JP2001264402A - High magnetic field and high homogeneous superconducting magnet device - Google Patents

High magnetic field and high homogeneous superconducting magnet device

Info

Publication number
JP2001264402A
JP2001264402A JP2000076788A JP2000076788A JP2001264402A JP 2001264402 A JP2001264402 A JP 2001264402A JP 2000076788 A JP2000076788 A JP 2000076788A JP 2000076788 A JP2000076788 A JP 2000076788A JP 2001264402 A JP2001264402 A JP 2001264402A
Authority
JP
Japan
Prior art keywords
superconducting
magnetic field
coil group
magnet device
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000076788A
Other languages
Japanese (ja)
Other versions
JP4074042B2 (en
Inventor
Tsukasa Kiyoshi
司 木吉
Shinji Matsumoto
真治 松本
Shinya Tomono
信哉 伴野
Akio Sato
明男 佐藤
Hitoshi Wada
仁 和田
Mamoru Hamada
衛 濱田
Seiji Hayashi
征治 林
Satoshi Ito
聡 伊藤
Masatoshi Yoshikawa
正敏 吉川
Takeshi Kamikado
剛 神門
Osamu Ozaki
修 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
National Institute for Materials Science
Original Assignee
Kobe Steel Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, National Institute for Materials Science filed Critical Kobe Steel Ltd
Priority to JP2000076788A priority Critical patent/JP4074042B2/en
Publication of JP2001264402A publication Critical patent/JP2001264402A/en
Application granted granted Critical
Publication of JP4074042B2 publication Critical patent/JP4074042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high magnetic field and high homogeneous superconducting magnet device using a superconducting wire that can be manufactured at present while allowing the future development results of oxide superconductors to be introduced. SOLUTION: In this superconducting magnet device where a superconducting main coil group generating a main magnetic field, a superconducting correction coil group adjusting the space distribution of magnetic fields so as to keep the magnetic homogeneity in a space near the center of the main coil group, and a superconducting shim coil group are concentrically arranged, a cylindrical reserve space for additional correction coils is provided between the main coil group and the shim coil group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、永久電流を利用し
た核磁気共鳴(NMR)装置に用いられる超電導マグネ
ット等の様に、高磁場で且つ磁場均一度が高いことが要
求される超電導磁石装置(永久電流磁石装置)に関する
ものである。
The present invention relates to a superconducting magnet device which is required to have a high magnetic field and a high magnetic field uniformity, such as a superconducting magnet used for a nuclear magnetic resonance (NMR) device utilizing a permanent current. (Permanent current magnet device).

【0002】[0002]

【従来の技術】近年、NMR装置用超電導マグネットで
は、発生する磁場をより高くすることが要求されてい
る。従来から使用されてきた超電導材料であるNbTi
を主材料とするいわゆる合金系材料や、Nb3Snに代
表される化合物系材料では、液体ヘリウムの沸点である
約4.2Kにおける上部臨界磁場が、夫々約11.5
T、約22Tである。そして、こうした超電導材料を用
いて、上記の臨界磁場よりも更に高い磁場を発生するN
MR装置用超電導マグネットを実現しようとする場合に
は、それらを冷却する液体ヘリウムを減圧して液体へリ
ウムの温度を低下させる(膨張冷却)ことによって、超
電導材料の上部臨界磁場を上昇させ、その結果としてマ
グネットが発生する磁場を高める方法が採用される。
2. Description of the Related Art In recent years, a superconducting magnet for an NMR apparatus has been required to generate a higher magnetic field. NbTi, a superconducting material that has been used
In the case of a so-called alloy material whose main material is a compound material or a compound material represented by Nb 3 Sn, the upper critical magnetic field at about 4.2 K, which is the boiling point of liquid helium, is about 11.5 K, respectively.
T, about 22T. Then, by using such a superconducting material, N is used to generate a magnetic field even higher than the critical magnetic field.
In the case of realizing superconducting magnets for MR devices, the upper critical magnetic field of the superconducting material is raised by reducing the temperature of the liquid helium by reducing the pressure of the liquid helium that cools them (expansion cooling). As a result, a method of increasing the magnetic field generated by the magnet is adopted.

【0003】一方、1989年に発見された酸化物超電
導材料は、臨界磁場が上記合金系材料や化合物系材料に
比べて遥かに高い100〜700T程度であることが知
られている。そして、こうした材料をNMR用超電導マ
グネットの巻線部材に用いることによって、NMR用超
電導マグネットの発生する磁場を高めることができるこ
とは容易に推測できる。
On the other hand, oxide superconducting materials discovered in 1989 are known to have a critical magnetic field of about 100 to 700 T, which is much higher than that of the above-mentioned alloy materials and compound materials. Then, it can be easily presumed that by using such a material for the winding member of the superconducting magnet for NMR, the magnetic field generated by the superconducting magnet for NMR can be increased.

