field (indicated by an arrow) of the ring-shaped permanent magnet assembly 1 is applied to the central cavity 20 in the radial direction.
In this example, the inner diameter D 0 of the ring-shaped permanent magnet assembly 1 was 350 mm, the outer diameter D was 900 mm, and the axial length (height) H was 600 mm.
[0021]
The heat treatment means of the present embodiment includes a heat treatment furnace wall 3 including a water cooling means having a stainless steel plate whose inner surface is plated so as to be a mirror surface, and an electric heater 5 that heats the heat-treated product A in the heat treatment furnace wall 3. It comprises. A cooling pipe 4 is provided in a heat treatment furnace wall 3 including water cooling means. The heat treatment furnace wall 3 including the water cooling means may have a heat sink plate in addition to the water cooling tube 4, and the heat sink plate is provided between the water cooling tube 4 and the ring-shaped permanent magnet assembly 1. Since a 6 to 8 inch wafer substrate is assumed as the article A to be heat treated, the inner diameter of the electric heater 5 disposed in the heat treatment furnace wall including the water cooling means is preferably 170 to 220 mm.
One end of the heat treatment furnace wall 3 including the water cooling means is sealed with a seal member 7, and the other end is sealed with a sealing male screw portion 8 and a sealing female screw portion 9. The upper part of the heat treatment furnace wall 3 is sealed with a male screw part 8 by a sealed cylinder 6. The shaft 19 of the female thread portion 9 for sealing is provided with a heat treatment holder 10 for holding the product A to be heat treated at a substantially central portion of the heat treatment furnace wall 3.
The heat treatment holder 10 has a structure in which, for example, about 25 trays for placing a wafer substrate on which a magnetic film is formed are arranged in the axial direction at intervals of about 3 to 10 mm. The tray interval is preferably increased in proportion to the diameter of the material to be heat treated. The heat treatment holder 10 is rotatable in a horizontal plane within the heat treatment furnace wall 3. In order to adjust the magnetic field application direction, it is preferable to rotate the heat treatment holder 10 so that the heat-treated product A is always in the same direction as the synthetic magnetic field.
The temperature is measured by thermocouples provided at the upper end, the center, and the lower end of the heat treatment holder 10, and the temperature of the electric heater 5 is PID controlled. The seal portion 7 is provided with an intake port. The exhaust port is provided in the upper part of the sealed cylinder 6 and connected to a vacuum pump (not shown), and the inside of the heat treatment furnace wall 3 is maintained in a vacuum state. For example, when the article A to be heat-treated is a substrate on which a magnetic thin film is formed, the heat treatment is preferably performed in a vacuum state of about 1 × 10 −5 to 1 × 10 −6 Pa. The intake port is connected to a nitrogen gas cylinder, and the inside of the heat treatment furnace wall 3 is made an inert atmosphere as necessary.
A plurality of wafer substrates having a magnetic film laminated on a plurality of ferromagnetic layer films and antiferromagnetic layer films via a nonmagnetic insulating layer are arranged on the tray of the heat treatment holder 10, and are placed in the heat treatment furnace wall 3. insert. At this time, the center of the stacked substrates is made to coincide with the center of the axial length of the ring-shaped permanent magnet assembly 1.
After sealing the female screw part 9 to the male screw part 8 for sealing to make the heat treatment furnace wall 3 airtight, the inside of the heat treatment furnace wall 3 is evacuated by a vacuum pump, and 1 × 10 −5 to 1 × 10 The degree of vacuum was -6 Pa.
[0022]
Next, as shown in the heat treatment process diagram of FIG. 14, the electric heater 5 heats to 300 ° C. at 30 ° C./min. On the other hand, cooling water is poured into the cooling pipe 4 to maintain the outer peripheral surface temperature of the ring-shaped permanent magnet assembly 1 on the electric heater side at the room temperature where the magnetic field heat treatment apparatus is installed. Purging nitrogen gas so that an oxide film is not formed on the wafer surface while keeping the wafer substrate at 300 ° C., a temperature equal to or higher than the Curie temperature of the ferromagnetic film generated on the wafer substrate and the Neel temperature of the antiferromagnetic film, For example, annealing is performed by holding at a temperature of 300 ° C. ± 3% for 30-60 minutes. Thereafter, the temperature in the heat treatment furnace wall 3 is cooled at 10 ° C./min while purging and exhausting nitrogen gas, and the wafer is taken out of the furnace when the wafer temperature becomes 150 ° C. or lower. Here, when a uniform magnetic field is applied in one direction when the wafer temperature falls, that is, when it passes through the Curie temperature and the Neel temperature, the magnetic film is magnetically oriented in that direction, and below that temperature, the magnetic film is magnetic. The film is not affected by the magnetic field. Therefore, even if a magnetic field is initially present in the cavity, there is no substantial problem for the magnetic film of the wafer.
In this specification, the term “heat treatment in a magnetic field” is used, but this heat treatment can be referred to as “annealing”.
[0023]
Next, from Table 1, it was confirmed that the magnetic field in the central cavity 20 was uniform within ± 5.7% at the axial magnetic field center. Further, as shown in FIG. 4, the change in the magnetic flux density Y component within a radius of 100 mm from the center of the central cavity 20 of the ring-shaped permanent magnet assembly provided with the wafer substrate was observed. The horizontal axis indicates the distance from the axial center by the magnet thickness. And magnetic field uniformity in 1T within a radius range of Y = 0 to 100 mM is found in the range of Runowa ± 100 mm such within 10%. At the maximum point (Y = 100), a uniform magnetic field strength of ± 120 mm and 10% or less was obtained. The magnetic field skew angles at each measurement position were all within 2 °. The magnetic characteristics of the magnetic head formed using the wafer substrate subjected to such heat treatment in a magnetic field were good, and the defect rate was zero.
The leakage magnetic field at a position 350 mm away from the end face of the magnetic circuit in the axial direction was as small as 10 mT or less, and the leakage magnetic field at a position 1 m away from the magnetic circuit side face was as small as 1 mT or less.
[0024]
Figure 0004389194
[0025]
( Reference Example 2)
In order to perform heat treatment in a magnetic field for GMR thin film, a ring-shaped magnet assembly as a magnetic field generating means for generating a magnetic field of 1.40 to 1.50 T has an inner diameter of 220 mm, an outer diameter of 900 mm, and an axial length of 600 mm. By comprising magnetic poles divided into 12 in the circumferential direction, the magnetic field uniformity is within 3% and the magnetic field skew angle (twist angle) is 1 within a wafer substrate stack height of 160 mm on a 6-inch wafer substrate. Achieved within °.
[0026]
(Comparative Example 1)
The heater was provided not at the central cavity but at a position where it would go out of the ring magnetic circuit in the axial direction. Otherwise, the experiment was performed in the same manner as in Example 1. Variations in temperature distribution occurred at each position of the heat treatment table, and variations in the magnetic characteristics of each magnetic head also occurred.
[0027]
(Comparative Example 2)
The experiment was performed in the same manner as in Example 1 except that the cooling pipe and the heat insulating means were removed. While variation in the temperature distribution at each position of the heat treatment stage did not occur, it would demagnetized permanent magnet of the ring-shaped permanent magnetic rock work steric that the heat of the heater in the heat treatment, not possible to obtain sufficient magnetic field strength It was.
[0028]
(Example)
In FIG. 3, the length (height) in the axial direction of the ring-shaped permanent magnet assembly is gradually shortened outward in the radial direction. With this structure, the leakage magnetic field in the axial direction could be further reduced. Thereby, the ring-shaped permanent magnet assembly can be reduced in size and weight, and the entire heat treatment furnace in a magnetic field can be lowered.
[0029]
As the inner diameter of the ring-shaped permanent magnet assembly 1 increases, it becomes difficult to configure each permanent magnet segment of the magnetic circuit with one permanent magnet piece. Therefore, it is preferable to configure each permanent magnet segment by combining a plurality of permanent magnet pieces. It shows an example of the permanent magnet segments of the ring-shaped permanent magnetic rock work stereoscopic Figure 7. In this example, the permanent magnet segment is composed of three permanent magnet pieces arranged in the radial direction, but generally two or more permanent magnet pieces may be used. The inner permanent magnet piece has an outer radius Ra and an axial length La, the central permanent magnet piece has an inner radius Ra, an outer radius Rb and an axial length Lb, and the outer permanent magnet piece has an inner radius. Rb, outer radius Rc, and axial length Lc. Axial length of the permanent magnet pieces are La>Lb> Lc, shortened to phased outwardly.
[0030]
FIG. 8 shows an example of a permanent magnet segment in which the first permanent magnet piece 41 and the second permanent magnet piece 42 are combined. In the illustrated example, four first permanent magnet pieces 41 and two second permanent magnet pieces 42 are combined, but an odd number may be combined. The arrows in the figure indicate the magnetization direction of each permanent magnet piece.
In the case of a small permanent magnet segment, it can be composed of one permanent magnet piece. In this permanent magnet segment, in order to reduce the leakage magnetic field, for example, as shown in FIG. 9A and FIG.
In each of the above examples, three types of permanent magnets having different magnetization directions are combined and used in the ring-shaped permanent magnet assembly. However, as shown in FIG. 10, a magnetic circuit is formed by two types of permanent magnets 43 and 44 having different magnetization directions. It can also be configured.
[0031]
In the present invention , this ring-shaped permanent magnet assembly is configured by arranging the magnetic poles of equally divided permanent magnet segments in a ring shape. The more the number of magnetic poles to be divided, the more ideal Halbach type magnetic circuit. However, when this magnetic circuit is commercialized, increasing the number of divisions infinitely requires manufacturing magnets with various types of magnetization directions in the magnets constituting the magnetic poles, which increases the machining cost of the magnets. The manufacturing cost of a magnetic circuit will become high.
FIG. 11 shows the examination results showing the relationship between the number of magnetic pole divisions and the magnetic field uniformity. The vertical axis represents the magnetic field uniformity, and the horizontal axis represents the number of divisions. The uniformity of the magnetic field within a diameter of 120 mm from the center of the inner diameter of 200 mm of the central cavity of the ring-shaped permanent magnet assembly was examined. The axial height was changed from 150 mm to several types, and the outer diameter was also changed from several types. But the trend did not change. As shown by this data, it was found that improvement in uniformity cannot be expected with 12 divisions or more.
FIG. 12 shows the examination results showing the relationship between the number of magnetic pole divisions and the skew angle (twist angle). The vertical axis represents the skew angle, and the horizontal axis represents the number of divisions. The conditions such as the inner diameter, outer diameter, and axial height of the central cavity of the ring-shaped permanent magnet assembly are the same as those in FIG. As shown by this data, it was found that improvement in uniformity cannot be expected with 12 divisions or more. FIG. 12 is a test result showing a comparison between the axial distance of the central cavity and the magnetic flux density when the number of magnetic poles is 8 and 12. The magnetic field (T) of the central cavity of a ring-shaped permanent magnet assembly having an inner diameter of 120 mm and an outer diameter of 200 mm was measured using the distance from the center of the cavity as a parameter. The vertical axis represents the magnetic flux density, and the horizontal axis represents the axial distance from the center. From this data, it was found that the magnetic field in the central cavity 20 is about 5% larger when the number of permanent magnet segments per round is 12 than when the number of permanent magnet segments is 12.
From the above, it was found that the optimum number of divisions was 12 from the performance including the magnetic characteristics and the assemblability.
[0032]
【The invention's effect】
In the magnetic field heat treatment furnace of the present invention, a uniform parallel magnetic field can be applied to a heat-treated product such as a plurality of magnetic film substrates, so that the quality of the heat-treated magnetic film substrate is uniformly stabilized. The heat treatment furnace in a magnetic field of the present invention has no container such as a quartz tube and has a small leakage magnetic field, so that there is no need for a magnetic shield and the entire apparatus can be downsized. Further, since no magnetic field generating power is required, not only the equipment cost and the operating cost can be reduced, but there is no problem associated with the heat generation of the magnetic field generating coil.
The cooling means provided in the central cavity of the ring-shaped permanent magnet assembly may be supplied with an amount of cooling water that does not cause deterioration of the characteristics of the permanent magnet due to the heat treatment temperature. Therefore, the operation cost is low in the magnetic field heat treatment furnace of the present invention.
In addition, since a large amount of electric power for energizing the magnetic field generating coil is unnecessary, the cost of power supply facilities and the like can be saved, and the installation space can be reduced. Furthermore, the leakage magnetic flux is much smaller than that which generates a magnetic field using an electric current, has no influence on surrounding workers, and the line configuration in the manufacturing process becomes easy. Taking these into account, it is possible to provide not only the equipment cost but also an energy-saving vacuum heat treatment in a magnetic field in which the line configuration is easy and compact, and the operation cost can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part showing a heat treatment furnace in a magnetic field according to a reference example of the present invention.
2 is a cross-sectional view of a main part showing an example of a ring-shaped permanent magnet assembly used in the heat treatment furnace in a magnetic field of FIG . 1. FIG.
FIG. 3 is a cross-sectional view of an essential part showing an embodiment of a ring-shaped permanent magnet assembly.
FIG. 4 is a graph showing the magnetic field strength distribution in the central cavity along the axial direction of the ring-shaped permanent magnet assembly.
FIG. 5 is a graph showing the dependence of the magnetic flux density in the central cavity on the outer diameter and axial length of the ring-shaped permanent magnet assembly.
FIG. 6 is a graph showing the magnetic field uniformity in the central cavity with respect to the axial length of the ring-shaped permanent magnet assembly.
7A and 7B are a plan view and a cross-sectional view showing an example of a permanent magnet segment composed of a plurality of permanent magnet pieces.
FIG. 8 is a plan view showing another example of a permanent magnet segment composed of a plurality of permanent magnet pieces.
9A and 9B are a plan view and a cross-sectional view showing an example of a cross-sectional shape of a permanent magnet segment.
FIG. 10 is a plan view showing an example of a ring-shaped permanent magnet assembly including two types of permanent magnets having different magnetization directions.
FIG. 11 is a characteristic diagram showing the relationship between the number of magnetic pole divisions and the magnetic field uniformity.
FIG. 12 is a characteristic diagram showing the relationship between the number of magnetic pole divisions and the skew angle (twist angle).
FIG. 13 shows a shaft in a central cavity of a ring-shaped permanent magnet assembly for a ring-shaped permanent magnet assembly composed of eight permanent magnet segments and a ring-shaped permanent magnet assembly composed of twelve permanent magnet segments in the circumferential direction; It is a characteristic diagram which shows the relationship between the magnetic flux density on a line | wire, and the axial direction distance from the center of a ring-shaped permanent magnet assembly.
FIG. 14 is a process diagram showing an example of heat treatment in a magnetic field.
FIG. 15 is a schematic cross-sectional view showing a conventional magnetic field heat treatment furnace having an electromagnet.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1A: Ring-shaped permanent magnet assembly, 3: Cooling means, 4: Water cooling tube 5: Heating means (heater), 6: Heat-treatment container (vacuum container), 7: Seal part 8: Seal male screw part, 9: Seal female thread portion, 10: heat treatment holder 110: holding member, 112: cooling structure, 113: coil, 114: high frequency coil 20: central cavity portion, 21, 22, 23: permanent magnet segment 40: split type permanent magnet , 41, 42, 43, 44: Segment magnet (small magnet)

Claims (1)

隣接する磁石の磁化方向が互いに異なるように複数の永久磁石セグメントをリング状に組み合わせ、直径方向に磁束が流れるようにした1つのリング状永久磁石組立体からなる磁場発生手段と、前記リング状永久磁石組立体の中央空洞部内に位置し、外側から順に冷却手段を含む熱処理炉壁と、加熱手段と、複数の被熱処理品を保持する熱処理用保持具を備えた熱処理手段とを具備する磁場中熱処理炉において、前記冷却手段を含む熱処理炉壁は前記磁場発生手段の少なくとも表面温度を室温に維持するとともに、前記リング状永久磁石組立体は半径方向外側ほど連続的又は段階的に軸線方向に短いことを特徴とする磁場中熱処理炉。Magnetic field generating means comprising one ring-shaped permanent magnet assembly in which a plurality of permanent magnet segments are combined in a ring shape so that the magnetization directions of adjacent magnets are different from each other, and a magnetic flux flows in the diameter direction, and the ring-shaped permanent magnet located within the central cavity of the magnet assembly, a heat treatment furnace wall comprising cooling means from the outside in order, a heating unit, in a magnetic field comprising a heat treatment means comprising a heat-treating holder for holding a plurality of the heat-treated product In the heat treatment furnace, the heat treatment furnace wall including the cooling means maintains at least the surface temperature of the magnetic field generating means at room temperature, and the ring-shaped permanent magnet assembly is continuously or stepwise shorter in the axial direction toward the radially outer side. A heat treatment furnace in a magnetic field characterized by that.
JP2002283316A 2002-09-27 2002-09-27 Magnetic field heat treatment furnace Expired - Fee Related JP4389194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283316A JP4389194B2 (en) 2002-09-27 2002-09-27 Magnetic field heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283316A JP4389194B2 (en) 2002-09-27 2002-09-27 Magnetic field heat treatment furnace

Publications (2)

Publication Number Publication Date
JP2004119822A JP2004119822A (en) 2004-04-15
JP4389194B2 true JP4389194B2 (en) 2009-12-24

Family

ID=32277212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283316A Expired - Fee Related JP4389194B2 (en) 2002-09-27 2002-09-27 Magnetic field heat treatment furnace

Country Status (1)

Country Link
JP (1) JP4389194B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4883589B2 (en) * 2008-08-22 2012-02-22 独立行政法人産業技術総合研究所 Annealing furnace
JP5623368B2 (en) * 2010-11-05 2014-11-12 信越化学工業株式会社 Dipole ring magnetic circuit
FR2994018B1 (en) * 2012-07-27 2015-01-16 Cooltech Applications MAGNETIC FIELD GENERATOR FOR MAGNETOCALORIC THERMAL APPARATUS AND MAGNETOCALORIC THERMAL APPARATUS EQUIPPED WITH SUCH A GENERATOR
JP6807246B2 (en) * 2017-02-23 2021-01-06 東京エレクトロン株式会社 Substrate processing equipment and processing system
DE102018101765B4 (en) * 2018-01-26 2019-12-05 Stahl Cranesystems Gmbh Scalable hysteresis clutch
CN113927035B (en) * 2021-09-09 2023-06-16 浙江英洛华磁业有限公司 Dispersed magnetic attraction type hydrogen breaking furnace
CN117079965A (en) * 2023-09-19 2023-11-17 东莞市昱懋纳米科技有限公司 Heat treatment method for improving high-frequency magnetic permeability of nanocrystalline magnetic core

Also Published As

Publication number Publication date
JP2004119822A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US6833107B2 (en) Heat-treating furnace with magnetic field and heat treatment method using same
TWI671419B (en) Magnetic thin film deposition chamber and thin film deposition device
JP4389194B2 (en) Magnetic field heat treatment furnace
JP4305810B2 (en) Heat treatment furnace in magnetic field and heat treatment method using the same
KR102335062B1 (en) Method and system for performing post-etch annealing of a workpiece
US9822424B2 (en) High rate magnetic annealing system and method of operating
JP4423586B2 (en) Heat treatment furnace in magnetic field
Zhou et al. Effect of Tb diffusion anisotropy on mechanical and magnetic properties of Nd-Fe-B magnet
JP7112629B2 (en) Vertical Multi-Batch Magnetic Annealing System for Reduced Footprint Manufacturing Environments
JP3862660B2 (en) Magnetic field heat treatment equipment
JP2004304173A (en) Generation magnetic field equipment, and magnetic field orientation equipment using the same
US6918965B2 (en) Single substrate annealing of magnetoresistive structure
US6879779B2 (en) Annealing oven with heat transfer plate
JP4062587B2 (en) Deposition equipment
EP3566241B1 (en) Workpiece magnetizing system and method of operating
CN207331049U (en) Thin magnetic film deposition chambers and film deposition equipment
KR101309385B1 (en) Induction heating device
JP2003305021A (en) Magnetic field generating apparatus and its manufacturing method
JP2005054265A (en) Method of manufacturing soft magnetic article
JPH04350165A (en) Method and device for passing-type sputtering

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090924

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees