JP4423586B2 - Heat treatment furnace in magnetic field - Google Patents

Heat treatment furnace in magnetic field Download PDF

Info

Publication number
JP4423586B2
JP4423586B2 JP2002087661A JP2002087661A JP4423586B2 JP 4423586 B2 JP4423586 B2 JP 4423586B2 JP 2002087661 A JP2002087661 A JP 2002087661A JP 2002087661 A JP2002087661 A JP 2002087661A JP 4423586 B2 JP4423586 B2 JP 4423586B2
Authority
JP
Japan
Prior art keywords
magnetic circuit
magnetic field
magnetic
outer ring
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002087661A
Other languages
Japanese (ja)
Other versions
JP2003023191A (en
Inventor
義彦 栗山
誠 牛嶋
康幸 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002087661A priority Critical patent/JP4423586B2/en
Publication of JP2003023191A publication Critical patent/JP2003023191A/en
Application granted granted Critical
Publication of JP4423586B2 publication Critical patent/JP4423586B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、MR(Magnetoresistive)、GMR(Giant Magnetoresistive)、MRAM(Magnetic Random Access Memory)等の製造プロセスにおいて真空容器内に配置された被処理部材を磁場中で熱処理を行なうための磁場中熱処理炉に関する。
【0002】
【従来の技術】
磁気ヘッドは一般に基板上に反強磁性層と強磁性層を複数積層した磁気シールド層を持つ、例えばスピンバルブ型の基板などから構成されている。反強磁性層と固定磁性層とは隣接して形成され、両者の一般的構造は薄膜素子では反強磁性層、固定磁性層、非磁性導電層、フリー磁性層間で交換結合磁界が生まれることにより固定磁性層の磁化方向が単磁区化される。
【0003】
このように交換結合磁界による固定磁性層の磁化方向の単磁区化を行うためには、基板上に薄膜素子を形成した後、磁場中での熱処理を行なう必要がある。通常0.5T(テスラ)以上の磁場を印加することが必要であり、固定磁性層の材質によっては、1.0Tを越える配向磁界が必要である。前記磁場を印加するために従来、図15に示すように水冷管12を備えたコイル13と、高周波コイル14の磁極間に真空容器6内に被熱処理部材10を保持した真空熱処理炉、また、コイル内に熱処理炉全体を納めたような構造の熱処理炉が用いられている。さらに、特開2001−135543号公報によれば、電磁石によって構成された磁界発生装置と真空容器との間に、電気ヒータと水冷ジャケットを組み合わせた加熱手段を配置した磁場中熱処理炉が開示されている。
【0004】
しかしながら、これらの磁場中熱処理炉の磁界発生手段は電磁石を用いたものであった。この場合、1.0T以上の磁界を発生するためには電磁石のコイルに500〜800Aという大電流を流す必要があり、安全性の面から好ましくない。また、大電流を用いるための設備と直流電源装置を設置するためのスペースも必要であり、生産上の制約もある。また、初期設備においても電源の確保などでコスト高となる。さらに変動費として電力代及び大電流により発生した熱量を冷却するため大量の冷却水を消費しなければならない。これらが全体の製造コストを底上げする主要因となり問題であった。さらには上記構成では漏洩磁束が非常に大きく、人体に与える危険性を考えると設備スペース以外でも安全性確保のための空きスペースを作らねばならず、非常に無駄なスペースができていた。
【0005】
また、大量の電力を使用しないで磁場を発生させる手段として、超伝導コイルを用いる方法や永久磁石を用いる方法がある。超伝導コイルを用いる方法では、前記の電磁石に比べ励磁電流消費は抑えられるものの、超伝導状態を維持するため液体窒素、液体ヘリウムなどで常時冷却しておく必要があり、特に液体ヘリウムは高価であるため、維持費がかさんでしまうという問題があった。
また、この方式では磁場調整が容易ではなく、磁場調整に伴う磁場の変動により局部的に超伝導状態が常伝導状態に移行してしまい、そのため熱を発生する。それを放置すると装置全体の超伝導状態がくずれてしまうため、熱の放熱制御は非常に困難である。このため、磁場の調整、制御を困難にしていた。
さらに超伝導コイルは数〜数10Tの強磁場を発生できるが、その発生磁場強度に比例して強い漏洩磁場の範囲も広くなるため、装置性能に比例して設置スペースを広くとる必要があり、さらに他の電子機器への影響を抑えるため装置を設置する空間を鉄やパーマロイなどの磁性体で囲い、磁気遮蔽を行う必要があるために膨大な設置費用を要していた。
【0006】
一方、励磁電流を全く使用しないで磁場強度を適宜変更する方法として永久磁石を用いたハルバッハ型磁気回路構造とするものがあり、特開平6−224027号公報にその一例が記載されている。ハルバッハ型磁気回路の一例を図16に示す。このハルバッハ型磁気回路は、磁化方向が矢印のように異なる複数の永久磁石を組み合わせたもので、図16で示した円形型ハルバッハ型磁気回路では、内リング磁気回路1と外リング磁気回路2とから構成されており、内リング磁気回路1と外リング磁気回路2が互いに回動可能な構造となっている。図16(a)に示す角度に内リング磁気回路1と外リング磁気回路2を回転させた状態では、各磁石の磁化方向から内リング磁気回路の磁場方向と外リング磁気回路の磁場方向とが一致するため、内リング磁気回路の中央空洞部20には、内リング磁気回路が発生する磁場と外リング磁気回路が発生する磁場とを合わせた強度の磁場が矢印方向に発生する。一方、図16(b)に示すように(a)から外リング磁気回路を180度回転させた状態では、内側リング磁気回路と外側リング磁気回路が個々に発生する磁場強度が同じとき、中央空洞部では磁場がキャンセルされ略ゼロになる。これは内リング磁気回路の複数の永久磁石の磁化方向による磁気回路に対して、外リング磁気回路に設けられた複数の永久磁石の磁化方向が磁気回路を妨げる方向に配置しているためである。以上によって、両リングの回転角度により磁場の大きさがゼロから最大まで調整できる。
【特許文献1】
特開平6−224027号公報
【0007】
【発明が解決しようとする課題】
以上のことより、従来、電磁石あるいは超伝導を用いた磁場中熱処理炉は知られているが、これらは装置の大型化、電力・運転コスト、磁場調節、磁気漏洩等の問題をかかえている。一方で永久磁石を用いた、例えばハルバッハ型磁気回路を用いた磁場中熱処理炉の例は見当たらない。このような磁場中熱処理炉では、特に、被熱処理部材がウエハー状の磁気抵抗基板の場合、磁気抵抗効果を向上し、安定化させるためには通常1.0T以上の大きな磁界強度が必要とされ、さらに重要なことはこの磁界強度を磁性膜の磁化方向に対して均一で平行な磁場を印加する必要があることである。しかしながら従来、磁場強度を変化させることは考えられたが、被熱処理部材と均一な平行磁場成分について、あるいは磁石の大きさや重量、漏洩磁界等と熱処理炉を組み合わせた磁場中真空熱処理炉に関しての検討は不充分であり、技術的に確立されていない。
【0008】
本発明は上記課題を解決するものであり、従来にない小型で、設備コスト、製造コストの低減を図り、かつ具体的な設計諸元を与え、高精度で均一な平行磁場を発生でき、漏洩磁界を低減することが出来て安全性の高い磁場中熱処理炉を提供するものである。
【0009】
本発明者らは、永久磁石を用いた磁場中熱処理炉により、複数の被熱処理部材を一度に処理する場合、2重リング型ハルバッハ型磁気回路を用いることにより被熱処理部材の径方向に望ましい高精度で均一な平行磁場を印加して熱処理が出来ること、また磁場強度の調節や構造諸元について新たな知見を得るに至り本発明を想到した。即ち、本発明は、隣接する磁石が互いに異なる磁化方向となした永久磁石を複数個組み合わせてリング状に構成した外リング磁気回路と、この外リング磁気回路の内側に備えられ、隣接する磁石が互いに異なる磁化方向となした永久磁石を複数個組み合わせてリング状に構成した内リング磁気回路とからなる磁場発生手段と、前記内リング磁気回路の中央空洞部内に位置し、外側から順に冷却手段および/または断熱手段と加熱手段及び真空容器とを備えた真空熱処理手段とから構成された磁場中熱処理炉において、外リング磁気回路の軸方向の長さを内リング磁気回路の軸方向の長さよりも短くするとともに、前記内リング磁気回路および/または外リング磁気回路の軸方向長さを、半径方向外側に向って徐々に短くすることを特徴とするものである。
【0013】
【発明の実施の形態】
以下、本発明の技術手段と実施形態についてさらに説明する。
本発明では、内リング磁気回路と外リング磁気回路からなる2重リングハルバッハ型磁気回路による磁場発生手段を構成したことにより、軸(高さ)方向には比較的限られた範囲に集中して、水平面内の一方向に向かって平行で均一な磁場を発生させることができる。さらに、このとき中央空洞部の磁場強度を任意に調節することが出来る。よって、比較的薄くて大径の、例えば6〜8インチ以上の大型の磁性膜ウエハー基板を複数枚積み重ねたものを一度に熱処理するような場合に有効である。また、従来であれば冷却構造は最も発熱量の高いコイル部分に備えるだけのものであったが、前記のように永久磁石、特にNd−Fe−B系希土類永久磁石を用いるものは熱による影響が大きいため、磁気特性を変動させないようにするために冷却構造や断熱構造を永久磁石に対して働くように加熱手段と磁場発生手段の間に設置することで中央空洞内の磁場特性を一定に保つことができ、安定した熱処理性能を得ることが出来る。
【0014】
上記した磁場中熱処理炉において、磁場発生手段を構成する内リングと外リングの各磁気回路は相対的に回転する構造ではあるが、被熱処理部材と内リング磁気回路とは相対的に方向が変わらないようにすることが望ましい。例えば、被熱処理部材と内リング磁気回路を共に非回転となすか、あるいは被熱処理部材と同期して回転するようになし、外リング磁気回路のみを回転させる構成とすることが考えられる。これにより内リングの中央空洞部で発生する磁場は、外リングの回転に伴って半径方向に平行で均一な0〜2T程度の磁界を可変することが可能となる。電磁石コイルを使用する場合と違って、通常、永久磁石では任意の値の磁界を得ることが困難であるが、このように磁場印加手段として同心円状の二重のリング磁気回路を回転させて使用することによって内、外リング磁気回路が発生する磁界のベクトル合成から、任意の磁場強度を得ることができる。
【0015】
また、磁場中熱処理を行う場合は、熱処理過程では、品質安定化のため被熱処理部材を熱処理炉への挿入時または取り出し時に磁場強度をゼロにする必要がある。その際の磁場の変化を詳細に測定した結果、内リング磁気回路の中央空洞部の磁場方向は内リング磁気回路に同期して回転しながら磁場が0〜約2Tまで変化することが分かった。よって例えば、外リング磁気回路と内リング磁気回路の発生磁界の方向が反対となるように外リング磁気回路を回転させ、磁場強度を最小、即ちほぼゼロにした状態で被熱処理部材を熱処理装置内に挿入し、磁気回路の軸方向の中央部に被熱処理部材を設置し、外リング磁気回路を回転させ、磁場強度を所望の強度に調整した状態で被熱処理部材を熱処理し、熱処理完了後、印加磁場強度を前記と同様にして再びほぼゼロにした状態にて被熱処理部材を熱処理装置から取り出す。このとき、被熱処理部材をそのまま回転しないように固定しながら内リング磁気回路を回転させて中央空洞部の磁場を変化させようとすると、被処理部材には内リング磁気回路の最大磁場発生方向と平行に磁場が印加されながら磁場強度が低下していくことになる。したがって、所望の方向とは違った角度に弱められながらとはいえ磁場が被熱処理部材にかかるため、被熱処理部材の磁場配向方向に影響を与え、最終的な被熱処理部材の特性にバラツキや特性劣化が現れてしまう。よって前記内リング磁気回路の中央空洞部で熱処理される被処理部材と内リング磁気回路は相対的に方向が変わらない構造が好ましい。
【0016】