【0004】しかしながら酸化物超電導材料は、長尺で
均一な特性を有する線材を作製することが現時点では困
難である。また、NMR用超電導マグネットには、それ
が発生する磁場を時間的に極めて安定に発生することが
要求され、線材間の接続抵抗を極めて少なくする接続技
術が必要であるが、酸化物超電導線材においては、線材
間の接続抵抗を極めて少なくして永久電流を維持する為
の技術は確立されていないのが実状である。
[0004] However, it is difficult at present to produce a wire having a long and uniform property as the oxide superconducting material. In addition, the superconducting magnet for NMR is required to generate the magnetic field generated by the magnet very stably with respect to time, and a connection technique for extremely reducing the connection resistance between the wires is required. In fact, there is no established technique for maintaining a permanent current by making the connection resistance between wires extremely small.

【0005】ところで、上記NMR装置用超電導マグネ
ット等の様に磁場の均一度が高いことが要求されている
超電導磁石装置においては、主磁場を発生するメインコ
イル群、このメインコイル群が超電導マグネットの軸芯
部分に発生する磁場の空間的な分布を概略均一に補正す
る補正コイル群、および前記2つのコイル群で超電導マ
グネットの軸芯付近に発生する磁場の空間的な分布を精
密に調整するシムコイル群が同芯状に配列されて構成さ
れるのが一般的である。また上記シムコイル群は、メイ
ンコイル群、補正コイル群および超電導シムコイル群を
包含する低温容器の径方向の内側で超電導マグネット群
の軸芯付近に設置される常電導シムコイル群と、低温容
器の径方向の最も外側に配置され超電導線材を部材とす
る超電導シムコイル群とで構成されることが多い。
Incidentally, in a superconducting magnet apparatus which requires a high degree of uniformity of the magnetic field, such as the above-described superconducting magnet for an NMR apparatus, a main coil group for generating a main magnetic field, and the main coil group is formed of a superconducting magnet. A correction coil group for substantially uniformly correcting the spatial distribution of a magnetic field generated in the shaft core portion, and a shim coil for precisely adjusting the spatial distribution of the magnetic field generated near the shaft core of the superconducting magnet by the two coil groups In general, the groups are arranged concentrically. The shim coil group includes a normal conductive shim coil group installed near the axis of the superconducting magnet group inside the radial direction of the low temperature container including the main coil group, the correction coil group, and the superconducting shim coil group, and a radial direction of the low temperature container. And a superconducting shim coil group composed of a superconducting wire as a member.

【0006】上記の様な状況の下で、高磁場NMR装置
用超電導マグネットを作製する場合には、該マグネット
の中央部付近に存在するメインコイル群の一部を、酸化
物超電導コイル群に入れ替えることで、磁場を更に高め
得ることが期待される。従って、この様な将来の技術開
発成果に備えて、超電導マグネットをその成果に対応で
きる様な構成にしておくことが必要である。
In the case of manufacturing a superconducting magnet for a high-field NMR apparatus under the above-mentioned situation, a part of a main coil group near the center of the magnet is replaced with an oxide superconducting coil group. Thus, it is expected that the magnetic field can be further increased. Therefore, it is necessary to prepare the superconducting magnet so as to be able to cope with the result of such future technological development.

【0007】一般に、中央部付近に存在するメインコイ
ル群の一部を交換した場合には、磁場の分布が大きく変
化し、既存の超電導コイル群や常電導シムコイル群では
磁場を均一にすることができず、補正コイル群を作製し
なおす必要がある。しかしながら、補正コイル群を作製
し直すとその幾何学的寸法が変化し、当該補正コイル群
の外側に設置される超電導シムコイル群を設置すること
ができなくなる。こうしたことから、超電導シムコイル
群をも作製し直す必要がある。更には、超電導コイル群
を包含する低温容器をも作製し直す必要が出てくる。
In general, when a part of the main coil group located near the center is replaced, the distribution of the magnetic field changes greatly, and the magnetic field of the existing superconducting coil group or the normal conducting shim coil group must be made uniform. It is not possible, and it is necessary to re-make the correction coil group. However, when the correction coil group is re-manufactured, its geometric dimension changes, and it becomes impossible to install a superconducting shim coil group installed outside the correction coil group. For this reason, it is necessary to recreate the superconducting shim coil group. Further, it is necessary to re-create a low-temperature container including a superconducting coil group.

【0008】[0008]

【発明が解決しようとする課題】本発明はこうした状況
の下でなされたものであって、その目的は、将来の酸化
物超電導材料の開発成果を取り込める様にしながら、現
時点で作製できる超電導線材を使用した高磁場で且つ均
一度の高い超電導磁石装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made under such a circumstance, and an object of the present invention is to provide a superconducting wire that can be manufactured at the present time while incorporating future development results of oxide superconducting materials. It is an object of the present invention to provide a used superconducting magnet device having a high magnetic field and a high degree of uniformity.

【0009】[0009]

【課題を解決するための手段】上記目的を達成し得た本
発明の超電導磁石装置とは、主磁場を発生する超電導メ
インコイル群と、前記超電導コイル群の中心付近の空間
における磁場の均一度を維持する様に磁場の空間分布を
調整するための超電導補正コイル群および超電導シムコ
イル群が同芯状に配列された高磁場均一度超電導磁石装
置において、前記超電導メインコイル群と超電導シムコ
イル群の間に補正コイル追加用の円筒状予備空間を設け
たものである点に要旨を有するものである。
A superconducting magnet device according to the present invention which has achieved the above object comprises a superconducting main coil group for generating a main magnetic field, and a uniformity of a magnetic field in a space near the center of the superconducting coil group. The superconducting correction coil group and the superconducting shim coil group for adjusting the spatial distribution of the magnetic field so as to maintain the superconducting shim coil group are arranged concentrically. Is provided with a cylindrical spare space for adding a correction coil.

【0010】上記本発明の超電導磁石装置においては、
前記円筒状予備空間に空間占拠部材を配置したものであ
ることが好ましい。また、前記空間占拠部材としては、
アルミニウム若しくはアルミニウム合金、または鉄若し
くは鉄合金、または銅若しくは銅合金、またはガラス繊
維強化樹脂からなるもの、等を挙げることができる。
In the superconducting magnet device of the present invention,
It is preferable that a space occupying member is arranged in the cylindrical spare space. Further, as the space occupying member,
Examples thereof include aluminum, an aluminum alloy, iron, an iron alloy, copper, a copper alloy, and a glass fiber reinforced resin.

【0011】[0011]

【発明の実施の形態】以下図面に基づき、従来の装置構
成と対比しつつ、本発明装置の作用効果についてより具
体的に説明する。図1は、従来の永久電流磁石装置(超
電導磁石装置)の一構成例を示す概略断面図であり、図
2は従来技術における永久電流磁石装置においてメイン
コイルの一部を酸化物超電導材料からなるコイルに置き
換えた場合を想定した概略断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, the operation and effect of the apparatus of the present invention will be more specifically described in comparison with a conventional apparatus configuration. FIG. 1 is a schematic cross-sectional view showing an example of the configuration of a conventional permanent current magnet device (superconducting magnet device). FIG. 2 shows a conventional permanent current magnet device in which a part of a main coil is made of an oxide superconducting material. It is a schematic sectional view assuming the case where it replaced with the coil.

【0012】図1に示した装置構成において、主磁場を
発生する超電導メインコイル群は、Nb3Sn超電導線
材が巻回された超電導メインコイル1と、NbTi超電
導線材が巻回された超電導メインコイル2から構成され
ている。超電導メインコイル2の径方向外側には、Nb
Ti超電導超電導線材が巻回された超電導補正コイル群
3a〜3bが設けられている。また、超電導補正コイル
群3a〜3bの径方向外側には、NbTi超電導超電導
線材が巻回された超電導シムコイル群4a〜4fが設け
られている。即ち、この永久電流磁石装置においては、
超電導メインコイル1,2からなる超電導メインコイル
群、超電導補正コイル群3a〜3b、および超電導シム
コイル群4a〜4fが同芯状に配列されて構成されてい
る。
In the apparatus configuration shown in FIG. 1, a superconducting main coil group for generating a main magnetic field includes a superconducting main coil 1 on which an Nb 3 Sn superconducting wire is wound, and a superconducting main coil on which an NbTi superconducting wire is wound. 2 is comprised. Nb is provided radially outside the superconducting main coil 2.
Superconducting correction coil groups 3a to 3b around which a Ti superconducting superconducting wire is wound are provided. Further, superconducting shim coil groups 4a to 4f around which NbTi superconducting superconducting wires are wound are provided radially outside the superconducting correction coil groups 3a to 3b. That is, in this permanent current magnet device,
A superconducting main coil group including superconducting main coils 1 and 2, superconducting correction coil groups 3a to 3b, and superconducting shim coil groups 4a to 4f are arranged concentrically.

【0013】そして以上の超電導コイル群は、低温容器
(クライオスタット)6の中に収納され、この低温容器
6内は液体窒素および液体ヘリウムによって低温に維持
されている。また、この低温容器6の中央付近の室温空
間部分には、常電導シムコイル5が設けられている。ま
た、この室温空間はサンプル挿入孔となっており、高周
波プローブを入れることによって、サンプルの測定を行
なう様にされる。
The above-described superconducting coil group is housed in a low-temperature container (cryostat) 6, and the inside of the low-temperature container 6 is maintained at a low temperature by liquid nitrogen and liquid helium. A normal conductive shim coil 5 is provided in the room temperature space near the center of the low-temperature container 6. The room temperature space is a sample insertion hole, and a sample is measured by inserting a high-frequency probe.

【0014】こうした装置構成において、超電導メイン
コイル1の一部を酸化物超電導材料からなるコイルに置
き換える場合を想定したのが、図2に示した装置構成で
ある。そして図2に示した装置においては、超電導メイ
ンコイル1aは、酸化物超電導材料およびNb3Sn超
電導線材が巻回されて構成されることになる。また、超
電導メインコイル2がNbTi超電導線材で構成される
こと、および超電導メインコイル2の外側に、NbTi
超電導線材が巻回された超電導線材が巻回された超電導
補正コイル群3a〜3cが設けられることは前記図1の
場合と同様である。
In such an apparatus configuration, the case where a part of the superconducting main coil 1 is replaced by a coil made of an oxide superconducting material is assumed in the apparatus configuration shown in FIG. In the apparatus shown in FIG. 2, the superconducting main coil 1a is formed by winding an oxide superconducting material and an Nb 3 Sn superconducting wire. Further, superconducting main coil 2 is made of NbTi superconducting wire, and NbTi
The superconducting correction coil groups 3a to 3c in which the superconducting wire is wound are provided as in the case of FIG.

【0015】そして、図2に示した装置においては、前
記図1に示した装置構成に比べて超電導メインコイル1
aの一部が酸化物超電導材料に変更されているので、超
電導メインコイル群1a,2、超電導補正コイル群3a
〜3cによって合成して発生される磁場の均一度に変化
が生じることになり、こうした変化に対応する為に、超
電導補正コイル群3a〜3cの外側に、超電導補正コイ
ル群7a〜7cが新たに追加して設けられることにな
る。またこうした設計変更に応じて、超電導補正コイル
群7a〜7cの外側には、上記超電導シムコイル群4a
〜4fよりも更に大きなものに作製し直された超電導シ
ムコイル9a〜9fが設けらることになる。
In the device shown in FIG. 2, the superconducting main coil 1 is different from the device shown in FIG.
a is changed to an oxide superconducting material, the superconducting main coil groups 1a and 2 and the superconducting correction coil group 3a
To 3c, a change occurs in the uniformity of the magnetic field generated and synthesized. In order to cope with such a change, superconducting correction coil groups 7a to 7c are newly provided outside the superconducting correction coil groups 3a to 3c. It will be additionally provided. In response to such a design change, the superconducting shim coil group 4a is provided outside the superconducting correction coil groups 7a to 7c.
The superconducting shim coils 9a to 9f that are re-fabricated to have a size larger than that of the superconducting shim coils 9a to 9f are provided.

【0016】そして以上の超電導コイル群は、低温容器
6a内に収納されることになるが、図2に示した装置は
前記図1に示した装置と比べて、超電導補正コイル7a
〜7cを新たに設置し、また前記超電導シムコイル群4
a〜4fよりも更に大きくした超電導シムコイル9a〜
9fが設けられることになるので、これらを収納する低
温容器6aにおいても、図1に示した前記低温容器6に
比べて直径が大きくならざるを得ない。尚、こうした低
温容器6aにおいても、その中央付近には、磁場の不均
一性をより精密に補正する為の常電導シムコイル5が設
けられるのは、前記図1に示した装置構成の場合と同様
である。
The above-mentioned superconducting coil group is housed in the low-temperature container 6a. The apparatus shown in FIG. 2 is different from the apparatus shown in FIG.
To 7c are newly installed, and the superconducting shim coil group 4
superconducting shim coils 9a to
Since 9f is provided, the diameter of the low-temperature container 6a for accommodating them is inevitably larger than that of the low-temperature container 6 shown in FIG. In this low-temperature vessel 6a, the normal conducting shim coil 5 for correcting the non-uniformity of the magnetic field more precisely is provided near the center of the low-temperature vessel 6a, similarly to the case of the apparatus configuration shown in FIG. It is.

【0017】上述した様に、従来の永久電流超電導磁石
装置においては、将来的にメインコイルの一部を酸化物
超電導材料に置き換えた場合には、超電導補正コイル群
7a〜7c、超電導シムコイル群9a〜9f、および低
温容器6aを新たに作製し直す必要がある。
As described above, in the conventional permanent current superconducting magnet device, if a part of the main coil is replaced by an oxide superconducting material in the future, the superconducting correction coil groups 7a to 7c and the superconducting shim coil group 9a To 9f and the low-temperature container 6a need to be newly prepared.

【0018】図3は本発明に係る永久電流磁石装置の一
構成例を示す概略断面図であり、前記図1、2と対応す
る部分には同一の参照符号を付すことによって重複説明
を回避する。尚、本発明に係る超電導磁石装置は、図3
に示した構成に限定されるものではなく、例えば図3で
は超電導補正コイル群3a〜3cが、3つのコイルから
構成されており、その長さも夫々異なるのが通常である
が、このコイルの個数や長さは装置の様式によって適宜
変更されるものである。
FIG. 3 is a schematic sectional view showing an example of the configuration of a permanent current magnet apparatus according to the present invention. The same reference numerals are given to portions corresponding to those in FIGS. . The superconducting magnet device according to the present invention is shown in FIG.
However, for example, in FIG. 3, the superconducting correction coil groups 3a to 3c are composed of three coils, each of which usually has a different length. The length and length are appropriately changed depending on the type of the device.

【0019】本発明の装置においては、上記超電導補正
コイル群3a〜3cと超電導シムコイル9a〜9f群の
間に、円筒状予備空間8が設けられている。そして、こ
の予備空間8は、超電導メインコイル1の一部が将来的
に酸化物超電導線材で巻回された超電導コイルとされる
ときに、前記図2に示した様な超電導補正コイル群7a
〜7cが追加して設置されることになる。また、上記の
様に円筒状予備空間8を設けることによって、前記図1
に示した超電導シムコイル4a〜4fと比べて予め大き
くした超電導シムコイル9a〜9fが配置される。更
に、これに応じて、低温容器6aも、前記各コイル群が
収納できる様に、その直径が比較的大きく設定されてい
る。即ち、図3に示した本発明の装置構成では、図2に
示した様な超電導補正コイル7a〜7cの代りに、予備
空間8を設けたものである。
In the apparatus of the present invention, a cylindrical spare space 8 is provided between the superconducting correction coil groups 3a to 3c and the superconducting shim coils 9a to 9f. When a part of the superconducting main coil 1 is to be formed as a superconducting coil wound with an oxide superconducting wire in the future, the spare space 8 has a superconducting correction coil group 7a as shown in FIG.
To 7c are additionally provided. In addition, by providing the cylindrical preliminary space 8 as described above,
The superconducting shim coils 9a to 9f which are larger than the superconducting shim coils 4a to 4f shown in FIG. In addition, the diameter of the low-temperature container 6a is set to be relatively large so that the coil groups can be stored. That is, in the apparatus configuration of the present invention shown in FIG. 3, a spare space 8 is provided instead of the superconducting correction coils 7a to 7c as shown in FIG.

【0020】従って、図3に示した本発明の超電導磁石
装置では、超電導メインコイル1の一部が酸化物超電導
材料でされた場合に、新たに作製する必要があるのは、
超電導補正コイル群7a〜7cだけで良いことになる。
Therefore, in the superconducting magnet device of the present invention shown in FIG. 3, when a part of the superconducting main coil 1 is made of an oxide superconducting material, it is necessary to newly produce it.
Only the superconducting correction coil groups 7a to 7c are required.

【0021】尚、図3に示した構成では、超電導補正コ
イル群3a〜3cと超電導シムコイル9a〜9f群の間
に円筒状予備空間8を設ける構成としたけれども、円筒
状予備空間8が設けられる位置は、超電導メインコイル
群1,2と超電導補正コイル群3a〜3cの間とするこ
ともでき、要するに超電導メインコイル群1,2と超電
導シムコイル9a〜9f群の間であれば良い。また、こ
の予備空間8の大きさは、その幅が少なくとも1mm以
上である必要があるが、通常5〜20mm程度に設定す
れば良い。
In the configuration shown in FIG. 3, although the cylindrical preliminary space 8 is provided between the superconducting correction coil groups 3a to 3c and the superconducting shim coils 9a to 9f, the cylindrical preliminary space 8 is provided. The position may be between the superconducting main coil groups 1 and 2 and the superconducting correction coil groups 3a to 3c. In short, the position may be between the superconducting main coil groups 1 and 2 and the superconducting shim coils 9a to 9f group. In addition, the size of the spare space 8 needs to be at least 1 mm or more, but may be usually set to about 5 to 20 mm.

【0022】ところで、図3に示した様な超電導磁石装
置の全体を冷却する場合には、前記予備空間8にも液体
ヘリウム等の液体が充満されることになる。そして、こ
の磁石装置を冷却する液体ヘリウムを減圧して液体ヘリ
ウムの温度を低下させ、そのことにより超電導材料の上
部臨界磁場を上昇させ、その結果としてマグネットが発
生する磁場を高める方法を採用したときには、予備空間
8に存在する液体ヘリウムをも温度を低下させる必要が
る。
When the entire superconducting magnet device as shown in FIG. 3 is cooled, the spare space 8 is also filled with liquid such as liquid helium. And when the method of increasing the magnetic field generated by the magnet by adopting a method of reducing the temperature of the liquid helium by decompressing the liquid helium that cools the magnet device and thereby increasing the upper critical magnetic field of the superconducting material, Also, the temperature of the liquid helium existing in the preliminary space 8 needs to be lowered.

【0023】例えば、予備空間8の大きさが、内直径:
927mm,外直径:960mm,長さ:1604mm
であるとすると、その容積は約78リットルとなる。そ
してこうした容積に相当する液体ヘリウムを4.2Kか
ら1.8Kに冷却するに必要な電力は約25KWh程度
となる。即ち、上記の様な予備空間8を設けた場合に
は、それだけ冷却の為の電力を消費して不経済となる事
態を招くことになる。
For example, the size of the preliminary space 8 is determined by the inner diameter:
927mm, outer diameter: 960mm, length: 1604mm
, The volume is about 78 liters. The electric power required to cool the liquid helium corresponding to such a volume from 4.2K to 1.8K is about 25 KWh. That is, when the spare space 8 as described above is provided, power for cooling is consumed correspondingly, which leads to uneconomical situation.

【0024】こうした事態を回避する手段として、上記
予備空間8内に当該予備空間8に対応した形状の空間占
拠部材をアルミニウムやアルミニウム合金等によって作
製し、前記超電導補正コイル7a〜7cを追加して設置
するまでは、この空間占拠部材を配置しておくことも好
ましい実施形態として挙げられる。こうした構成を採用
して、予備空間8内に充填される液体ヘリウムを排除す
ることによって、無駄な電力消費の発生をなくすことが
できる。
As means for avoiding such a situation, a space occupying member having a shape corresponding to the spare space 8 is made of aluminum or an aluminum alloy in the spare space 8, and the superconducting correction coils 7a to 7c are added. Until the installation, the space occupying member may be arranged as a preferred embodiment. By adopting such a configuration and eliminating liquid helium filled in the spare space 8, it is possible to eliminate wasteful power consumption.

【0025】尚、予備空間8内に配置される円筒状部材
としては、上記したアルミニウムやアルミニウム合金か
らなるものに限らず、鉄若しくは鉄合金からなるもの
や、銅若しくは銅合金からなるもの、更にはガラス繊維
強化樹脂からなるもの、等も使用できるが、特に鉄また
は鉄合金からなるもので非磁性のものを採用すること
は、磁場の均一度を達成するという観点および円筒部部
材に電磁力が作用しないという観点から好ましい。
The cylindrical members arranged in the preliminary space 8 are not limited to those made of aluminum or aluminum alloy, but those made of iron or iron alloy, those made of copper or copper alloy, and those made of copper or copper alloy. Can be made of glass fiber reinforced resin, etc.In particular, the use of non-magnetic materials made of iron or iron alloy is effective in achieving the uniformity of the magnetic field and the electromagnetic force applied to the cylindrical member. Is preferred from the viewpoint that the compound does not act.

【0026】[0026]

【発明の効果】本発明は以上の様に構成されており、将
来の酸化物超電導材料の開発成果を取り込める様にしな
がら、現時点で作製できる超電導線材を使用した高磁場
で且つ均一度の高い超電導磁石装置が実現できた。
The present invention is constructed as described above, and uses a superconducting wire material that can be produced at the present time in a high magnetic field and a high degree of uniformity while incorporating the development results of oxide superconducting materials in the future. A magnet device was realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の永久電流磁石装置の一構成例を示す概略
断面図である。
FIG. 1 is a schematic cross-sectional view showing one configuration example of a conventional permanent current magnet device.

【図2】従来技術における永久電流磁石装置においてメ
インコイルの一部を酸化物超電導材料からなるコイルに
置き換えた場合を想定した概略断面図である。
FIG. 2 is a schematic cross-sectional view assuming that a part of a main coil is replaced with a coil made of an oxide superconducting material in a permanent current magnet device according to a conventional technique.

【図3】本発明に係る永久電流磁石装置の一構成例を示
す概略断面図である。
FIG. 3 is a schematic sectional view showing a configuration example of a permanent current magnet device according to the present invention.

【符号の説明】[Explanation of symbols]

1,1a,2 超電導メインコイル 3a〜3c,7a〜7c 超電導補正コイル 4a〜4f,9a〜9f 超電導シムコイル 5 常電導シムコイル 6,6a 低温容器 8 円筒状予備空間 1, 1a, 2 Superconducting main coil 3a to 3c, 7a to 7c Superconducting correction coil 4a to 4f, 9a to 9f Superconducting shim coil 5 Normal conducting shim coil 6, 6a Cryogenic vessel 8 Cylindrical spare space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 真治 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 伴野 信哉 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 佐藤 明男 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 和田 仁 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 濱田 衛 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 林 征治 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 伊藤 聡 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 吉川 正敏 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 神門 剛 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 (72)発明者 尾崎 修 神戸市西区高塚台1丁目5番5号 株式会 社神戸製鋼所神戸総合技術研究所内 Fターム(参考) 4C096 AB32 CA02 CA22 CA32 CA35 CA36 CA70  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shinji Matsumoto 1-2-1, Sengen, Tsukuba-shi, Ibaraki Prefectural Institute of Science and Technology (72) Inventor Shinya Banno 1-2-1, Sengen, Tsukuba-shi, Ibaraki No. 72, Metallurgical Research Institute, Science and Technology Agency (72) Inventor Akio Sato 1-2-1, Sengen, Tsukuba City, Ibaraki Pref. No. 1 Science and Technology Agency Metal Materials Research Laboratory (72) Inventor Mamoru Hamada 1-5-5 Takatsukadai, Nishi-ku, Kobe City Kobe Steel Works, Ltd.Kobe Research Institute (72) Inventor Seiji Hayashi Nishi-ku, Kobe City 1-5-5 Takatsukadai Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Satoshi Ito 1 Takatsukadai, Nishi-ku, Kobe Go 5-5 Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Masatoshi Yoshikawa 1-5-5 Takatsukadai, Nishi-ku, Kobe City Kobe Steel, Kobe Research Institute (72) Inventor Takeshi Komon 1-5-5 Takatsukadai, Nishi-ku, Kobe Kobe Steel Works, Ltd.Kobe Research Institute (72) Inventor Osamu Ozaki 1-5-5 Takatsukadai, Nishi-ku, Kobe Kobe Steel Corporation Kobe General Co., Ltd. F-term in Technical Research Institute (reference) 4C096 AB32 CA02 CA22 CA32 CA35 CA36 CA70

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主磁場を発生する超電導メインコイル群
と、前記超電導コイル群の中心付近の空間における磁場
の均一度を維持する様に磁場の空間分布を調整するため
の超電導補正コイル群および超電導シムコイル群が同芯
状に配列された高磁場均一度超電導磁石装置において、
前記超電導メインコイル群と超電導シムコイル群の間に
補正コイル追加用の円筒状予備空間を設けたものである
ことを特徴とする高磁場均一度超電導磁石装置。
A superconducting main coil group for generating a main magnetic field, a superconducting correction coil group for adjusting a spatial distribution of a magnetic field so as to maintain a uniform magnetic field in a space near the center of the superconducting coil group, and a superconducting coil. In a high magnetic field uniformity superconducting magnet device in which shim coils are arranged concentrically,
A high magnetic field uniformity superconducting magnet device, wherein a cylindrical preliminary space for adding a correction coil is provided between the superconducting main coil group and the superconducting shim coil group.
【請求項2】 前記円筒状予備空間に空間占拠部材を配
置したものである請求項1に記載の高磁場均一度超電導
磁石装置。
2. The superconducting magnet device having a high magnetic field homogeneity according to claim 1, wherein a space occupying member is arranged in the cylindrical preliminary space.
【請求項3】 前記空間占拠部材が、アルミニウム若し
くはアルミニウム合金、または鉄若しくは鉄合金、また
は銅若しくは銅合金、またはガラス繊維強化樹脂からな
るものである請求項2に記載の超電導磁石装置。
3. The superconducting magnet device according to claim 2, wherein the space occupying member is made of aluminum, an aluminum alloy, iron, an iron alloy, copper, a copper alloy, or a glass fiber reinforced resin.
JP2000076788A 2000-03-17 2000-03-17 Superconducting magnet device with high magnetic field and high magnetic field uniformity Expired - Lifetime JP4074042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000076788A JP4074042B2 (en) 2000-03-17 2000-03-17 Superconducting magnet device with high magnetic field and high magnetic field uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000076788A JP4074042B2 (en) 2000-03-17 2000-03-17 Superconducting magnet device with high magnetic field and high magnetic field uniformity

Publications (2)

Publication Number Publication Date
JP2001264402A true JP2001264402A (en) 2001-09-26
JP4074042B2 JP4074042B2 (en) 2008-04-09

Family

ID=18594470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000076788A Expired - Lifetime JP4074042B2 (en) 2000-03-17 2000-03-17 Superconducting magnet device with high magnetic field and high magnetic field uniformity

Country Status (1)

Country Link
JP (1) JP4074042B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329756A (en) * 2002-05-08 2003-11-19 Hitachi Ltd Ultrahighsensitivity nuclear magnetic resonance imaging apparatus
WO2004095047A1 (en) * 2003-04-24 2004-11-04 Hitachi, Ltd. Uniform magnetic field generation device and nuclear magnetic resonance device using the same
WO2004095046A1 (en) * 2003-04-24 2004-11-04 Hitachi, Ltd. Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus
US7090478B2 (en) 2003-02-24 2006-08-15 Independent Administrative Institution National Institute For Materials Science Apparatus and method for manufacturing an anisotropic formed body
JP2007090089A (en) * 2006-12-07 2007-04-12 Hitachi Ltd Supersensitive nuclear magnetic resonance imaging apparatus
JP2007114209A (en) * 2006-12-07 2007-05-10 Hitachi Ltd Nuclear magnetic resonance analyzer for solution
JP2008288545A (en) * 2007-04-17 2008-11-27 National Institute For Materials Science Superconducting magnet device
EP3009855A4 (en) * 2013-06-12 2017-02-08 Japan Superconductor Technology, Inc. Magnetic field generation device
DE102016208225A1 (en) 2016-05-12 2017-11-16 Bruker Biospin Gmbh Magnet arrangement with field-shaping element for reducing the radial field component in the region of an HTS section

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003329756A (en) * 2002-05-08 2003-11-19 Hitachi Ltd Ultrahighsensitivity nuclear magnetic resonance imaging apparatus
US7090478B2 (en) 2003-02-24 2006-08-15 Independent Administrative Institution National Institute For Materials Science Apparatus and method for manufacturing an anisotropic formed body
WO2004095047A1 (en) * 2003-04-24 2004-11-04 Hitachi, Ltd. Uniform magnetic field generation device and nuclear magnetic resonance device using the same
WO2004095046A1 (en) * 2003-04-24 2004-11-04 Hitachi, Ltd. Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus
JP2004325251A (en) * 2003-04-24 2004-11-18 Hitachi Ltd Uniform magnetic field generation device and nuclear magnetic resonance device using it
JP2007114209A (en) * 2006-12-07 2007-05-10 Hitachi Ltd Nuclear magnetic resonance analyzer for solution
JP2007090089A (en) * 2006-12-07 2007-04-12 Hitachi Ltd Supersensitive nuclear magnetic resonance imaging apparatus
JP2008288545A (en) * 2007-04-17 2008-11-27 National Institute For Materials Science Superconducting magnet device
EP3009855A4 (en) * 2013-06-12 2017-02-08 Japan Superconductor Technology, Inc. Magnetic field generation device
US10656223B2 (en) 2013-06-12 2020-05-19 Japan Superconductor Technology, Inc. Magnetic field generation device
DE102016208225A1 (en) 2016-05-12 2017-11-16 Bruker Biospin Gmbh Magnet arrangement with field-shaping element for reducing the radial field component in the region of an HTS section
EP3252783A1 (en) 2016-05-12 2017-12-06 Bruker BioSpin GmbH Magnet assembly with field shaping element for reducing the radial field components in the region of a hts section
JP2018036248A (en) * 2016-05-12 2018-03-08 ブルーカー バイオスピン ゲゼルシヤフト ミツト ベシユレンクテル ハフツングBruker BioSpin GmbH Magnet arrangement with field-shaping element for reducing radial field component in region of hts section
US10393833B2 (en) 2016-05-12 2019-08-27 Bruker Biospin Gmbh Magnet arrangement with field-shaping element for reducing the radial field component in the region of an HTS section

Also Published As

Publication number Publication date
JP4074042B2 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
US5936498A (en) Superconducting magnet apparatus and magnetic resonance imaging system using the same
US5250901A (en) Open architecture iron core electromagnet for MRI using superconductive winding
EP0826977B1 (en) Compact MRI superconducting magnet
US9666344B2 (en) Superconducting magnet system for head imaging
CN102360691B (en) Open-type nuclear magnetic resonance magnet system with iron hoop structure
JP2010272633A (en) Superconducting magnet
US10281539B2 (en) Superconducting magnet device or magnetic resonance imaging apparatus including a support member having a coefficient of thermal expansion highter than that of a columnar member
WO1997020326A1 (en) Superconducting magnet device
CN106898452B (en) The NMR shimming device for the cryogenic refrigeration being easily accessible to
JP2001264402A (en) High magnetic field and high homogeneous superconducting magnet device
EP1899741B1 (en) Ferromagnetic shield for magnetic resonance imaging
US8171741B2 (en) Electrically conductive shield for refrigerator
Kiyoshi et al. Persistent-mode operation of a 920 MHz high-resolution NMR magnet
JP4293341B2 (en) Superconducting magnet device
JPS60123756A (en) Magnet device
JP2000037366A (en) Superconductive magnet device
US11002811B2 (en) Magnetic resonance imaging device and superconducting magnet
JP5920924B2 (en) Superconducting magnet device and magnetic resonance imaging device
Warner et al. Magnets
JP3699789B2 (en) Superconducting magnet device
Li et al. Design of the superconducting magnet for 9.4 Tesla whole-body magnetic resonance imaging
Li et al. Electromagnetic design of a 16–9 T high field double superconducting magnets system for nuclear demagnetization refrigerator
JP2001110626A (en) Superconducting magnet
WO2023275505A1 (en) Superconducting magnet system for generating homogeneous magnetic field
Yang et al. Design of a 13 Tesla Hybrid Magnet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4074042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term