例えば、内リング磁気回路と外リング磁気回路が発生する磁場強度が各々0.5T発生する場合、即ち外リング磁気回路と内リング磁気回路の発生磁場が同じ場合では、両リング磁気回路が発生する合成磁場はベクトル合成と同じとなることがわかったため、回転角度と発生磁場振れ角は図9のようになる。このように内リング磁気回路を回転し磁場強度を変化させた場合、磁場印加方向は最終的には全く反対方向の180°になってしまう。しかしながら、外リング磁気回路を回転した場合は、この例では、振れ角は最大45°であるが、磁場調整時の影響はほとんど無くなる。磁場調整時においても被熱処理部材に常に一定の方向に磁場が印加するためには、両リング磁気回路の合成磁場ベクトル方向に、内リング磁気回路か、または被熱処理台を回転させればよい。
【0017】
ここで、内リング磁気回路と外リング磁気回路との間に隙間を無くすように同心円状に配置すると、ひとつのリング状の磁気回路と見なすことができる。内リング磁気回路と外リング磁気回路の隙間があると磁気抵抗が増大し、内リング磁気回路の中央空洞内の磁場強度は低下するため、内リング磁気回路と外リング磁気回路の間に隙間がないときが形状を最も小さくすることができる。したがって、形状的には内リング磁気回路の内径、すなわちボア径と外リング磁気回路の外径で性能は決まる。そこでウェハー最小処理サイズを1インチ(約φ25mm)とすると、加熱装置とウェハーの設置スペースはφ30mm必要であり、真空断熱層として幅20mmを確保すると真空容器はφ60mm、さらに真空容器外周に空気による断熱層10mmを確保してφ70mmとなり、さらに冷却装置設置にてφ110、熱処理装置全体固定の取り付けスペースでφ120が最小スペースとなる。またこの最小形状にて永久磁石の残留磁束密度Brが1.45Tとすると、中央空洞部内の磁場強度が1Tを越える形状は、図8に示すようにボア径φ120mmでは外径φ300mm、長さは150mm程度が必要となる。従って、実際には内リング磁気回路の中央空洞部のボア径Dは120mm以上で、外リング磁気回路の外径Dが300mm以上となり、長さも100mm以上であることが1T以上の磁場を得るには必要であると言える。
【0018】
「Journal of Applied Physics Vol.86,No.11 1 December 1999」によると、内リング磁気回路内径側の中央空洞部内の磁場強度Bは中央空洞半径をRi、外リング磁気回路外半径をRoとすると、B=Br×ln(Ro/Ri)で計算できることがわかっている。しかしながら実際にシミュレーションによる磁場計算を行った結果、図8のようにリング磁気回路の軸方向の長さにより変化し、長さが小さくなると中央空洞内の磁場強度は小さくなることがわかった。この結果から分かるように中央空洞部内の磁束密度を1T以上発生するためには、前記外リング磁気回路の軸方向の長さH2及び内リング磁気回路の軸方向の長さH1は共に100mm以上の長さが必要である。本発明における被処理部材の熱処理能力は中央空洞部内の均一磁場領域の長さに比例する。磁場均一度としては通常±5〜10%が必要である。従来の電磁石を用いた装置では、中央空洞部内の均一磁場領域の長さは100mmに対し最低40mmであった。つまり中央空洞部内の磁場強度を1.0T以上にしようとすると従来装置でも磁気回路の長さとしては最低100mmは必要である。
【0019】
また、内リング磁気回路の軸方向の長さH1より外リング磁気回路の軸方向の長さH2を短く(H2<H1)することが漏洩磁束を低減する上で望ましい。さらに内リング磁気回路及び/又は外リング磁気回路の軸方向長さを半径方向外側に向かって短くすることによりさらに軸方向の漏洩磁場を低減できることが分かった。これらについては後述するが、この様な構造が結果的にリング状磁気回路の漏洩磁束を小さくすることができ磁気回路の小型化、軽量化が可能となる。
また、小型化の手段として、内リング磁気回路の軸方向長さH1を外リング磁気回路のH2より小さくしてもよい。これについても後述するが、同じ長さの均一磁場領域を確保しようとした場合、半径方向に大きくすることより、長さ方向に長くする方が、効率的に磁場強度を高くすることができるため、より設置断面積を小さくできる。
【0020】
また、前記外リング磁気回路及び内リング磁気回路に使用される永久磁石は残留磁束密度が1.1T以上を有し、かつ保磁力が1114kA/m(14kOe)以上を有し、かつ内リング磁気回路の軸方向の長さH1と外リング磁気回路の外径Dとの比が2≦D/H1≦10であることが好ましい。この比は大きいほど均一な磁場がより軸方向により広範囲に発生させることができる。この範囲にリング形状を納めることで磁石全体の重量は少ない重量で効率よく高い磁場を発生させることが可能である。尚、内リング磁気回路の軸方向長さを半径方向外側に向かって短くした場合は、これの最大長さをH1とすればよい。
【0021】
本発明の磁場中熱処理炉において、前記した熱処理手段は、図1に例示するように鏡面反射層およびその外方に備えられた水冷管を有する冷却・断熱手段と、赤外線やカーボンヒータ等を用いる加熱手段と、略透明なガラス状の真空管とを具備し、前記真空管の内部には真空管外部から被処理部材を複数枚載置した熱処理台が挿入される構造とすれば、上記した磁場発生手段(内外リング磁気回路)の中央部と被熱処理部材の中央部を一致させることが比較的管理しやすい磁場中熱処理炉となり、かつ永久磁石を用いた磁気回路部への熱的影響をほとんどなくすことができる。すなわち、熱処理温度は250〜300℃程度であるが、冷却・断熱手段が加熱手段と磁場発生手段との間にあるので永久磁石への熱影響が遮断され磁気回路の劣化が生じない。この点従来のように高周波コイル等を用いてしまうと周囲へ与える熱影響もありさらに別途冷却・断熱手段が必要で対策が困難となりやすい。
【0022】
前記熱処理手段は窒素ガスなどの非酸化性雰囲気での熱処理としても良い。また、内リング、外リングに用いる永久磁石の組成はBaフェライト系、Srフェライト系、LaおよびCo添加のフェライト系、希土類系のSm−Co系、Sm−Fe−N系等公知のものが全て適用できるが、残留磁束密度のより高いNd−Fe−B系であることが好ましい。Nd−Fe−B系磁石は温度特性に問題が有り、従来構造では熱処理炉関係に用いることは困難であったが本発明のような冷却・断熱手段を構成とすることで問題なく適用可能である。これらは内リングの中央空洞部に必要とする磁場強度、熱影響等により適宜選択可能であり、焼結体だけでなく樹脂等と混合させたボンド磁石としてもよい。
また、熱処理方法として熱処理中を通して磁場を印加し続けて行う場合もあり、その場合は、磁場は調整する必要はないため、磁場発生の調整手段として内リング磁気回路の外側に配置する外リング磁気回路は配置しなくてもよい。
【0023】
以下、本発明の詳細を図面に基づいて説明する。(参考例1)
図1は本発明の対象とする磁場中熱処理炉の要部を示す断面図である。図中、1は内リング磁気回路、2は外リング磁気回路であり、内外リング磁気回路を合成して磁場発生手段を構成している。磁気回路の内部はNd−Fe−B系の永久磁石(図中の斜線部)からなり、この永久磁石の磁気特性を測定したところ、残留磁束密度=1.4T、保磁力=1192kA/mであった。図2は図1の軸断面での内リング磁気回路1と外リング磁気回路2の構成を示している。この磁場発生手段において永久磁石は軸に対して12等分割した互いに磁化方向の異なる3種類のセグメント磁石21、22、23からなり、これらを図2に示す磁化方向にリング状に組み合わせて内リング磁気回路1、外リング磁気回路2をそれぞれ構成している。各々の永久磁石の磁化方向は図2に示す通りであり、中央空洞部20には矢印で示す内リング磁気回路1と外リング磁気回路2の合成磁界が半径方向に平行に印加される。本例の内リング磁気回路1のボア径Dは360mm、外径Dは560mmとした。外リング磁気回路2の外径Dは1200mmとした。さらに両リング磁気回路の軸方向の長さ(高さ)Hは420mmとした。内リング磁気回路1と外リング磁気回路2は互いに回動自在な構造となるように若干の隙間を介して隣接しており、図示はしていないが外リング磁気回路2を駆動させるための駆動手段として、外リング磁気回路の保持部材11の下部にギアが構成され、サーボモータ等により内リング磁気回路に対して回転可能にしている。よって、本例では内リング磁気回路は固定状態を保持するようにした。
【0024】
次に真空熱処理手段の構成を説明する。本例の真空熱処理手段は、水冷による冷却手段と電気ヒータによる加熱手段及び石英ガラス等による真空容器とから構成されている。まず図中3は冷却手段であり、内面は鏡面反射層となるようにメッキ処理を施したタングステン合金からなり、その他はセラミックス製のケースから構成されている。セラミックス製ケースの内部には水冷管4が備えられ、内部を冷却可能としている。また、下記する電気ヒータ5と冷却ケースの間に断熱シートを介在することは好ましいことである。5は電気ヒータであり赤外線加熱により真空容器内部の被熱処理部材を加熱する。中央部には内径約220mmの石英ガラスからなる真空容器(真空管)6が備えられる。ヒータによる真空中の加熱が主として輻射熱により行われるため石英ガラスは光学的に透明なものが良い。容器の内径は被熱処理部材として6〜8インチのウエハー基板が想定されることから直径で約170〜220mmとすることができる。また、真空管6の一端部はシール部材7により真空管6内外の気密性が保持され、他端部はシール雄ネジ部8とシール雌ネジ部9により気密性が保持されている。シール雌ネジ部9の軸には被処理部材を真空管6の略中央部で垂下固定するための熱処理台10が備えられている。熱処理台10は、例えば磁性膜が形成されたウエハ基板を載置するためのトレーを配置間隔約6mmにて25枚程度軸方向に配列したものである。また、熱処理台10は中央空洞部20内で面内方向に角度を変えられるように回転自在に保持する。これは、外リング磁気回路2を回転させ、磁場調整を行っている際に、内リング磁気回路1と外リング磁気回路の合成磁場の方向(最も磁場が強くなる方向)がずれるため、それを角度を補正するため、外リング磁気回路2の回転角度と同期し、外リング磁気回路2の回転方向と反対方向に回転させることが好ましい。また、熱処理台10を前記のように回転させるのではなく、内リング磁気回路1を回転させてもよいが、回転機構の構造が複雑になり、回転駆動モータも2つ必要になり、かえって設備コストが増大するため好ましくない。
【0025】
電気ヒータ5の熱処理温度管理はPID制御とし、前記熱処理台10の上端、中央、下端にそれぞれ備えられた熱電対により温度が測定され制御される。また、シール部7は吸気口が備えられている。排気口は真空管6上部に設けられ真空ポンプ(図示せず)と接続されており、真空管6内部を真空引きすることにより所定の真空状態に維持することが出来る。例えば、熱処理対象物が磁性薄膜等の場合は1×10−5〜1×10−6Pa以下の真空状態において熱処理することが好ましい。また、吸入口は不活性窒素ガスのボンベと接続されており、パージ処理など必要により真空管を不活性雰囲気にできるようにされている。
【0026】
次に磁場中加熱する際の熱処理手順を説明する。まず図2(b)に示すように外リング磁気回路2を回転させ、中央空隙部20内の磁場が略ゼロになるようにする。被熱処理部材として強磁性層と反強磁性層を積層した磁性膜を備えたウエハ基板を熱処理台10のトレー上に配列し真空管6内に上方また下方より挿入する、このとき積み重ねた基板列全体の中央部が内外リング磁気回路1、2の中央部と略一致するように保持する。よって、内外リング磁気回路の軸方向の中央部近傍に基板全体が入るように位置させる。その後、シール雌ネジ部8とシール雄ネジ部9を螺着させて真空管6内を気密状態にした後、真空ポンプにより真空管6内を排気し、1×10−5〜1×10−6Paまでの真空度とした。被処理部材であるウエハ基板と内リング磁気回路の方向はそのままに固定し、外リング磁気回路だけを回転させ、図2(a)に示すように内リング磁気回路1と外リング磁気回路2の角度を適宜調節し、1.0Tより大きい磁場を発生させた。このとき水冷管4に水を流すと共に電気ヒータ5により5℃/minで昇温させた。300℃±3%で温度を30〜60分間保持し、その後真空炉6内の温度を2℃/min下げ、ウェハ温度が、150℃以下になったところで、再び図2(b)のように内リング磁気回路1と外リング磁気回路2の角度を調節し、磁場を略ゼロTにまで低減させていった。
【0027】
発生させた中央空洞部20の磁場を測定したところ、表1に示すように厚み中央部の中央空洞部内で±5%以下の均一磁場強度が得られていることを確認した。また、図7に示すように磁石の軸方向長さ(厚み方向)Hの位置による磁場強度の違いを測定したが、被熱処理物が備えられる両リング磁気回路の長さ420mmの中央部から±80mmの範囲で10%以下の均一な磁場強度が得られていることを確認した。また、各測定位置の磁場スキュー角度を測定したがすべて2°以内であった。さらに、室温での磁気特性と300℃保持中での磁場を比較したが両者に違いは見られなかった。そして、磁場中熱処理を行なった磁気ヘッドの特性を測定したが不良となるものは見つからなかった。また、本参考例における漏洩磁場は、軸方向で磁気回路端面より350mm離れた地点にて10mT以下、また、磁気回路側面から1m離れた点での漏洩磁場強度も1mT以下であり、漏洩磁場が小さいことを確認した。
【0028】
【表1】

Figure 0004423586
【0029】
参考例2)
参考例は、参考例1に対し、形状的には図3に示すように外リング磁気回路と内リング磁気回路の軸方向長さ(H)を変えたものであり、そのほかは参考例1と同様である。本参考例において永久磁石は軸に対して12等分割した互いに磁化方向の異なる3種類のセグメント磁石21、22、23からなり、これらを図2に示す磁化方向にリング状に組み合わせて内リング磁気回路1A、外リング磁気回路2Aをそれぞれ構成している。内リング磁気回路1A、外リング磁気回路2Aをそれぞれ構成した。各々の磁化方向は図2に示す通りであり、8インチ(直径約200mm)ウェハーの熱処理装置として内リング磁気回路1Aのボア径Dは360mmとし、外径Dは560mmとした。外リング磁気回路2Aの外径Dは1100mmとした。さらに内リング磁気回路の軸方向の長さH1は420mm、外リング磁気回路の軸方向の長さH2は500mmとした。また、図示はしていないが内リング磁気回路を駆動させるための駆動手段として、内リング磁気回路のケース11下部にギアが構成され、モータにより外リング磁気回路に対して回転可能にしている。また、内リング磁気回路と共に被処理物はともに回転しないように構成する。この点が熱処理方法において参考例1との相違点で、それ以外は参考例1と同様に行った。
【0030】
発生させた中央空隙部20の磁場を測定したところ、表2に示すように厚み中央部の中央空隙部内で±5%以下の均一磁場強度が得られていることを確認した。また、磁石の長さ方向Hの位置による磁場強度の違いを測定したが、被熱処理物が備えられる磁石の長さ420mmの中央部から±80mmの範囲で±5%(レンジ10%)以下の均一な磁場強度が得られていることを確認した。したがって、この範囲で、被熱処理物を設置すること、または被熱処理台の長さをこれ以下にすることが好ましく、この範囲を越えて配置した場合、磁場均一度が低下するため、磁気ヘッドの特性が劣化してしまう。また、各測定位置の磁場スキュー角度を測定したがすべて2°以内であった。さらに、室温での磁気特性と300℃保持中での磁場を比較したが両者に違いは見られなかった。磁場中熱処理を行なった磁気ヘッドの特性を測定したが不良となるものは見つからなかった。したがって、熱処理完了後、ウェハー温度が50℃以下に下がった状態にて内リング磁気回路と被熱処理部材を回転させずに磁場調整を行っても性能に影響がないことを確認した。参考例2の方が参考例1に比べ外リング磁気回路の長さは約19%長く、半径は約10%小さいが、外リング磁気回路だけの重量は、実施例1は実施例2の約10%軽量となる。したがって、磁場発生装置としては参考例2の方が参考例1に比べて設置断面積を小さくでき、かつ均一磁場領域の長さを長くすることができる。また、構成、制御面でも参考例1に比べ簡素であり、小型、軽量、低設備コストになることがわかる。
【0031】
【表2】
Figure 0004423586
【0032】
(比較例1)ヒータを中央空洞部ではなく、軸方向でリング磁気回路外に出る位置に備えた。それ以外は参考例1と同様にして実験を行った。熱処理台の各位置において温度分布にバラツキが発生し、各磁気ヘッドの磁気特性にもバラツキが発生した。
【0033】
(比較例2)冷却管と断熱手段を外し、それ以外は参考例1と同様に実験を行なった。熱処理台の各位置において温度分布のバラツキは発生しなかったが、熱処理中のヒータの熱により内リング磁気回路の永久磁石が減磁してしまい、十分な磁場強度を得ることができなかった。
【0034】
(比較例3)参考例1と同様に永久磁石を12等分割して内リング磁気回路1、外リング磁気回路2をそれぞれ構成した。各々の磁化方向は図2に示す通りであり、内リング磁気回路1のボア径Dは360mm、外径Dは560mmとした。外リング磁気回路2の外径Dは1100mmとした。さらに両リング磁気回路の軸方向の長さ(高さ)Hは420mmとした。また、図示はしていないが内リングを駆動させるための駆動手段として、内リングのケース11下部にギアが構成され、モータにより外リングに対して回転可能であり、被熱処理部材は内リング磁気回路ではなく外リング磁気回路と同角度回転するように構成した。それ以外は実施例1と同様に行った。即ち、この比較例は被熱処理部材と内リング磁気回路の相対位置が変化するようにした例である。
【0035】
発生させた中央空隙部の磁場は表2と同じ測定結果であり、厚み中央部の中央空隙部内で±5%以下の均一磁場強度が得られていることを確認した。また、磁石の高さ方向Hの位置による磁場強度の違いを測定したが、被熱処理物が備えられる磁石の厚みHの中央部から±80mmの範囲で±5%以下の均一な磁場強度が得られていることを確認した。また、各測定位置の磁場スキュー角度を測定したがすべて2°以内の誤差しかなかった。さらに、室温での磁気特性と300℃保持中での磁場を比較したが両者に違いは見られなかった。しかしながら磁場中熱処理を行なった磁気ヘッドの特性を測定したところ磁気特性が実施例1および2に対して低いものが発生し、特性不良として実装できないものが発生した。
【0036】
参考例3及び実施例)
図4は別の参考例を示す内外リング磁気回路の縦断面図である。図4は外リング磁気回路2Bの軸方向長さ(高さ)を内リング磁気回路1Bのそれよりも短くした例である。また図5は実施例を示し、図4と同様に外側の軸方向長さを内側よりも短くし、さらに内外のリング磁気回路1C、2Cの軸方向長さ(高さ)を半径方向外側に向かって徐々に短くしたものである。これらにより軸方向の漏洩磁場をより低減することができることを知見した。これにより磁気シール対策など磁気回路全体の構造を複雑にすることなく漏洩磁場を小さくすることができ、リング状磁気回路の小型化、軽量化が可能でかつ、熱処理装置全体の高さを低くすることができる。
【0037】
この点は本発明の重要な特徴でもあるのでさらに詳しく説明する。リング状磁気回路の軸方向の漏洩磁場を小さくするためには、リング状磁気回路の外径を小さくするか、もしくは熱処理炉に被処理部材を挿入する前の待機位置と磁気回路までの距離、または、漏洩磁場が問題となる地点、漏洩磁場規制地点までの距離を遠くすればよい。この方法はリング状磁気回路の断面形状を外周側に向かうに従い、その距離を遠ざけるか、リング磁気回路の長さを段階的もしくは直線的に短くするかのいずれかが効果的であることと同じである。図6(a)はリング状磁気回路を半径方向で二分割し、外周側に設置されるリング状磁気回路の軸方向設置位置を内リング磁気回路より被処理部材もしくは漏洩磁場規制領域より遠くなるようにL1だけ離して配置した例である。このとき内外リング磁気回路の軸方向長さLは同じである。図6(b)は上記(a)と同様に外リング磁気回路をL1だけ離し、さらにこれの軸方向長さL2を内リング磁気回路の軸方向長さLより短くした例である。ここで内リング磁気回路の軸方向長さLを1000mm、外リング磁気回路の軸方向長さL2を600、800、1000mmにしたときの、磁気回路中央空洞部の磁束密度と磁気回路端面より150mm離れた地点(漏洩磁場観測点)での磁気回路中心軸延長線上の磁束密度をシミュレーションした結果を表3に示す。このときの中央部空洞部の内径はφ300mm、内リング磁気回路の外径Dはφ450mm、外リング磁気回路の外径Dはφ670mmとした。
【0038】
【表3】
Figure 0004423586
【0039】
この結果より、磁気回路の軸方向長さが共に同じ場合の漏洩磁場観測地点での漏洩磁場は約0.14Tであったが、外リング磁気回路の長さが800mm以下では漏洩磁場は0.1T以下、即ち35%以下に低減が可能となる。また600mmではさらに低減されている。また、このときの磁気回路中央空洞部中心での磁束密度は外リング磁気回路の長さが800mmのとき、1000mmの場合に対し、3%弱しか小さくならず、漏洩磁場の低減に対し、外リング磁気回路の長さの影響大であることがわかる。さらに漏洩磁場を小さくしたい場所が、軸方向の一方向だけである場合は、図6(c)に示すように外リング磁気回路を片側の端面に合わせ、距離L3分ずらして配置することによりその効果はより大きくなることが分かった。
【0040】
次に、リング状磁気回路の他の実施例について説明する。本発明では内リング磁気回路の内径が大きくなるに従い、磁気回路を構成する磁極は一個の永久磁石で構成することが困難となり、複数の永久磁石を組み合わせて構成することになる。このとき1つのリング状磁気回路を構成する1磁極の構成例を図10に示す。ここでは、半径方向に3分割した形状としているが、2分割以上であればよく、外半径がRaとなる永久磁石の軸方向長さをLaとし、内半径Ra、外半径Rbとなる永久磁石の軸方向長さをLbとし、内半径Rb、外半径Rcとなる永久磁石の軸方向長さをLcとしている。よって、各永久磁石の軸方向長さはLa>Lb>Lcであり外側に向かって段々に短くなるように構成したものである。
【0041】
図11はまた別の例を示している。この例は磁石を多分割することにより形状的には2種類の第1の小磁石41、第2の小磁石42に分割したものを組み合わせて構成したものである。また、図の分割数は1つの磁石に対して偶数分割しているが、例えば3分割し、両側に置いた磁石の間にもう1つの磁石を挿入するような奇数分割を行えば磁力に助けられて組立がし易くなる。尚、図の矢印は各小磁石の磁化方向を示す。
また、内外リング磁気回路の内径が小さければ、構成する永久磁石形状も小さくなるため分割して構成する必要はなく、1個の永久磁石で構成が可能となる。このとき、漏洩磁場を低減する効果を得るために、永久磁石の軸方向断面を略台形とすると良い。この2つの例を図12(a)(b)に示す。これらは永久磁石の軸方向断面をLoとLiとなしその寸法差から略台形状としたものである。このような台形状を図10、図11に示した分割構成の磁極に対しても適用は可能である。
【0042】
また、実施例において、内リング磁気回路及び外リング磁気回路に使用した永久磁石は、磁化方向が3種類のものを適宜組み合わせたが、図13に示すように磁化方向が2種類の永久磁石43、44を用いて磁気回路を構成することも出来る。
また、永久磁石の円周方向の分割数は8分割以上であれば良いが、それよりも多分割の方がより望ましい。図14は内径:120mm、外径:200mmのリング状磁気回路を用いて、横軸は磁気回路の軸方向長さ(mm)で、縦軸のギャップ磁束密度のピーク値(中央空洞部の発生磁場(T))を測定したものである。図中の数値8及び12は分割数を示しているが、この結果より分割数12は分割数8よりも5%程度中心磁場が増加することが分かった。
【0043】
【発明の効果】
本発明により、均一な平行磁場が複数枚の基板に均等に印加できるので磁性膜基板の品質が一様に安定する。また、中央空洞部の被熱処理部材に対して磁場強度調節できるので広範囲の利用ができる。特に本発明では、内外のリング状磁気回路を特定の形状とするので、漏洩磁場が小さいため磁気シールドの必要性もなく、装置全体の小型化、省スペース化により設備導入コストを抑え、また磁場発生用電力を必要としないため、装置の運転維持費をわずかにする省エネ効果の高い磁場中真空熱処理炉を実現することができる。また、磁場発生用コイルに通電した際に発生する熱量もないため、磁場発生用コイルへの冷却水が不要で配管等も無くなるため、熱処理装置の構成が簡素化できる。
【図面の簡単な説明】
【図1】 磁場中熱処理炉の一例を示す要部断面図である。
【図2】 磁場中熱処理炉に用いる磁場発生手段(内外リング磁気回路)の一例を示す要部断面図である。
【図3】 内外リング磁気回路の他の例を示す要部断面図である。
【図4】 内外リング磁気回路の他の例を示す要部断面図である。
【図5】 内外リング磁気回路の実施例を示す要部断面図である。
【図6】 内外リング磁気回路の軸方向長さの関係を説明する説明図である。
【図7】 磁気回路の軸方向長さ(厚み方向)Hによる磁場強度の変化を示す測定結果である。
【図8】 磁束密度と磁気回路の外径寸法及び軸方向長さの依存性を示す図である。
【図9】 回転角度と発生磁場振れ角の関係を示す図である。
【図10】 永久磁石を分割して構成する場合の一例を示す図である。
【図11】 永久磁石を分割して構成する場合の他の例を示す図である。
【図12】 永久磁石の断面形状の例を示す図である。
【図13】 2種類の磁化方向の永久磁石を用いる場合の例である。
【図14】 8分割と12分割の比較を示す磁石の軸方向長さと中央空洞部の発生磁場の測定結果である。
【図15】 従来の磁場中熱処理炉を示す要部断面図である。
【図16】 ハルバッハ磁気回路の例を示す図である。
【符号の説明】
1:内リング磁気回路、2:外リング磁気回路、3:ケース、4:水冷管
5:ヒータ、6:真空管、7:シール部、8:シール雄ネジ部
9:シール雌ネジ部、10:熱処理台、11:保持部材、12:冷却構造
13:コイル、14:高周波コイル
20:中央空洞部、21、22、23:永久磁石(磁極)
1A、1B、1C:内リング磁気回路
2A、2B、2C:外リング磁気回路
40:分割型永久磁石、41、42、43、44:セグメント磁石(小磁石)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to MR ( Magnetoresistive ), GMR ( Giant Magnetoresistive ), A magnetic field heat treatment furnace for performing heat treatment in a magnetic field on a member to be processed disposed in a vacuum vessel in a manufacturing process such as MRAM (Magnetic Random Access Memory).
[0002]
[Prior art]
A magnetic head is generally composed of, for example, a spin valve type substrate having a magnetic shield layer in which a plurality of antiferromagnetic layers and ferromagnetic layers are laminated on a substrate. The antiferromagnetic layer and the pinned magnetic layer are formed adjacent to each other, and the general structure of the two is that, in a thin film element, an exchange coupling magnetic field is generated between the antiferromagnetic layer, the pinned magnetic layer, the nonmagnetic conductive layer, and the free magnetic layer. The magnetization direction of the pinned magnetic layer is changed to a single magnetic domain.
[0003]
Thus, in order to make the magnetization direction of the pinned magnetic layer in the single magnetic domain by the exchange coupling magnetic field, it is necessary to perform a heat treatment in the magnetic field after forming the thin film element on the substrate. Usually, it is necessary to apply a magnetic field of 0.5 T (Tesla) or more, and depending on the material of the pinned magnetic layer, an orientation magnetic field exceeding 1.0 T is required. Conventionally, in order to apply the magnetic field, as shown in FIG. 15, a vacuum heat treatment furnace in which a heat treatment member 10 is held in a vacuum vessel 6 between a coil 13 having a water-cooled tube 12 and a magnetic pole of a high-frequency coil 14, A heat treatment furnace having a structure in which the entire heat treatment furnace is housed in a coil is used. Furthermore, according to Japanese Patent Laid-Open No. 2001-135543, there is disclosed a magnetic field heat treatment furnace in which a heating means combining an electric heater and a water cooling jacket is disposed between a magnetic field generator constituted by an electromagnet and a vacuum vessel. Yes.
[0004]
However, the magnetic field generating means of these in-field heat treatment furnaces uses electromagnets. In this case, in order to generate a magnetic field of 1.0 T or more, it is necessary to flow a large current of 500 to 800 A through the coil of the electromagnet, which is not preferable from the viewpoint of safety. In addition, a facility for using a large current and a space for installing a DC power supply device are necessary, and there are restrictions on production. In addition, the initial equipment is costly due to securing the power supply. In addition, a large amount of cooling water must be consumed in order to cool the amount of heat generated by the power bill and large current as variable costs. These were the main factors that raised the overall manufacturing cost. Further, in the above configuration, the magnetic flux leakage is very large, and considering the danger to the human body, it is necessary to create an empty space for ensuring safety other than the equipment space, and a very useless space is created.
[0005]
As means for generating a magnetic field without using a large amount of electric power, there are a method using a superconducting coil and a method using a permanent magnet. In the method using a superconducting coil, although the excitation current consumption can be suppressed as compared with the electromagnet described above, it is necessary to always cool with liquid nitrogen, liquid helium, etc. in order to maintain the superconducting state. As a result, there was a problem that the maintenance cost was increased.
Further, in this method, the magnetic field adjustment is not easy, and the superconducting state is locally shifted to the normal conduction state due to the fluctuation of the magnetic field accompanying the magnetic field adjustment, and thus heat is generated. If it is left as it is, the superconducting state of the entire apparatus will be destroyed, and thus heat dissipation control is very difficult. This makes it difficult to adjust and control the magnetic field.
Furthermore, although the superconducting coil can generate a strong magnetic field of several to several tens of T, the range of the strong leakage magnetic field is widened in proportion to the generated magnetic field strength, so it is necessary to take a large installation space in proportion to the device performance. Furthermore, in order to suppress the influence on other electronic devices, it is necessary to enclose the space in which the device is installed with a magnetic material such as iron or permalloy, and to perform magnetic shielding.
[0006]
On the other hand, there is a Halbach-type magnetic circuit structure using a permanent magnet as a method of appropriately changing the magnetic field intensity without using any excitation current. The An example is described in JP-A-6-224027. An example of a Halbach type magnetic circuit is shown in FIG. This Halbach type magnetic circuit is a combination of a plurality of permanent magnets having different magnetization directions as indicated by arrows. In the circular Halbach type magnetic circuit shown in FIG. 16, the inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 The inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 can be rotated with respect to each other. In the state where the inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 are rotated at the angle shown in FIG. 16A, the magnetic field direction of the inner ring magnetic circuit and the magnetic field direction of the outer ring magnetic circuit are determined from the magnetization direction of each magnet. Therefore, in the central cavity portion 20 of the inner ring magnetic circuit, a magnetic field having a strength that combines the magnetic field generated by the inner ring magnetic circuit and the magnetic field generated by the outer ring magnetic circuit is generated in the direction of the arrow. On the other hand, in the state where the outer ring magnetic circuit is rotated 180 degrees from (a) as shown in FIG. 16B, when the magnetic field strengths generated individually by the inner ring magnetic circuit and the outer ring magnetic circuit are the same, In the part, the magnetic field is canceled and becomes substantially zero. This is because the magnetization direction of the plurality of permanent magnets provided in the outer ring magnetic circuit is arranged in a direction that interferes with the magnetic circuit with respect to the magnetic circuit based on the magnetization direction of the plurality of permanent magnets in the inner ring magnetic circuit. . As described above, the magnitude of the magnetic field can be adjusted from zero to the maximum depending on the rotation angle of both rings.
[Patent Document 1]
JP-A-6-224027
[0007]
[Problems to be solved by the invention]
From the above, heat treatment furnaces in a magnetic field using electromagnets or superconductivity have been known. However, these have problems such as large equipment, power / operating costs, magnetic field adjustment, magnetic leakage, and the like. On the other hand, there is no example of a magnetic field heat treatment furnace using a permanent magnet, for example, using a Halbach magnetic circuit. In such a heat treatment furnace in a magnetic field, particularly when the member to be heat treated is a wafer-like magnetoresistive substrate, a large magnetic field strength of 1.0 T or more is usually required in order to improve and stabilize the magnetoresistive effect. More importantly, it is necessary to apply a magnetic field that is uniform and parallel to the magnetization direction of the magnetic film. Conventionally, however, it was considered to change the magnetic field strength. However, a study on a heat treatment furnace with a uniform parallel magnetic field component to be treated and a combination of a magnet size, weight, leakage magnetic field, etc. with a heat treatment furnace. Is inadequate and not technically established.
[0008]
The present invention solves the above-mentioned problems, has an unprecedented small size, reduces equipment costs and manufacturing costs, gives specific design specifications, can generate a uniform parallel magnetic field with high accuracy, and leaks. A magnetic field heat treatment furnace that can reduce a magnetic field and has high safety is provided.
[0009]
In the case where a plurality of members to be heat-treated are processed at once in a magnetic field heat-treating furnace using a permanent magnet, the present inventors use a double ring-type Halbach magnetic circuit to increase the desired height in the radial direction of the members to be heat-treated. The present invention has been conceived by obtaining new knowledge about the adjustment of magnetic field strength and structural specifications, by applying a uniform parallel magnetic field with high accuracy and heat treatment. That is, the present invention provides an outer ring magnetic circuit configured in a ring shape by combining a plurality of permanent magnets in which adjacent magnets have different magnetization directions, and is provided inside the outer ring magnetic circuit. A magnetic field generating means comprising an inner ring magnetic circuit configured in a ring shape by combining a plurality of permanent magnets having different magnetization directions, a cooling means positioned in the central cavity of the inner ring magnetic circuit, and a cooling means in order from the outside In a magnetic field heat treatment furnace comprising a heat insulation means and a vacuum heat treatment means provided with a heating means and a vacuum vessel, the axial length of the outer ring magnetic circuit is longer than the axial length of the inner ring magnetic circuit. shorten In addition, the axial length of the inner ring magnetic circuit and / or the outer ring magnetic circuit is gradually shortened radially outward. It is characterized by this.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The technical means and embodiments of the present invention will be further described below.
In the present invention, the magnetic field generating means by the double ring Halbach magnetic circuit composed of the inner ring magnetic circuit and the outer ring magnetic circuit is configured, so that the axis (height) direction is concentrated in a relatively limited range. A parallel and uniform magnetic field can be generated in one direction in the horizontal plane. Furthermore, at this time, the magnetic field strength of the central cavity can be arbitrarily adjusted. Therefore, it is effective when heat-treating a plurality of stacked magnetic film wafer substrates having relatively thin and large diameters, for example, 6 to 8 inches or more, at a time. Conventionally, the cooling structure is only provided for the coil portion having the highest calorific value. However, as described above, permanent magnets, particularly those using Nd-Fe-B rare earth permanent magnets, are affected by heat. Therefore, in order not to fluctuate the magnetic characteristics, the magnetic field characteristics in the central cavity are made constant by installing a cooling structure and a heat insulation structure between the heating means and the magnetic field generation means so as to work against the permanent magnet. And stable heat treatment performance can be obtained.
[0014]
In the magnetic field heat treatment furnace described above, the magnetic circuits of the inner ring and the outer ring constituting the magnetic field generating means rotate relatively, but the direction of the heat-treated member and the inner ring magnetic circuit change relatively. It is desirable not to do so. For example, it can be considered that both the member to be heat-treated and the inner ring magnetic circuit are not rotated, or are rotated in synchronization with the member to be heat-treated, and only the outer ring magnetic circuit is rotated. As a result, the magnetic field generated in the central cavity of the inner ring can change a uniform magnetic field of about 0 to 2T parallel to the radial direction in accordance with the rotation of the outer ring. Unlike the case of using an electromagnet coil, it is usually difficult to obtain a magnetic field of any value with a permanent magnet. In this way, a concentric double ring magnetic circuit is used as a magnetic field application means. By doing so, an arbitrary magnetic field strength can be obtained from the vector synthesis of the magnetic fields generated by the inner ring magnetic circuit.
[0015]
In addition, when performing heat treatment in a magnetic field, in the heat treatment process, it is necessary to make the magnetic field strength zero when the member to be heat treated is inserted into or removed from the heat treatment furnace in order to stabilize the quality. As a result of measuring the change of the magnetic field in detail, it was found that the magnetic field direction of the central cavity portion of the inner ring magnetic circuit changed from 0 to about 2T while rotating in synchronization with the inner ring magnetic circuit. Thus, for example, the outer ring magnetic circuit is rotated so that the directions of the magnetic fields generated by the outer ring magnetic circuit and the inner ring magnetic circuit are opposite, and the member to be heat treated is placed in the heat treatment apparatus with the magnetic field strength being minimized, that is, substantially zero. Insert the heat treatment member in the axial center of the magnetic circuit, rotate the outer ring magnetic circuit, heat the heat treatment member with the magnetic field strength adjusted to the desired strength, and after the heat treatment is completed, The member to be heat-treated is taken out from the heat treatment apparatus in the state where the applied magnetic field strength is again made substantially zero in the same manner as described above. At this time, if the inner ring magnetic circuit is rotated and the magnetic field in the central cavity is changed while fixing the member to be heat treated so as not to rotate, the member to be processed has the maximum magnetic field generation direction of the inner ring magnetic circuit. The magnetic field strength decreases while the magnetic field is applied in parallel. Therefore, although the magnetic field is applied to the member to be heat-treated even though it is weakened at an angle different from the desired direction, the magnetic field orientation direction of the member to be heat-treated is affected, and the characteristics and characteristics of the final member to be heat-treated vary. Deterioration appears. Therefore, it is preferable that the target member to be heat-treated in the central cavity of the inner ring magnetic circuit and the inner ring magnetic circuit have a structure in which the direction does not change relatively.
[0016]
For example, when the magnetic field strengths generated by the inner ring magnetic circuit and the outer ring magnetic circuit are each 0.5T, that is, when the generated magnetic fields of the outer ring magnetic circuit and the inner ring magnetic circuit are the same, both ring magnetic circuits are generated. Since it was found that the synthesized magnetic field is the same as that of vector synthesis, the rotation angle and generated magnetic field deflection angle are as shown in FIG. Thus, when the inner ring magnetic circuit is rotated and the magnetic field intensity is changed, the magnetic field application direction finally becomes 180 ° in the completely opposite direction. However, when the outer ring magnetic circuit is rotated, in this example, the deflection angle is 45 ° at the maximum, but the influence at the time of adjusting the magnetic field is almost eliminated. In order to always apply a magnetic field to a member to be heat-treated in a constant direction even when adjusting the magnetic field, the inner ring magnetic circuit or the heat-treated table may be rotated in the direction of the combined magnetic field vector of both ring magnetic circuits.
[0017]
Here, if it arrange | positions concentrically so that a clearance gap may be eliminated between an inner ring magnetic circuit and an outer ring magnetic circuit, it can be regarded as one ring-shaped magnetic circuit. If there is a gap between the inner ring magnetic circuit and the outer ring magnetic circuit, the magnetic resistance increases and the magnetic field strength in the central cavity of the inner ring magnetic circuit decreases, so there is a gap between the inner ring magnetic circuit and the outer ring magnetic circuit. When not, the shape can be minimized. Therefore, in terms of shape, the performance is determined by the inner diameter of the inner ring magnetic circuit, that is, the bore diameter and the outer diameter of the outer ring magnetic circuit. Therefore, if the minimum processing size of the wafer is 1 inch (about φ25 mm), the installation space for the heating device and the wafer needs to be φ30 mm. If a width of 20 mm is secured as the vacuum heat insulating layer, the vacuum vessel is φ60 mm, and the vacuum vessel outer periphery is insulated by air. A layer of 10 mm is secured to become φ70 mm, and φ110 becomes the minimum space when the cooling device is installed, and φ120 becomes the minimum space for fixing the heat treatment device as a whole. If the residual magnetic flux density Br of the permanent magnet is 1.45 T in this minimum shape, the shape in which the magnetic field strength in the central cavity exceeds 1 T has an outer diameter of 300 mm with a bore diameter of 120 mm as shown in FIG. About 150 mm is required. Therefore, in practice, the bore diameter D of the central cavity of the inner ring magnetic circuit 0 Is 120 mm or more and the outer diameter D of the outer ring magnetic circuit 2 It can be said that it is necessary to obtain a magnetic field of 1 T or more that the length is 300 mm or more and the length is 100 mm or more.
[0018]
According to “Journal of Applied Physics Vol.86, No.11 1 December 1999”, the magnetic field strength B in the central cavity on the inner diameter side of the inner ring magnetic circuit is Ri and the outer ring magnetic circuit outer radius is Ro. , B = Br × ln (Ro / Ri). However, as a result of actual magnetic field calculations by simulation, it was found that the magnetic field strength in the central cavity decreases as the length decreases as the length decreases as shown in FIG. As can be seen from this result, in order to generate a magnetic flux density of 1 T or more in the central cavity, both the axial length H2 of the outer ring magnetic circuit and the axial length H1 of the inner ring magnetic circuit are both 100 mm or more. Length is needed. The heat treatment capability of the member to be treated in the present invention is proportional to the length of the uniform magnetic field region in the central cavity. The magnetic field homogeneity usually requires ± 5 to 10%. In a conventional apparatus using an electromagnet, the length of the uniform magnetic field region in the central cavity is at least 40 mm with respect to 100 mm. In other words, if the magnetic field strength in the central cavity is to be 1.0 T or more, even the conventional device requires a minimum length of 100 mm for the magnetic circuit.
[0019]
Also, it is desirable to reduce the leakage flux by shortening the axial length H2 of the outer ring magnetic circuit (H2 <H1) from the axial length H1 of the inner ring magnetic circuit. Further, it has been found that the leakage magnetic field in the axial direction can be further reduced by shortening the axial length of the inner ring magnetic circuit and / or the outer ring magnetic circuit toward the outer side in the radial direction. Although these will be described later, such a structure can reduce the leakage magnetic flux of the ring-shaped magnetic circuit, and the magnetic circuit can be reduced in size and weight.
As a means for miniaturization, the axial length H1 of the inner ring magnetic circuit may be smaller than H2 of the outer ring magnetic circuit. As will be described later, when trying to secure a uniform magnetic field region having the same length, it is possible to increase the magnetic field strength more efficiently by increasing the length in the length direction than by increasing the length in the radial direction. The installation cross-sectional area can be further reduced.
[0020]
The permanent magnet used in the outer ring magnetic circuit and the inner ring magnetic circuit has a residual magnetic flux density of 1.1 T or more, a coercive force of 1114 kA / m (14 kOe) or more, and an inner ring magnetism. The axial length H1 of the circuit and the outer diameter D of the outer ring magnetic circuit 2 And the ratio of 2 ≦ D 2 It is preferable that / H1 ≦ 10. The larger this ratio, the more uniform magnetic field can be generated in a wider range in the axial direction. By keeping the ring shape within this range, it is possible to efficiently generate a high magnetic field with a small weight of the entire magnet. When the axial length of the inner ring magnetic circuit is shortened outward in the radial direction, the maximum length may be set to H1.
[0021]
In the magnetic field heat treatment furnace of the present invention, as described above, the heat treatment means uses a cooling / heat insulation means having a specular reflection layer and a water-cooled pipe provided outside thereof, as shown in FIG. 1, an infrared ray, a carbon heater, and the like. If the structure includes a heating means and a substantially transparent glass-like vacuum tube, and a heat treatment table on which a plurality of members to be processed are placed from the outside of the vacuum tube, the magnetic field generating means described above. Matching the center part of the (inner and outer ring magnetic circuit) with the center part of the heat-treated member makes the heat treatment furnace in a magnetic field relatively easy to manage, and eliminates the thermal effect on the magnetic circuit part using permanent magnets. Can do. That is, the heat treatment temperature is about 250 to 300 ° C., but since the cooling / heat insulating means is located between the heating means and the magnetic field generating means, the thermal effect on the permanent magnet is cut off and the magnetic circuit does not deteriorate. In this respect, if a high-frequency coil or the like is used as in the prior art, there is a thermal effect on the surroundings, and additional cooling and heat insulation means are required, and countermeasures are likely to be difficult.
[0022]
The heat treatment means may be a heat treatment in a non-oxidizing atmosphere such as nitrogen gas. The composition of the permanent magnet used for the inner ring and outer ring is all known, such as Ba ferrite, Sr ferrite, La and Co addition ferrite, rare earth Sm-Co, and Sm-Fe-N. Although applicable, it is preferably an Nd—Fe—B system having a higher residual magnetic flux density. Nd-Fe-B magnets have problems in temperature characteristics, and it was difficult to use them in heat treatment furnaces with conventional structures, but they can be applied without problems by configuring the cooling and heat insulation means as in the present invention. is there. These can be appropriately selected depending on the magnetic field strength required for the central cavity of the inner ring, the thermal effect, and the like, and may be a bonded magnet mixed with not only a sintered body but also a resin or the like.
Further, as a heat treatment method, there is a case where the magnetic field is continuously applied throughout the heat treatment, and in this case, the magnetic field does not need to be adjusted, so that the outer ring magnet arranged outside the inner ring magnetic circuit as a magnetic field generation adjusting means. The circuit may not be arranged.
[0023]
Hereinafter, the details of the present invention will be described with reference to the drawings. (Reference Example 1)
FIG. 1 is a cross-sectional view showing a main part of a heat treatment furnace in a magnetic field which is an object of the present invention. In the figure, 1 is an inner ring magnetic circuit, and 2 is an outer ring magnetic circuit, and the inner and outer ring magnetic circuits are combined to constitute a magnetic field generating means. The inside of the magnetic circuit is composed of an Nd—Fe—B permanent magnet (shaded portion in the figure). When the magnetic properties of this permanent magnet are measured, the residual magnetic flux density is 1.4 T and the coercive force is 1192 kA / m. there were. FIG. 2 shows the configuration of the inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 in the axial section of FIG. This magnetic field generation means The permanent magnet is composed of three segment magnets 21, 22, and 23 which are divided into 12 equal parts with respect to the axis and have different magnetization directions, and are combined in a ring shape in the magnetization direction shown in FIG. Each of the outer ring magnetic circuits 2 is configured. The magnetization directions of the permanent magnets are as shown in FIG. 2, and a combined magnetic field of the inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 indicated by arrows is applied to the central cavity 20 in parallel to the radial direction. Bore diameter D of the inner ring magnetic circuit 1 of this example 0 360mm, outer diameter D 1 Was 560 mm. Outer diameter D of outer ring magnetic circuit 2 2 Was 1200 mm. Furthermore, the axial length (height) H of both ring magnetic circuits was 420 mm. The inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 are adjacent to each other through a slight gap so as to be rotatable with respect to each other, and although not shown, driving for driving the outer ring magnetic circuit 2 is performed. As a means, a gear is formed below the holding member 11 of the outer ring magnetic circuit, and is rotatable with respect to the inner ring magnetic circuit by a servo motor or the like. Therefore, in this example, the inner ring magnetic circuit is held in a fixed state.
[0024]
next vacuum Heat treatment means The structure of will be described. The vacuum heat treatment means of this example is composed of a cooling means by water cooling, a heating means by an electric heater, and a vacuum vessel made of quartz glass or the like. First, reference numeral 3 in the figure denotes a cooling means, and the inner surface is made of a tungsten alloy plated so as to be a specular reflection layer, and the other is made of a ceramic case. A water-cooled tube 4 is provided inside the ceramic case so that the inside can be cooled. Moreover, it is preferable to interpose a heat insulation sheet between the electric heater 5 and the cooling case described below. Reference numeral 5 denotes an electric heater that heats a member to be heat-treated inside the vacuum vessel by infrared heating. A vacuum vessel (vacuum tube) 6 made of quartz glass having an inner diameter of about 220 mm is provided at the center. Since the heating in vacuum by the heater is mainly performed by radiant heat, the quartz glass is preferably optically transparent. The inner diameter of the container can be about 170 to 220 mm in diameter because a 6 to 8 inch wafer substrate is assumed as the heat-treated member. One end of the vacuum tube 6 is kept airtight inside and outside the vacuum tube 6 by the seal member 7, and the other end is kept airtight by the seal male screw portion 8 and the seal female screw portion 9. The shaft of the seal female screw portion 9 is provided with a heat treatment table 10 for hanging and fixing a member to be processed in a substantially central portion of the vacuum tube 6. The heat treatment table 10 includes, for example, about 25 trays on which a wafer substrate on which a magnetic film is formed is arranged in the axial direction at an arrangement interval of about 6 mm. Further, the heat treatment table 10 is rotatably held in the central cavity 20 so that the angle can be changed in the in-plane direction. This is because when the outer ring magnetic circuit 2 is rotated to adjust the magnetic field, the direction of the combined magnetic field of the inner ring magnetic circuit 1 and the outer ring magnetic circuit (the direction in which the magnetic field is strongest) is shifted. In order to correct the angle, it is preferable to rotate in the direction opposite to the rotation direction of the outer ring magnetic circuit 2 in synchronization with the rotation angle of the outer ring magnetic circuit 2. In addition, the inner ring magnetic circuit 1 may be rotated instead of rotating the heat treatment table 10 as described above, but the structure of the rotation mechanism becomes complicated and two rotation drive motors are required. This is not preferable because the cost increases.
[0025]
The heat treatment temperature management of the electric heater 5 is PID control, and the temperature is measured and controlled by thermocouples respectively provided at the upper end, the center, and the lower end of the heat treatment table 10. The seal portion 7 is provided with an intake port. The exhaust port is provided in the upper part of the vacuum tube 6 and is connected to a vacuum pump (not shown), and can be maintained in a predetermined vacuum state by evacuating the inside of the vacuum tube 6. For example, when the heat treatment object is a magnetic thin film or the like, 1 × 10 -5 ~ 1x10 -6 Heat treatment is preferably performed in a vacuum state of Pa or less. The suction port is connected to an inert nitrogen gas cylinder so that the vacuum tube can be in an inert atmosphere if necessary, such as a purge process.
[0026]
Next, a heat treatment procedure for heating in a magnetic field will be described. First, as shown in FIG. 2B, the outer ring magnetic circuit 2 is rotated so that the magnetic field in the central gap 20 becomes substantially zero. A wafer substrate provided with a magnetic film in which a ferromagnetic layer and an antiferromagnetic layer are laminated as a member to be heat-treated is arranged on the tray of the heat-treating table 10 and inserted into the vacuum tube 6 from above or below. Is held so that the center portion of each of the inner and outer ring magnetic circuits 1 and 2 substantially coincides with the center portion. Therefore, the entire substrate is positioned near the central portion in the axial direction of the inner and outer ring magnetic circuits. Thereafter, the seal female screw portion 8 and the seal male screw portion 9 are screwed together to make the inside of the vacuum tube 6 airtight, and then the inside of the vacuum tube 6 is exhausted by a vacuum pump. -5 ~ 1x10 -6 The degree of vacuum was up to Pa. The direction of the wafer substrate which is a member to be processed and the inner ring magnetic circuit are fixed as they are, only the outer ring magnetic circuit is rotated, and the inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 are rotated as shown in FIG. The angle was adjusted as appropriate to generate a magnetic field greater than 1.0T. At this time, water was passed through the water-cooled tube 4 and the temperature was raised by the electric heater 5 at 5 ° C./min. The temperature is maintained at 300 ° C. ± 3% for 30 to 60 minutes, and then the temperature in the vacuum furnace 6 is lowered by 2 ° C./min. When the wafer temperature becomes 150 ° C. or less, again as shown in FIG. The angle of the inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 was adjusted to reduce the magnetic field to substantially zero T.
[0027]
When the magnetic field of the generated central cavity 20 was measured, it was confirmed that a uniform magnetic field strength of ± 5% or less was obtained in the central cavity at the thickness center as shown in Table 1. Further, as shown in FIG. 7, the difference in magnetic field strength depending on the position of the axial length (thickness direction) H of the magnet was measured. It was confirmed that a uniform magnetic field strength of 10% or less was obtained in the range of 80 mm. Further, the magnetic field skew angle at each measurement position was measured, but all were within 2 °. Furthermore, the magnetic properties at room temperature and the magnetic field at 300 ° C. were compared, but no difference was found between the two. The characteristics of the magnetic head subjected to heat treatment in a magnetic field were measured, but no defective one was found. Also book reference The leakage magnetic field in the example is 10 mT or less at a point 350 mm away from the magnetic circuit end face in the axial direction, and the leakage magnetic field strength at a point 1 m away from the magnetic circuit side surface is 1 mT or less, confirming that the leakage magnetic field is small. did.
[0028]
[Table 1]
Figure 0004423586
[0029]
( reference Example 2)
Book reference An example is Reference example 1 in terms of shape, the axial length (H) of the outer ring magnetic circuit and the inner ring magnetic circuit is changed as shown in FIG. reference Similar to Example 1. Book reference In the example, the permanent magnet is composed of three types of segment magnets 21, 22, and 23 which are divided into 12 equal parts with respect to the axis and have different magnetization directions, and are combined in a ring shape in the magnetization direction shown in FIG. The outer ring magnetic circuit 2A is configured. An inner ring magnetic circuit 1A and an outer ring magnetic circuit 2A were configured. The respective magnetization directions are as shown in FIG. 2, and the bore diameter D of the inner ring magnetic circuit 1A is used as a heat treatment apparatus for an 8-inch wafer (about 200 mm in diameter). 0 Is 360 mm, outer diameter D 1 Was 560 mm. Outer diameter D of outer ring magnetic circuit 2A 2 Was 1100 mm. Further, the axial length H1 of the inner ring magnetic circuit was 420 mm, and the axial length H2 of the outer ring magnetic circuit was 500 mm. Although not shown, as a driving means for driving the inner ring magnetic circuit, a gear is formed below the case 11 of the inner ring magnetic circuit, and is rotatable with respect to the outer ring magnetic circuit by a motor. Further, the workpiece is configured not to rotate together with the inner ring magnetic circuit. This is the heat treatment method reference The difference from Example 1, otherwise reference Performed as in Example 1.
[0030]
When the magnetic field of the generated central gap 20 was measured, it was confirmed that a uniform magnetic field strength of ± 5% or less was obtained in the central gap at the thickness center as shown in Table 2. Further, the difference in magnetic field strength depending on the position of the magnet in the longitudinal direction H was measured, but ± 80 from the center of the 420 mm long magnet provided with the object to be heat treated. mm It was confirmed that a uniform magnetic field strength of ± 5% (range 10%) or less was obtained. Therefore, it is preferable to set the object to be heat-treated within this range, or to make the length of the heat-treated table shorter than this, and when it is placed beyond this range, the magnetic field uniformity decreases, The characteristics will deteriorate. Further, the magnetic field skew angle at each measurement position was measured, but all were within 2 °. Furthermore, the magnetic properties at room temperature and the magnetic field at 300 ° C. were compared, but no difference was found between them. The characteristics of the magnetic head subjected to heat treatment in a magnetic field were measured, but no defective one was found. Therefore, after the heat treatment was completed, it was confirmed that the performance was not affected even if the magnetic field adjustment was performed without rotating the inner ring magnetic circuit and the heat treated member in a state where the wafer temperature was lowered to 50 ° C. or less. reference Example 2 is better reference Compared with Example 1, the length of the outer ring magnetic circuit is about 19% longer and the radius is about 10% smaller, but the weight of the outer ring magnetic circuit alone is about 10% lighter than that of Example 2. Therefore, as a magnetic field generator reference Example 2 is better reference Compared to Example 1, the installation cross-sectional area can be reduced, and the length of the uniform magnetic field region can be increased. Also in terms of configuration and control reference It is simpler than Example 1, and it can be seen that it is small, light, and low in equipment cost.
[0031]
[Table 2]
Figure 0004423586
[0032]
(Comparative Example 1) The heater was provided not at the central cavity but at a position where it would go out of the ring magnetic circuit in the axial direction. Other than that reference The experiment was conducted in the same manner as in Example 1. Variations in temperature distribution occurred at each position of the heat treatment table, and variations in the magnetic characteristics of each magnetic head also occurred.
[0033]
(Comparative example 2) Remove the cooling pipe and heat insulation means, otherwise reference The experiment was conducted in the same manner as in Example 1. Although there was no variation in temperature distribution at each position on the heat treatment table, the permanent magnet of the inner ring magnetic circuit was demagnetized by the heat of the heater during heat treatment, and sufficient magnetic field strength could not be obtained.
[0034]
(Comparative Example 3) reference As in Example 1, the inner ring magnetic circuit 1 and the outer ring magnetic circuit 2 were configured by dividing the permanent magnet into 12 equal parts. Each magnetization direction is as shown in FIG. 2, and the bore diameter D of the inner ring magnetic circuit 1 is as follows. 0 360mm, outer diameter D 1 Was 560 mm. Outer diameter D of outer ring magnetic circuit 2 2 Was 1100 mm. Furthermore, the axial length (height) H of both ring magnetic circuits was 420 mm. Further, although not shown, as a driving means for driving the inner ring, a gear is formed at the lower portion of the case 11 of the inner ring and can be rotated with respect to the outer ring by a motor. It was configured to rotate at the same angle as the outer ring magnetic circuit, not the circuit. Other than that was carried out in the same manner as in Example 1. That is, this comparative example is an example in which the relative positions of the heat-treated member and the inner ring magnetic circuit are changed.
[0035]
The generated magnetic field in the central void was the same measurement result as in Table 2, and it was confirmed that a uniform magnetic field strength of ± 5% or less was obtained in the central void at the central thickness. In addition, the difference in magnetic field strength depending on the position in the height direction H of the magnet was measured, but a uniform magnetic field strength of ± 5% or less was obtained within a range of ± 80 mm from the central part of the thickness H of the magnet provided with the object to be heat treated. It was confirmed that Further, the magnetic field skew angle at each measurement position was measured, but all had errors within 2 °. Furthermore, the magnetic properties at room temperature and the magnetic field at 300 ° C. were compared, but no difference was found between them. However, when the characteristics of the magnetic head subjected to the heat treatment in the magnetic field were measured, those having lower magnetic characteristics than those in Examples 1 and 2 were generated, and those that could not be mounted due to poor characteristics were generated.
[0036]
( Reference Example 3 and Example)
FIG. 4 is a longitudinal sectional view of an inner and outer ring magnetic circuit showing another reference example. FIG. 4 shows an example in which the axial length (height) of the outer ring magnetic circuit 2B is shorter than that of the inner ring magnetic circuit 1B. Also, FIG. An example is shown in FIG. Similarly, the outer axial length is shorter than the inner length, and the axial lengths (heights) of the inner and outer ring magnetic circuits 1C and 2C are gradually shortened outward in the radial direction. It has been found that the leakage magnetic field in the axial direction can be further reduced. As a result, the leakage magnetic field can be reduced without complicating the structure of the entire magnetic circuit, such as measures against magnetic seals, the ring-shaped magnetic circuit can be reduced in size and weight, and the overall height of the heat treatment apparatus can be reduced. be able to.
[0037]
This point of the present invention important Since it is also a feature, it will be described in more detail. In order to reduce the leakage magnetic field in the axial direction of the ring-shaped magnetic circuit, the outer diameter of the ring-shaped magnetic circuit is reduced, or the distance between the standby position and the magnetic circuit before inserting the member to be processed in the heat treatment furnace, Alternatively, the distance to the point where the leakage magnetic field is a problem and the leakage magnetic field restriction point may be increased. This method is the same as being effective in increasing the length of the ring magnetic circuit stepwise or linearly as the cross-sectional shape of the ring-shaped magnetic circuit increases toward the outer circumference. It is. In FIG. 6A, the ring-shaped magnetic circuit is divided into two in the radial direction, and the axial installation position of the ring-shaped magnetic circuit installed on the outer peripheral side is farther from the member to be processed or the leakage magnetic field regulation region than the inner ring magnetic circuit. In this example, L1 is spaced apart. At this time, the axial length L of the inner and outer ring magnetic circuits is the same. FIG. 6B shows an example in which the outer ring magnetic circuit is separated by L1, and the axial length L2 thereof is shorter than the axial length L of the inner ring magnetic circuit, as in the case of FIG. Here, when the axial length L of the inner ring magnetic circuit is 1000 mm and the axial length L2 of the outer ring magnetic circuit is 600, 800, 1000 mm, the magnetic flux density in the central cavity of the magnetic circuit and 150 mm from the end face of the magnetic circuit. Table 3 shows the result of simulating the magnetic flux density on the magnetic circuit central axis extension line at a distant point (leakage magnetic field observation point). The inner diameter of the central cavity at this time is φ300 mm, and the outer diameter D of the inner ring magnetic circuit 1 Is 450mm, outer ring magnetic circuit outer diameter D 2 Was φ670 mm.
[0038]
[Table 3]
Figure 0004423586
[0039]
From this result, the leakage magnetic field at the leakage magnetic field observation point when the axial lengths of the magnetic circuits are the same was about 0.14 T. However, when the length of the outer ring magnetic circuit is 800 mm or less, the leakage magnetic field is 0. It can be reduced to 1T or less, that is, 35% or less. Further, it is further reduced at 600 mm. In addition, the magnetic flux density at the center of the magnetic circuit central cavity at this time is only 3% smaller than the case of 1000 mm when the length of the outer ring magnetic circuit is 800 mm, It can be seen that the influence of the length of the ring magnetic circuit is large. Further, when the location where the leakage magnetic field is desired to be reduced is only one direction in the axial direction, the outer ring magnetic circuit is aligned with one end face as shown in FIG. The effect was found to be greater.
[0040]
Next, another embodiment of the ring-shaped magnetic circuit will be described. In the present invention, as the inner diameter of the inner ring magnetic circuit becomes larger, it becomes difficult to configure the magnetic poles constituting the magnetic circuit with a single permanent magnet, and a plurality of permanent magnets are combined. FIG. 10 shows a configuration example of one magnetic pole constituting one ring-shaped magnetic circuit at this time. Here, the shape is divided into three in the radial direction. However, it may be divided into two or more, and the permanent magnet having the inner radius Ra and the outer radius Rb is assumed to be the axial length of the permanent magnet having the outer radius Ra. The axial length of the permanent magnet having the inner radius Rb and the outer radius Rc is Lc. Therefore, the length of each permanent magnet in the axial direction is La>Lb> Lc, and is configured to be gradually reduced toward the outside.
[0041]
FIG. 11 shows another example. In this example, the magnets are divided into two kinds of first small magnets 41 and second small magnets 42 in combination by dividing the magnet into multiple parts. In addition, although the number of divisions in the figure is an even division with respect to one magnet, for example, it is divided into three, and if an odd division is performed such that another magnet is inserted between the magnets placed on both sides, it helps the magnetic force. It is easy to assemble. In addition, the arrow of a figure shows the magnetization direction of each small magnet.
Further, if the inner diameter of the inner and outer ring magnetic circuits is small, the shape of the permanent magnets to be formed is also small, so that it is not necessary to divide and form a single permanent magnet. At this time, in order to obtain the effect of reducing the leakage magnetic field, the axial cross section of the permanent magnet may be substantially trapezoidal. Two examples are shown in FIGS. 12 (a) and 12 (b). These have a cross section in the axial direction of the permanent magnet of Lo and Li, and have a substantially trapezoidal shape due to the difference in dimensions. Such a trapezoidal shape can also be applied to the magnetic poles of the divided configuration shown in FIGS.
[0042]
In the embodiment, the permanent magnets used in the inner ring magnetic circuit and the outer ring magnetic circuit are appropriately combined with three types of magnetization directions. However, as shown in FIG. , 44 can be used to form a magnetic circuit.
Further, the number of divisions in the circumferential direction of the permanent magnet may be eight or more, but more than that is more desirable. FIG. 14 shows a ring-shaped magnetic circuit having an inner diameter of 120 mm and an outer diameter of 200 mm, the horizontal axis is the axial length (mm) of the magnetic circuit, and the peak value of gap magnetic flux density on the vertical axis (generation of the central cavity) Magnetic field (T)) is measured. Numerical values 8 and 12 in the figure indicate the number of divisions. From this result, it was found that the number of divisions 12 increased the central magnetic field by about 5% compared to the number of divisions 8.
[0043]
【The invention's effect】
According to the present invention, since a uniform parallel magnetic field can be applied uniformly to a plurality of substrates, the quality of the magnetic film substrate is uniformly stabilized. Further, since the magnetic field intensity can be adjusted with respect to the heat-treated member in the central cavity, it can be used in a wide range. In particular, in the present invention, the inner and outer ring-shaped magnetic circuits have a specific shape, so there is no need for a magnetic shield because the leakage magnetic field is small, the equipment introduction cost is reduced by downsizing and space saving of the entire apparatus, and the magnetic field Since electric power for generation is not required, it is possible to realize a vacuum heat treatment furnace in a magnetic field with a high energy saving effect that reduces the operation and maintenance cost of the apparatus. Further, since there is no amount of heat generated when the magnetic field generating coil is energized, no cooling water is required for the magnetic field generating coil and piping is not required, so that the configuration of the heat treatment apparatus can be simplified.
[Brief description of the drawings]
FIG. 1 is a sectional view of an essential part showing an example of a heat treatment furnace in a magnetic field.
FIG. 2 is a cross-sectional view of an essential part showing an example of a magnetic field generating means (internal / external ring magnetic circuit) used in a magnetic field heat treatment furnace.
FIG. 3 is a cross-sectional view of the main part showing another example of the inner and outer ring magnetic circuits.
FIG. 4 is a cross-sectional view of a main part showing another example of the inner and outer ring magnetic circuits.
FIG. 5 is a cross-sectional view of an essential part showing an embodiment of an inner and outer ring magnetic circuit.
FIG. 6 is an explanatory diagram for explaining the relationship between the axial lengths of the inner and outer ring magnetic circuits.
FIG. 7 is a measurement result showing a change in magnetic field strength due to an axial length (thickness direction) H of the magnetic circuit.
FIG. 8 is a diagram showing the dependence of the magnetic flux density on the outer diameter size and the axial length of the magnetic circuit.
FIG. 9 is a diagram showing a relationship between a rotation angle and a generated magnetic field deflection angle.
FIG. 10 is a diagram illustrating an example of a case where a permanent magnet is divided and configured.
FIG. 11 is a diagram showing another example in which the permanent magnet is divided and configured.
FIG. 12 is a diagram showing an example of a cross-sectional shape of a permanent magnet.
FIG. 13 is an example in the case of using permanent magnets of two kinds of magnetization directions.
FIG. 14 is a measurement result of an axial length of a magnet and a magnetic field generated in a central cavity, showing comparison between 8 divisions and 12 divisions.
FIG. 15 is a cross-sectional view of a main part showing a conventional heat treatment furnace in a magnetic field.
FIG. 16 is a diagram showing an example of a Halbach magnetic circuit.
[Explanation of symbols]
1: Inner ring magnetic circuit, 2: Outer ring magnetic circuit, 3: Case, 4: Water-cooled tube
5: heater, 6: vacuum tube, 7: seal part, 8: seal male screw part
9: Seal female thread part, 10: Heat treatment table, 11: Holding member, 12: Cooling structure
13: Coil, 14: High frequency coil
20: Central cavity, 21, 22, 23: Permanent magnet (magnetic pole)
1A, 1B, 1C: Inner ring magnetic circuit
2A, 2B, 2C: outer ring magnetic circuit
40: split-type permanent magnet, 41, 42, 43, 44: segment magnet (small magnet)

Claims (1)

隣接する磁石が互いに異なる磁化方向となした永久磁石を複数個組み合わせてリング状に構成した外リング磁気回路と、この外リング磁気回路の内側に備えられ、隣接する磁石が互いに異なる磁化方向となした永久磁石を複数個組み合わせてリング状に構成した内リング磁気回路とからなる磁場発生手段と、前記内リング磁気回路の中央空洞部内に位置し、外側から順に冷却手段および/または断熱手段と加熱手段及び真空容器とを備えた真空熱処理手段とから構成された磁場中熱処理炉において、前記外リング磁気回路の軸方向長さを前記内リング磁気回路の軸方向の長さよりも短くするとともに、前記内リング磁気回路および/または外リング磁気回路の軸方向長さを、半径方向外側に向って徐々に短くすることを特徴とする磁場中熱処理炉。An outer ring magnetic circuit configured by combining a plurality of permanent magnets in which adjacent magnets have different magnetization directions and configured in a ring shape, and provided inside the outer ring magnetic circuit, adjacent magnets have different magnetization directions. A magnetic field generating means comprising an inner ring magnetic circuit configured in a ring shape by combining a plurality of the permanent magnets, and a cooling means and / or heat insulating means and heating in order from the outside, located in the central cavity of the inner ring magnetic circuit In a magnetic field heat treatment furnace comprising a means and a vacuum heat treatment means comprising a vacuum vessel, the axial length of the outer ring magnetic circuit is made shorter than the axial length of the inner ring magnetic circuit , and the inner ring magnetic circuit and / or the axial length of the outer ring magnetic circuit, the magnetic field Chunetsu processing, characterized by gradually shorter toward the radially outward The furnace.
JP2002087661A 2001-04-17 2002-03-27 Heat treatment furnace in magnetic field Expired - Fee Related JP4423586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002087661A JP4423586B2 (en) 2001-04-17 2002-03-27 Heat treatment furnace in magnetic field

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001118623 2001-04-17
JP2001-118623 2001-04-17
JP2002087661A JP4423586B2 (en) 2001-04-17 2002-03-27 Heat treatment furnace in magnetic field

Publications (2)

Publication Number Publication Date
JP2003023191A JP2003023191A (en) 2003-01-24
JP4423586B2 true JP4423586B2 (en) 2010-03-03

Family

ID=26613715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002087661A Expired - Fee Related JP4423586B2 (en) 2001-04-17 2002-03-27 Heat treatment furnace in magnetic field

Country Status (1)

Country Link
JP (1) JP4423586B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263206A (en) * 2003-02-10 2004-09-24 Fuyuutec Furness:Kk Heat treatment device
JP2004304173A (en) * 2003-03-17 2004-10-28 Neomax Co Ltd Generation magnetic field equipment, and magnetic field orientation equipment using the same
KR20100099054A (en) * 2009-03-02 2010-09-10 신에쓰 가가꾸 고교 가부시끼가이샤 Permanent magnet type magnetic field generating apparatus
JP5470979B2 (en) * 2009-04-01 2014-04-16 日本電気株式会社 Magnetic field heat treatment apparatus and magnetic field heat treatment method
JP6333128B2 (en) * 2014-09-03 2018-05-30 東京エレクトロン株式会社 Magnetic annealing equipment
TWI767971B (en) * 2017-01-03 2022-06-21 日商東京威力科創股份有限公司 Workpiece magnetizing system and method of operating
CN112921167A (en) * 2021-01-25 2021-06-08 西安聚能超导磁体科技有限公司 High-intensity magnetic field heat treatment equipment

Also Published As

Publication number Publication date
JP2003023191A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
KR100944745B1 (en) Heat-treating furnace with magnetic field
US6885267B2 (en) Magnetic-field-generating apparatus and magnetic field orientation apparatus using it
US9269484B2 (en) Magnet assembly
JP2003007500A (en) Variable strength type multi pole beam line magnet
US7567083B2 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
US8965468B2 (en) Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets
TW200531097A (en) Permanent magnet type magnetic field generating apparatus
JP2006203173A (en) Polarizing method of permanent magnet
TW201908503A (en) Magnetic thin film deposition chamber and thin film deposition device
JP4423586B2 (en) Heat treatment furnace in magnetic field
Iguchi et al. Shimming for the 1020 MHz LTS/Bi-2223 NMR magnet
CN106898452A (en) The NMR shimming devices of the cryogenic refrigeration being easily accessible to
JP4179578B2 (en) Open superconducting magnet and magnetic resonance imaging system using the same
JP4305810B2 (en) Heat treatment furnace in magnetic field and heat treatment method using the same
JP4389194B2 (en) Magnetic field heat treatment furnace
JP7112629B2 (en) Vertical Multi-Batch Magnetic Annealing System for Reduced Footprint Manufacturing Environments
JP2004304173A (en) Generation magnetic field equipment, and magnetic field orientation equipment using the same
JP6941703B2 (en) Superconducting magnet devices and methods for magnetizing superconducting bulk magnets by field cooling via a ferromagnetic shield
JP2001264402A (en) High magnetic field and high homogeneous superconducting magnet device
US20070231603A1 (en) Permanent magnetic circuit, axisymmetric magnetic field generating method, and manufacturing method for perpendicular magnetic recording medium
JP4062587B2 (en) Deposition equipment
JP2022109935A (en) Shim iron for magnetic resonance apparatus
Overweg MRI main field magnets
Voccio et al. A 1.5-T magic-angle spinning NMR magnet: 4.2-K performance and field mapping test results
Hobl et al. New cryogen-free design for superconducting mini-gap undulators

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees