WO2004095046A1 - Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus - Google Patents

Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus Download PDF

Info

Publication number
WO2004095046A1
WO2004095046A1 PCT/JP2004/002908 JP2004002908W WO2004095046A1 WO 2004095046 A1 WO2004095046 A1 WO 2004095046A1 JP 2004002908 W JP2004002908 W JP 2004002908W WO 2004095046 A1 WO2004095046 A1 WO 2004095046A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic field
magnet
coils
magnetic resonance
Prior art date
Application number
PCT/JP2004/002908
Other languages
French (fr)
Japanese (ja)
Inventor
Tomomi Kikuta
Tsuyoshi Wakuda
Koji Maki
Shigeru Kakugawa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO2004095046A1 publication Critical patent/WO2004095046A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • G01R33/3815Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets with superconducting coils, e.g. power supply therefor

Definitions

  • the present invention relates to a nuclear magnetic resonance analyzer for analyzing organic molecules such as proteins, substrates interacting with proteins, ligands, and the like, and a magnet for a nuclear magnetic resonance apparatus for generating a uniform magnetic field.
  • FIG. 14 is a schematic cross-sectional view of a conventional NMR (Nuclear Magnetic Resonance) analyzer.
  • the superconducting coils 81, 82, 83, and 84 are made of a material with a higher superconducting critical magnetic field as the inside is closer to the sample.
  • the superconducting coils 81, 82, 83, and 84 constituting the superconducting magnet are wound in a solenoid shape around a vertical axis, and are connected by superconducting connections 89, respectively. Is protected.
  • the superconducting magnet is maintained in a permanent current mode by a permanent current switch 91.
  • the superconducting magnet is constituted by a low-temperature container that is immersed in liquid helium 87 and is kept at a low temperature, and has a double structure in which the outside is covered with liquid nitrogen 88, thereby saving helium consumption.
  • This cryogenic container is supported by vibration-proof support legs 86 so that external vibrations are not transmitted into the container.
  • a protein sample solution sample 92 is inserted into the center of the magnetic field from the top of the device and placed vertically. ing. The probe is inserted into the center of the magnetic field from the lower part of the apparatus, and a copper saddle-shaped or birdcage-shaped probe coil 85 kept at room temperature is used. It is.
  • the subject of the present invention is an NMR spectrometer required for analyzing the atomic level structure and interaction of protein molecules in an aqueous solution in which a trace amount of protein is dissolved.
  • the magnetic field strength is higher by at least one order of magnitude
  • the magnetic field uniformity is four orders of magnitude
  • the stability is three orders of magnitude higher. It is a special type of energy spectroscopy that requires a completely different design technology and device manufacturing technology.
  • Non-Patent Document 1 Details of the conventional high-resolution nuclear magnetic resonance spectrometer are described in Yoji Arata, "Protein NMRJ Kyoritsu Shuppan, 1996 (Non-Patent Document 1). A typical example of using NMR for protein analysis.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-147082 discloses a typical configuration of a multilayer air-core solenoid coil as an invention relating to a superconducting magnet.
  • Patent Document 1 discloses a typical configuration of a multilayer air-core solenoid coil as an invention relating to a superconducting magnet.
  • US Pat. No. 6,121,776 As an invention related to the signal detection technology, US Pat. No. 6,121,776 (Tokukura No.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2000-266830 (Patent Document 3) and Japanese Patent Application Laid-Open No. 6-237912 (Patent Document 4) are disclosed.
  • the device uses a superconducting magnet device composed of a combination of solenoid coils that generate a vertical magnetic field, irradiates the sample with an electromagnetic wave of 400 to 900 MHz, and converts the resonance wave emitted from the sample into a saddle or bird cage type. Detection is performed using the detection coil.
  • high-sensitivity NMR systems have improved sensitivity by increasing the central magnetic field strength of the superconducting magnet, while keeping the basic configuration of the system, such as the antenna and magnet, the same.
  • the highest NMR measurement sensitivity reported to date can be obtained with a 900 MHz NMR apparatus.
  • a large superconducting magnet with a central magnetic field of 21.1 Tesla is used.
  • the basic configuration of the device is not different from the prior art as in Patent Document 1 described above.
  • improving the central magnetic field has the effect of improving sensitivity and clarifying the separation of chemical shifts.
  • Patent Document 2 As described in Yuji Arata's Yoji Arata, NMR book J2000, Maruzen, p326 (Patent Document 2), the sensitivity improvement effect of the detection coil shape, if a solenoid coil is conventionally used as the detection coil, It has been known that there are various advantages compared to the mold or bird cage type, for example, it is superior in terms of impedance controllability, filling factor, RF magnetic field efficiency, etc. .
  • the conventional superconducting magnet configuration requires a sample placed vertically with respect to the magnetic field when importance is placed on the measurement of proteins dissolved in a small amount in an aqueous solution. It is practically impossible to wrap a solenoid coil around a tube and it is not commonly used. In particular, exceptionally, It may be used only when measuring with high sensitivity using a sample solution, and a method of measuring with a special probe using a specially designed micro sample tube has been known.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 11-24881 ⁇
  • Patent Document 6 discloses a method of configuring a superconducting magnet and a cooling vessel suitable for general NMR applications for removing restrictions on the ceiling height of the apparatus.
  • Patent Document 6 discloses a method of configuring a superconducting magnet and a cooling vessel suitable for general NMR applications for removing restrictions on the ceiling height of the apparatus.
  • Improvement of measurement sensitivity is not only shortening the measurement time but also reducing the amount of sample as long as the sample has the same level of solubility. .
  • NMR analyzers used for protein analysis require extremely superior detection sensitivity and stability compared to conventional NMR analyzers, and are accurate over a long period of one week or more.
  • Stable NMR signal detection is required. This is because if the magnetic field fluctuates during the measurement, the peak of the NMR signal shifts.In particular, in the measurement of the interaction, the peak shift is due to the interaction or due to the instability of the magnetic field. What to do Is no longer possible.
  • the specification of the magnetic field uniformity of a general NMR instrument is 0.01 ppm in the sample space and 0.01 ppm / h in the time stability. Converting this to 600 MHz proton NMR for general use gives a 6 Hz tolerance.
  • a space of at least 1.0 Hz or less and a time resolution are required, and preferably 0.5 Hz or less.
  • the sensitivity has been improved mainly by improving the magnetic field strength, so the equipment has become larger, and due to the problems of the leakage magnetic field and the floor strength, a special building is required. occured.
  • problems such as an increase in the cost of superconducting magnets.
  • the sensitivity improvement by this method is limited by the critical magnetic field of the superconducting material, and almost reaches the upper limit of 21 Tesla (T).
  • T 21 Tesla
  • the high-sensitivity measurement method using a solenoid coil can be used with a very small amount of a special sample tube and a special detection probe.
  • a magnetic field of less than 1 OT is generated on the surface of the high-temperature superconductor.
  • the magnetic field of the sample part is only about several T at most, and a magnetic field of 11 T or more required for protein analysis, preferably 14.1 T or more, is generated in the desired sample space. This was not possible with this method.
  • Efficient and high-precision analysis of the interaction between proteins and small molecules such as substrates and ligands in solutions, for which needs are expected to increase in the future, is empirically determined to be 600-900 MHz and a central magnetic field. Therefore, it is desirable to be able to measure with an appropriate sample amount at about 14 to 21 T, and it is desired to improve the measurement sensitivity and to increase the throughput from the current state.
  • a device operating at 800 MHz or higher is operated under reduced pressure of 4.2K liquid helium and supercooled to 1.8K in order to utilize the superconductivity to the utmost. For this reason, in addition to increasing the complexity of operation of the apparatus, maintenance is also difficult.
  • the leakage magnetic field is large. Need things.
  • the leakage magnetic field increases in the vertical direction as the center magnetic field increases. For this reason, for example, in a 900 MHz class device, a leakage magnetic field of as much as 5 m is generated in the height direction, and a building having a higher ceiling height is required, and there is a problem that the building cost increases.
  • Non-Patent Document 3 As described in I EEE. Transactions on Applied Superconductivity, Vol. 11, No. 1, p2438 (Non-Patent Document 3), only the size of the magnet part has a width of 1 86 m and a height of several meters. Become. Disclosure of the invention
  • the present invention relates to: 3. a superconducting coil, a low-temperature container containing the superconducting coil and a refrigerant for cooling the superconducting coil, a permanent current switch connected to the superconducting coil, and a measurement target surrounded by the superconducting coil. It has a space in which a sample is inserted, and a probe coil installed in the center of the magnetic field in the space and having the sample installed therein.
  • the superconducting coil is wound so that a certain axis becomes a common central axis.
  • a first coil group composed of a plurality of coils
  • a second coil group composed of a plurality of coils wound around the central axis as a common central axis.
  • the second coil group is disposed so as to face each other with a certain space therebetween. If a coil that is energized in a direction that generates a magnetic field in a direction opposite to the main magnetic field is defined as a reverse current coil, the first coil group and the second coil group Configure the second coil group
  • the present invention provides a nuclear magnetic resonance magnet characterized in that at least one coil is a reverse current coil except for the coil having the largest winding radius among the coils having the maximum winding radius.
  • a new NMR analysis method that uses a sample tube with a diameter of approximately 30 mm and fills the sample solution with a height of approximately 30 mm, increasing the measurement sensitivity of NMR signals by about 40% or more at about 600 MHz (14.1 T).
  • An object of the present invention is to provide a superconducting magnet which can constitute a device. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic sectional view of an NMR apparatus using the split magnet of the present invention.
  • FIG. 2 is a coordinate diagram showing a positional relationship between a current and a magnetic field.
  • Fig. 3 is a coordinate diagram showing the relationship between the angle of the coil and the z-axis.
  • FIG. 4 is a perspective view related to the arrangement of the coils of the split magnet according to the second embodiment.
  • FIG. 5 is a sectional view of an arrangement configuration of coils of a split magnet according to a third embodiment.
  • FIG. 6 is a cross-sectional view relating to the coil arrangement of the split magnet according to the fourth embodiment.
  • FIG. 7 is a cross-sectional view illustrating a coil arrangement of a split magnet according to a fifth embodiment.
  • FIG. 8 is a sectional view of a coil arrangement configuration of a split magnet according to a sixth embodiment.
  • FIG. 9 is a sectional view of a coil arrangement configuration of the split magnet according to the seventh embodiment.
  • FIG. 10 is a cross-sectional view of a coil arrangement of a split type magnet and a coil arrangement for leakage magnetic field shielding according to an eighth embodiment.
  • FIG. 11 is a cross-sectional view of a coil arrangement of a split type magnet and a ferromagnetic material for leakage magnetic field shielding according to a ninth embodiment.
  • FIG. 12 is a sectional view of the split type magnet coil, the leakage magnetic field shielding ferromagnetic material, and the leakage magnetic field shielding coil arrangement according to the tenth embodiment.
  • FIG. 13 is a cross-sectional view of the coil arrangement of the split magnet, the ferromagnetic material for the leakage magnetic field shield, and the coil arrangement for the leakage magnetic field shield according to Example 11;
  • FIG. 14 is a schematic sectional view of a conventional NMR apparatus.
  • FIG. 15 is a perspective view of a coil wound around a pobin of the split magnet according to the second embodiment.
  • FIG. 16 is a sectional view of a coil arrangement of the split magnet according to the second embodiment.
  • This high-sensitivity NMR apparatus needs to be configured not with a conventional solenoid magnet but with a pair of split magnets divided into right and left with a facing space.
  • a magnet for an NMR apparatus needs to generate a very uniform magnetic field in the order of ppb in the space where the sample is measured.
  • the operating temperature of the system is not set to 4.2K. It is also possible to aim for the ultimate performance by applying the present invention.
  • the conventional magnetic field limit of 21, 1, that is, operation at 1.8 MHz at 900 MHz is possible. There may be. In this case, the sensitivity can be improved by 40% compared to the conventional method, and the detection sensitivity limit due to the magnetic field strength, which was impossible in the past, can be greatly reduced.
  • the present inventors have studied the problems common to current nuclear magnetic resonance apparatuses and the countermeasures therefor.
  • the inventors of the present invention have intensively studied a method of significantly increasing the signal strength while maintaining the same magnetic field strength. As a result, they found that the new method described below can solve this problem.
  • the sensitivity is improved by applying a solenoid type detection coil with a height of about 20 mm.
  • the configuration of the superconducting magnet is different from a conventional simple solenoid magnet, and it is necessary to configure the superconducting magnet with a pair of split magnets divided into right and left.
  • two sets of coil groups consisting of a plurality of coils are arranged at opposing split magnets at a certain interval, and at least one coil that carries a current in a direction opposite to the direction in which the main magnetic field is generated is provided.
  • Figure 2 shows a coordinate diagram of the current and the magnetic field. It is assumed that a circular current I in a direction in which a magnetic field is generated in the z-axis direction, that is, a plus direction, is flowing through the conductor 11 at a distance f from the origin and an angle between the f-axis and the z-axis.
  • the current that creates a magnetic field in the z-axis direction is called the plus current, and the opposite current is called the minus current.
  • Equation 2 the magnetic field is represented by the sum of n. Let this be the nth order magnetic field, respectively.
  • the magnetic field as are all B z, write an order n B z and B n.
  • the central magnetic field required for NMR measurement is B 0, and the other magnetic field B ⁇ is called the ⁇ -order irregular magnetic field because it is a magnetic field that disturbs the uniformity.
  • the second order expansion coefficient A 2 is A 2 ocP 3 1 (GOSQ.
  • the sign of the second order expansion coefficient is determined by the angle at which the positive current is arranged, and A 2 > 0 and 63.43 ° at 0 and 63.43 ° ( At ⁇ / 2), A 2 becomes 0.
  • FIG. 3 is a coordinate diagram showing the relationship between the angle of the coil and the Z axis.
  • 15 is the coil
  • the straight line 13 is the angle with the z axis.
  • the fourth order exhibition ⁇ coefficient code is 0 ⁇ shed ⁇ 40.09 ° in ⁇ 4> 0,40.09.
  • ⁇ 4 ⁇ 0, and at 90 ° 73.43 °, ⁇ 4 > ⁇ .
  • ⁇ 3 arccosV "((7-2) ⁇ 7))
  • the coil 15 is assumed to be energized in the plus direction, and creates a magnetic field in the direction of the main magnetic field for NMR measurement.
  • the angle between the z-axis and the straight line 12 is or 1
  • the angle between the z-axis and the straight line 13 is 2
  • the angle between the z-axis and the straight line 14 is or 3.
  • the straight line 13 indicates the position where the second-order irregular magnetic field created by the coil 15 having a positive current becomes zero.In the region between the straight line 13 and the z-axis, the second-order irregular magnetic field becomes positive, In the region between 13 and the X axis, the second-order irregular magnetic field becomes negative.
  • Lines 12 and 14 indicate the positions where the fourth-order irregular magnetic field created by the coil 15 having a positive current becomes zero, and the region sandwiched between the z-axis and the line 12, and The fourth-order irregular magnetic field is positive in the region between the straight line 14 and the x-axis, and the fourth-order irregular magnetic field is negative in the region between the straight lines 12 and 14.
  • the split-type superconducting magnet is more difficult to obtain the magnetic field homogeneity required for protein structure analysis than the conventional solenoid-type superconducting magnet.
  • a coil energized in the plus direction is placed in the space between the straight line 13 and the X axis, and the resulting negative secondary magnetic field component generation amount, Also, the amount of the positive fourth-order magnetic field component obtained by arranging the coil energized in the plus direction in the space between the straight line 14 and the X axis is limited.
  • a negative secondary magnetic field component is generated when a coil energized in the plus direction is generated, and a negative fourth magnetic field component is generated when a coil energized in the positive direction is arranged.
  • a central magnetic field is generated by a coil constituting the relatively outer side of the coil layer. It is efficient to correct the magnetic field using a coil that forms a relatively inner part of the coil layer.
  • the coil is preferably arranged at a position somewhat away from the origin force so as not to generate an extra high-order magnetic field.
  • the center of the cross-section of the coil that is energized in the minus direction will have a circular or elliptical shape. Deploy.
  • the magnetic field has a property that depends on the straight line connecting the origin and the coil center, and the angle ⁇ between the straight line and the z-axis. Angle ⁇ from ⁇ axis ⁇ force If there are multiple coils placed at approximately the same position, the magnetic field generated by those coils is determined only by the combination of the distance f from the origin, so the magnetic field generated by the combination of coils Adjustment becomes easier.
  • the center of the cross-section of the coil energized in the negative direction is arranged in a circle or an ellipse, and the outside of the circle or the ellipse in the radial direction, or Arrange so that the cross section of the coil that is energized in the positive direction comes to a position that has the same degree as the coil that is energized in the negative direction on the outside and the inside.
  • the coil when viewed in a cross-section passing through the central axis, the coil was energized in the positive or negative direction outside or inside and outside the circle or ellipse where the cross-section of the coil was energized in the negative direction.
  • the cross section of the coil By arranging the cross section of the coil in a circular or elliptical shape, it becomes possible to efficiently cancel high-order magnetic fields with a small number of coils.
  • a coil that is energized in the negative direction creates a magnetic field that is opposite to the central magnetic field. Therefore, if a coil that is energized in the negative direction is used to obtain uniformity, the main magnetic field for NMR measurement is canceled, and a positive current coil is used to capture it. The size of the magnet must be increased, which increases the size of the entire magnet.
  • a coil that is energized in the negative direction it obtains the homogeneity required for protein structural analysis, and minimizes the magnetic field in the opposite direction to the central magnetic field created by the coil that is energized in the negative direction.
  • the coils energized in the minus direction are concentrated near the position where the magnetic field is generated.
  • the coil that is energized in the minus direction should be as close to the origin as possible. Place it near.
  • FIG. 1 is a schematic sectional view of an NMR apparatus using a split type magnet.
  • a solenoid type superconducting magnet 1 is placed in the horizontal direction, inserted from the top of the apparatus, and a magnetic field is applied to the solution sample 9 of the protein sample placed in the vertical direction from the lateral direction.
  • a copper solenoid type probe coil 8 kept at room temperature or a Y type or MgB 2 solenoid type probe coil 8 cooled to 5 to 20K is used.
  • the superconducting magnet 1 is maintained in the persistent current mode by the persistent current switch 5, and the respective coils forming the superconducting magnet 1 are connected by the superconducting connection 6 and protected by the protection circuit 4 from burning out during quenching. Protected.
  • the superconducting magnet 1 is immersed in liquid helium 3 as a cooling means, is kept at a low temperature, and has a double structure covered with liquid nitrogen 2 and is constituted by a low-temperature container for saving helium consumption.
  • the anti-vibration support leg 7 prevents external vibration from being transmitted to the superconducting magnet 1.
  • FIG. 15 is a perspective view of a coil wound around a bobbin of the split magnet according to the present embodiment.
  • the superconducting coils 93 to 100 are wound around pobins, respectively.
  • the space in the center of the pobin is called a bore, and a small-diameter pobin is placed in the pore of a large-diameter pobin, and a nested structure with a smaller-diameter pobin is placed in the pore.
  • the coils maintain their position.
  • FIG. 4 is a perspective view showing a superconducting coil without a pobin.
  • a group of a plurality of superconducting coils 16, 17, 18, 19, 20, 21, and 22, wound around the center axis 23 of the magnet substantially at the center, is separated by a gap. They are arranged so as to be almost mirror-symmetric. A uniform transverse magnetic field is formed at the intersection of the gap and the pore.
  • FIG. 16 is a cross-sectional view taken along the center axis of FIG.
  • the superconducting coils 107 and 108 are arranged such that the windings overlap in the central axis direction.
  • the angle between the center axis and the straight line connecting the center of the section of the superconducting coil and the origin is defined as ⁇ . 2 or 1 is located at 2 position and another superconducting coil creates a secondary irregular magnetic field or other superconducting It cancels out the second and fourth order magnetic fields created by the coil.
  • FIG. 5 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil as viewed on a cross-section passing through the central axis in the present embodiment.
  • the superconducting coils 24 to 34 and 24 'to 34' are arranged substantially concentrically with respect to the central axis 35 of the horizontal magnet, and the left and right coil groups are wound around a substantially common central axis, and It is arranged almost mirror-symmetrical with respect to the central plane.
  • Two or more superconducting coils 28 to 34 are arranged so that the coils close to the central axis of the left and right superconducting coil groups overlap each other in the central axis direction. In this way, a coil located at a position close to the uniform magnetic field space is finely divided and its position and size are adjusted, so that a uniform magnetic field can be easily obtained.
  • the superconducting coils 32 and 34 are reverse current coils, which are arranged at positions of or 2 and 1 and ⁇ , respectively, so that the second-order irregular magnetic field generated by the other superconducting coils or other It cancels out the second and fourth order magnetic fields created by the superconducting coil.
  • At least one of the superconducting coils 27, 28, 29, 30, and 31 is arranged in a region of ⁇ 1, and cancels the fourth-order irregular magnetic field created by the other superconducting coils.
  • a uniform magnetic field is formed at the order of 1 ppb at the center of the nucleic acid, which makes it possible to clearly measure weak nuclear magnetic resonance signals, enabling the analysis of protein structure.
  • FIG. 6 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil as viewed on a cross-section passing through the center axis in the present embodiment.
  • the superconducting coillets 36 to 43 and 36 'to 43' are arranged almost concentrically with respect to the horizontal center axis, and the left and right coil groups are wound around a substantially common center axis. They are arranged almost mirror-symmetric with respect to the plane.
  • the coils close to the central axis of the left and right superconducting coil groups are arranged so that the windings overlap in the central axis direction, and each is composed of two or more superconducting coils 39 to 43.
  • the superconducting coils 39, 40 are divided in the direction of the central axis in order to easily obtain a uniform magnetic field.
  • superconducting coils 41 and 42 are reverse current coils, which are located at or or 2 or 1 ⁇ 2, respectively, and the secondary irregular magnetic field created by other superconducting coils or other superconducting coils It cancels out the second and fourth order magnetic fields created by the coil.
  • At least one of the superconducting coils 39, 40, and 43 is arranged in the first region, and cancels the fourth-order irregular magnetic field created by the other superconducting coils. Efficient cancellation is possible, and a uniform magnetic field of 1 ppb order is formed at the center of the coil.
  • the cross sections of the coils 41, 41 and 42, 42 are arranged so as to overlap a common circular or elliptical arc.
  • the superconducting coil 43 arranged in the area inside the circle or ellipse in which the coil cross sections of the coils 41, 41 'and 42, 42' are arranged corrects higher-order magnetic fields. . With such an arrangement, it is possible to generate a uniform magnetic field efficiently.
  • FIG. 7 is a schematic cross-sectional view showing the arrangement of the cross section of the superconducting coil as viewed on a cross section passing through the central axis of the split magnet in this embodiment.
  • the superconducting coils 44 to 52 and 44 'to 52' The coils are arranged substantially concentrically with respect to the central axis, and the left and right coil groups are wound with respect to a substantially common central axis, and are arranged substantially mirror-symmetrically with a gap interposed between the central planes. ing.
  • the coil close to the central axis of the left and right superconducting coil groups is composed of a plurality of superconducting coils 48 to 52 arranged so that the windings overlap in the central axis direction.
  • 50 ′ are reverse current coils, which are arranged in the order of 2 or 1 ⁇ 2.
  • the cross section of the superconducting jir 49, 49 ', 50, 50' is arranged so as to overlap a common circular or elliptical arc.
  • the superconducting coil 46, outside the circle or ellipse 46 ', 47, 47', 48, 48 'sectional force The superconducting coils 51, 51', 52, 52 'are arranged so as to overlap with the arc of a circle or ellipse. It is arranged to overlap the arc of the ellipse.
  • the superconducting coils whose coil cross sections are arranged in a circle or an ellipse on a cross section passing through the central axis are alternately arranged in the radial direction of the circle or the ellipse so that the directions of the flowing currents are opposite to each other.
  • Such an arrangement is suitable for efficient generation in a space of about 2 cm due to the nature of the magnetic field.
  • FIG. 8 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil as viewed on a cross-section passing through the central axis in the present embodiment.
  • the superconducting coils 53 to 59 and 53 'to 59' are arranged almost concentrically with respect to the center axis in the horizontal direction, and the left and right coil groups are wound around a substantially common center axis. On the other hand, they are arranged almost mirror-symmetrically with a gap in between.
  • the superconducting coils 57, 58 of the left and right superconducting coil groups are arranged such that the windings overlap along the central axis.
  • the superconducting coils 58 and 59 are reverse current coils, which are respectively arranged in the second and / or first two, and the second irregular magnetic field generated by the other superconducting coils or other superconducting coils. It cancels out the second and fourth order magnetic fields created by the coil.
  • At least one of the superconducting coils 56 and 57 is arranged in a vibrating ⁇ 1 to cancel the fourth-order irregular magnetic field created by the other superconducting coils.
  • This (4) The irregular magnetic field of the entire magnet can be effectively canceled, and a uniform magnetic field of the order of 1 ppb is formed at the center of the coil.
  • the cross sections of the superconducting coils 58, 58 'and 59, 59' are arranged so as to overlap a common circular or elliptical arc.
  • the cross section of the superconducting coil 55, 55 ', 56, 56', 57, 57 'on the ffl is arranged so as to overlap the arc of a certain circle or ellipse.
  • the reverse current coils 58 and 59 are located closer to the magnetic field generation position than the other superconducting coils. Thus, the magnitude of the magnetic field in the direction opposite to the central magnetic field created by the reverse current coil can be reduced, and the size of the entire magnet can be reduced.
  • FIG. 9 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil as viewed on a cross-section passing through the central axis in the present embodiment.
  • the superconducting coils 60-66 and 60'-66 ' are arranged almost concentrically with respect to the horizontal center axis, and the left and right coil groups are wound around a substantially common center axis.
  • the superconducting coils 64 and 65 of the left and right superconducting coil groups which are arranged almost mirror-symmetrically with a gap therebetween, are arranged so that the winding portions overlap each other along the central axis.
  • Superconducting coils 65 and 66 are reverse current coils Are located at or ⁇ 2 or 1 and ⁇ 2, respectively, and the second-order irregular magnetic field created by another superconducting coil, or the second-order irregular magnetic field created by another superconducting coil and the fourth-order It cancels out the irregular magnetic field.
  • At least one of the superconducting coils 63 and 64 is arranged at ⁇ 1, thereby canceling the fourth-order irregular magnetic field created by the other superconducting coils. Also, on a cross section passing through the center axis of the coil, the cross sections of the superconducting coils 65, 65 'and 66, 66' are arranged so as to overlap a common circular or elliptical arc.
  • the cross section of the superconducting coils 62, 62 ', 63, 63', 64, 64 ' is arranged outside thereof so as to overlap a certain circle or ellipse arc.
  • the irregular magnetic field of the entire magnet can be efficiently canceled with a smaller number of coils, and a uniform magnetic field is formed at the coil center position on the order of 1 ppb.
  • the reverse current coils 65 and 66 are located closer to the magnetic field generation position than the other superconducting coils. As a result, the magnitude of the central magnetic field generated by the reverse current coil and the magnitude of the magnetic field in the opposite direction can be reduced, and the size of the entire magnet can be reduced.
  • the superconducting coil 60 which is far from the center axis of the coil, creates a magnetic field in the same direction as the main magnetic field, and is arranged at 2 or ⁇ or 3 so that the secondary It cancels out the irregular magnetic field of, or the secondary and tertiary magnetic fields created by other superconducting coils.
  • the coil has the same function as a coil that is energized in the negative direction near the position where the magnetic field is generated, so that the amount of current in the negative direction can be reduced. Therefore, the magnetic field in the opposite direction to the central magnetic field generated by the negative current can be reduced, and the size of the magnet is reduced. be able to.
  • FIG. 10 is a schematic cross-sectional view showing an arrangement of a cross section of the superconducting coil as viewed on a cross section passing through the central axis in the present embodiment.
  • the superconducting coils 160 to 166 generate a uniform magnetic field at the center of the magnet.
  • the superconducting coils 165 and 166 are ⁇ reverse current coils, and generate a uniform magnetic field of the order of I ppb over the entire magnet.
  • the superconducting coils 1 67 and 16 7 ′ are active shield coils, which minimize the leakage of the magnetic field to the outside.
  • FIG. 11 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil and the ferromagnetic material for the leakage magnetic field shield as viewed on a cross-section passing through the central axis in the present embodiment.
  • the superconducting coils 173 to 179 generate a uniform magnetic field at the center of the magnet.
  • the superconducting coils 178 and 179 are ⁇ reverse current coils.
  • the cylindrical ferromagnetic material 171 and the disk-shaped ferromagnetic material 172 form a magnetic path, and suppress the leakage of the magnetic field generated by the superconducting coil group to the outside.
  • FIG. 12 is a schematic cross-sectional view showing the arrangement of the cross-sections of the superconducting coil as viewed on a cross-section passing through the central axis and a ferromagnetic material for a leakage magnetic field shield in the present embodiment.
  • the superconducting coils 184-188 generate a uniform magnetic field at the center of the magnet.
  • the superconducting coil 188 closest to the uniform magnetic field space is a reverse current coil. The smaller the number of reverse current coils, the less the cancellation of the central magnetic field, and the smaller the size of the magnet as a whole.
  • the superconducting coils 186 and 187 are split for adjusting the magnetic field.
  • the superconducting coils 183, 182 prevent the magnetic field from leaking outward in the radial direction, and the disc-shaped ferromagnetic material 181 suppresses the magnetic field from leaking in the axial direction. (Example 11)
  • FIG. 13 is a schematic cross-sectional view showing a superconducting coil cross-sectional arrangement viewed on a cross-section passing through a central axis and a ferromagnetic material for a leakage magnetic field shield in the present embodiment.
  • the superconducting magnets 194 to 200 generate a uniform magnetic field at the center of the magnet.
  • Superconducting coil 1 99 and 200 force ⁇ reverse current coil.
  • 196 and 197 are split for magnetic field adjustment.
  • the superconducting coils 192 and 193 prevent the magnetic field from leaking in the axial direction, and the cylindrical ferromagnetic material 191 suppresses the magnetic field from leaking in the radial direction.
  • the present invention has been described based on the embodiments.
  • the coils inside the magnet are all superconducting coils.
  • the present invention is not limited to only superconducting coils, and may be, for example, coils using copper wires or the like. Any material may be used as long as it can carry current.
  • a permanent magnet may be used as the magnetomotive force source of the static magnetic field generation source.
  • a shim coil for correcting magnetic field disturbance due to manufacturing errors or installation errors may be provided.
  • the left and right coil groups of the split magnet are arranged almost mirror-symmetrically. In order to obtain better uniformity, it is desirable to arrange them in mirror symmetry.
  • a uniform magnetic field of the order of 1 ppb is generated in the measurement space of the NMR analyzer for solution analysis using a split magnet, and the solenoid is utilized in this region by utilizing the split gap of the magnet. You can import a type of probe coil. For example, even with an 800 MHz device, measurement with SN sensitivity equivalent to that of a conventional 1 GHz class NMR device can be performed.
  • the nuclear magnetic resonance apparatus of the present invention and the superconducting magnet used therein can generate a uniform magnetic field of 1 ppb or less in the measurement magnetic field space, and can perform measurement with a high S / N ratio.

Abstract

3. A magnetic resonance apparatus comprising a superconducting coil, a cryogenic container for containing the superconducting coil and refrigerant for cooling it, a permanent current switch connected with the superconducting coil, a space surrounded by the superconducting coil and being inserted with a sample to be measured, and a probe coil disposed in the center of a magnetic field within that space and receiving the sample internally, the superconducting coil comprising a first coil group constituted of a plurality of coils wound around some axis as a common central axis and a second coil group constituted of a plurality of coils wound around that central axis as a common central axis, with the first coil group and the second coil group being disposed oppositely across some space, characterized in that at least one coil, out of the coils constituting the first and second coil groups other than the coil having a largest winding radius, is a reverse current coil which is defined as being supplied with a current in the direction for generating a magnetic field oppositely to a main magnetic field.

Description

明 細 書 核磁気共鳴分析装置および核磁気共鳴装置用マグネット 技術分野  Description Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance equipment
本発明は、タンパク質やタンパク質と相互作用する基質、リガンド等の有 機物分子等を分析する核磁気共鳴分析装置及び均一磁場を発生する 核磁気共鳴装置用マグネットに関する。 背景技術  The present invention relates to a nuclear magnetic resonance analyzer for analyzing organic molecules such as proteins, substrates interacting with proteins, ligands, and the like, and a magnet for a nuclear magnetic resonance apparatus for generating a uniform magnetic field. Background art
図 1 4は、従来の NMR (Nuclear Magnetic Resonance:核磁気共 鳴)分析装置の概略断面図を示す。  FIG. 14 is a schematic cross-sectional view of a conventional NMR (Nuclear Magnetic Resonance) analyzer.
超電導コイル 81, 82 , 83, 84は試料に近い内側ほど、超電導臨界磁 界の高い材料でコイルが形成されている。超電導磁石を構成する超電導 コイリレ 81, 82, 83, 84は、鉛直方向を巻き軸としてソレノイド状に巻回され 、それぞれ超電導接続 89によって接続されており、保護回路 90によってク ェンチ時に焼失しないように保護されている。また、超電導磁石は、永久電 流スィッチ 91によって、永久電流モードに保持されている。  The superconducting coils 81, 82, 83, and 84 are made of a material with a higher superconducting critical magnetic field as the inside is closer to the sample. The superconducting coils 81, 82, 83, and 84 constituting the superconducting magnet are wound in a solenoid shape around a vertical axis, and are connected by superconducting connections 89, respectively. Is protected. The superconducting magnet is maintained in a permanent current mode by a permanent current switch 91.
さらにまた、超電導磁石は、液体ヘリウム 87に浸潰され低温に保持され 、その外側を液体窒素 88で覆う二重構造とすることによって、ヘリウムの消 費を節約する低温容器で構成されている。この低温容器は、防振支持脚 86によって支持され、外部の振動が容器内に伝わらないようになつている タンパク質試料の溶液サンプル 92は、装置上部から磁場中心に挿入さ れ鉛直方向に置かれている。プローブは、装置下部から磁場中心に揷入さ れ、常温保持された銅製の鞍型または鳥籠型のプローブコイル 85が用いら れる。 Furthermore, the superconducting magnet is constituted by a low-temperature container that is immersed in liquid helium 87 and is kept at a low temperature, and has a double structure in which the outside is covered with liquid nitrogen 88, thereby saving helium consumption. This cryogenic container is supported by vibration-proof support legs 86 so that external vibrations are not transmitted into the container. A protein sample solution sample 92 is inserted into the center of the magnetic field from the top of the device and placed vertically. ing. The probe is inserted into the center of the magnetic field from the lower part of the apparatus, and a copper saddle-shaped or birdcage-shaped probe coil 85 kept at room temperature is used. It is.
このように、鉛直方向に置かれた試料に、ソレノイド型超電導磁石によつ て鉛直方向の磁場を印加し、鞍型または鳥籠型のプローブコイル 85を用 いて NMRの信号を検出するの力、従来の NMR分析装置である。  In this way, a vertical magnetic field is applied to the sample placed in the vertical direction by the solenoid type superconducting magnet, and the force of detecting the NMR signal using the saddle type or bird cage type probe coil 85. , A conventional NMR analyzer.
NMR (核磁気共鳴)を利用した有機物の分析方法は、近年急速な進歩 を遂げつつある。特に、強力な超電導磁石技術と組合わされることによって 、複雑な分子構造を持つタンパク質などの有機化合物を、原子レベルで効 率よく構造解析することが可能になってきた。  Analytical methods for organic substances using NMR (nuclear magnetic resonance) have been making rapid progress in recent years. In particular, the combination with powerful superconducting magnet technology has made it possible to efficiently analyze the structure of organic compounds such as proteins having complex molecular structures at the atomic level.
本発明の対象とするものは、微量のタンパク質を溶解した水溶液中のタン パク質分子の原子レベルの構造と、相互作用を解析するに必要な NMR分 光計である。そして、ミリメートル級の画像分解能を必要とする人体の断層 撮影を目的とした医療用 MRI画像診断装置では、磁場強度で 1桁以上高 磁場均一度は 4桁、安定度についても 3桁高い性能が要求され、全く異 なる設計技術、装置製作技術が要求される特殊なエネルギー分光装置 である。  The subject of the present invention is an NMR spectrometer required for analyzing the atomic level structure and interaction of protein molecules in an aqueous solution in which a trace amount of protein is dissolved. In medical MRI diagnostic imaging equipment for tomography of the human body that requires millimeter-level image resolution, the magnetic field strength is higher by at least one order of magnitude, the magnetic field uniformity is four orders of magnitude, and the stability is three orders of magnitude higher. It is a special type of energy spectroscopy that requires a completely different design technology and device manufacturing technology.
従来の高分解能核磁気共鳴分析装置に関する詳細は、荒田洋治著、 「タンパク質の NMRJ共立出版、 1 996年(非特許文献 1 )に記載されてい る。 NMRをタンパク質の解析に利用する場合の典型的な装置構成に関連 する最近の発明には、超伝導磁石に関する発明として、多層空芯ソレノイド コイルの典型的な構成としては特開 2000 - 1 47082号公報(特許文献 1 )があり、また、信号検出技術に関連する発明として、鳥かご型超伝導検 出コイルを開示した米国特許 61 21 776号公報(特倉午文献 2)、従来の鞍 型コイル、或いは、鳥かご型コイルによる信号検出技術を開示した例として 特開 2000— 266830号公報(特許文献 3)、特開平 6— 23791 2号公 報(特許文献 4)などがある。  Details of the conventional high-resolution nuclear magnetic resonance spectrometer are described in Yoji Arata, "Protein NMRJ Kyoritsu Shuppan, 1996 (Non-Patent Document 1). A typical example of using NMR for protein analysis. As a recent invention related to a typical device configuration, Japanese Patent Application Laid-Open No. 2000-147082 (Patent Document 1) discloses a typical configuration of a multilayer air-core solenoid coil as an invention relating to a superconducting magnet. As an invention related to the signal detection technology, US Pat. No. 6,121,776 (Tokukura No. 2), which discloses a birdcage-type superconducting detection coil, and a signal detection technology using a conventional saddle-type coil or birdcage-type coil. As disclosed examples, Japanese Patent Application Laid-Open No. 2000-266830 (Patent Document 3) and Japanese Patent Application Laid-Open No. 6-237912 (Patent Document 4) are disclosed.
これらの報告によれば、従来のタンパク質解析用の高感度な NMR分析 装置は、全て鉛直方向の磁場を発生するソレノイドコイルの組合せによって 構成された超電導磁石装置を用い、 400〜900MHzの電磁波を試料に 照射し、試料から発せられる共鳴波を鞍型または鳥籠型の検出コイルを 利用して検出している。 According to these reports, conventional sensitive NMR analysis for protein analysis The device uses a superconducting magnet device composed of a combination of solenoid coils that generate a vertical magnetic field, irradiates the sample with an electromagnetic wave of 400 to 900 MHz, and converts the resonance wave emitted from the sample into a saddle or bird cage type. Detection is performed using the detection coil.
また、前記特許文献 2の例にあるように、受信時の熱ノイズを低減するた めに、低温に冷却された検出器を利用し、 SZN感度比を改善する工夫が なされている場合もある。  In addition, as in the example of Patent Document 2, in order to reduce thermal noise at the time of reception, there are cases where a device cooled at low temperature is used to improve the SZN sensitivity ratio. .
歴史的に見て、高感度な NMR装置は、基本的にはアンテナおよび磁石 等のシステムの基本構成を同一に保ち、超電導磁石の中心磁場強度を 高める方法によって感度向上を果たしてきた。  Historically, high-sensitivity NMR systems have improved sensitivity by increasing the central magnetic field strength of the superconducting magnet, while keeping the basic configuration of the system, such as the antenna and magnet, the same.
従って、現在迄に報告されている最高の NMR測定感度は 900MHzの N MR装置により得られ、例えば、図 8に示すように、中心磁場 21 . 1テスラの 大型超電導磁石が利用されているが、装置の基本構成は前記特許文献 1のような従来技術と何ら変わっていない。溶液を用いたタンパク質の解析 において、中心磁場向上は、感度の向上と、化学シフトの分離を明確にす る効果がある。  Therefore, the highest NMR measurement sensitivity reported to date can be obtained with a 900 MHz NMR apparatus.For example, as shown in Fig. 8, a large superconducting magnet with a central magnetic field of 21.1 Tesla is used. The basic configuration of the device is not different from the prior art as in Patent Document 1 described above. In protein analysis using solutions, improving the central magnetic field has the effect of improving sensitivity and clarifying the separation of chemical shifts.
検出コイル形状による感度向上効果については、荒田洋治著、「NMRの 書 J2000年、丸善、 p326 ( 特許文献 2)に記載されているように、従来 、検出コイルとしてソレノイドコイルを利用すれば、鞍型あるいは鳥籠型に比 較して様々な利点があることが知られていた。例えば、インピーダンスのコン トロール容易性、フィリングファクタ、 RF磁場の効率などの点で優れているこ となどである。  As described in Yuji Arata's Yoji Arata, NMR book J2000, Maruzen, p326 (Patent Document 2), the sensitivity improvement effect of the detection coil shape, if a solenoid coil is conventionally used as the detection coil, It has been known that there are various advantages compared to the mold or bird cage type, for example, it is superior in terms of impedance controllability, filling factor, RF magnetic field efficiency, etc. .
し力、し、同著によれば、従来の超電導磁石の構成では、水溶液中に微量 に溶解したタンパク質の計測用途等の感度を重視する場合には、磁場に 対して垂直に置かれたサンプル管の周りに、ソレノイドコイルを巻くことは実際 には不可能であり、一般には利用されていない。特に、例外的に、微量の サンプル溶液を用いて感度よく測定する場合に限り利用される場合があり 、特別にデザインしたミクロサンプル管を利用して、特別のプローブを用いて 計測する方法が知られていた。 According to the authors, the conventional superconducting magnet configuration requires a sample placed vertically with respect to the magnetic field when importance is placed on the measurement of proteins dissolved in a small amount in an aqueous solution. It is practically impossible to wrap a solenoid coil around a tube and it is not commonly used. In particular, exceptionally, It may be used only when measuring with high sensitivity using a sample solution, and a method of measuring with a special probe using a specially designed micro sample tube has been known.
また、特殊な例としては、最近では特開平 1 1一 24881◦号公報(特許 文献 5)のように、高温超電導のバルク磁石を水平方向に着磁し、ソレノイド コイルで NMR信号を検出する方法が考案されている。  As a special case, a method of magnetizing a high-temperature superconducting bulk magnet in a horizontal direction and detecting an NMR signal with a solenoid coil has recently been disclosed in Japanese Patent Application Laid-Open No. 11-24881◦ (Patent Document 5). Has been devised.
また、特開平 7— 24031 0号公報(特許文献 6)では、装置の天井高さ の制約を取り除くための一般的な NMR用途に適した、超電導磁石と冷却 容器の構成方法を開示しているが、タンパク質の解析に必要な検出感度 の向上方法や磁場均一度、磁場の時間安定度に対する技術的な対応 方法等については、知られていない。  Also, Japanese Patent Application Laid-Open No. 7-240310 (Patent Document 6) discloses a method of configuring a superconducting magnet and a cooling vessel suitable for general NMR applications for removing restrictions on the ceiling height of the apparatus. However, it is not known how to improve the detection sensitivity necessary for protein analysis, nor how to deal with the magnetic field homogeneity and the time stability of the magnetic field.
近年、タンパク質の研究に対するニーズの高まりと共に、タンパク質の水 への溶解度が小さい試料の分析ニーズが高まり、 NMRの測定感度を向上 させる必要が生じている。こうしたニーズに、 NMR分析装置を適合させるに は、従来同等の試料空間を維持したまま、測定感度の向上を図る必要が あり、長時間のデータ積分時間中での超伝導磁場の安定性の確保も必須 である。  In recent years, with the growing need for protein research, the need to analyze samples with low solubility of proteins in water has increased, and it has been necessary to improve the measurement sensitivity of NMR. To adapt NMR analyzers to these needs, it is necessary to improve the measurement sensitivity while maintaining the same sample space as before, and to ensure the stability of the superconducting magnetic field during long data integration times. Is also mandatory.
測定感度の向上は、同程度の溶解度の試料であれば、測定時間の短 縮ばかりでな サンプル量の低減が可能になる利点が特に大きぐ溶解度 の小さなタンパク質の解析が可能となる効果がある。  Improvement of measurement sensitivity is not only shortening the measurement time but also reducing the amount of sample as long as the sample has the same level of solubility. .
従って、タンパク質の解析に用いられる NMR分析装置は、従来の NMR 分析装置と比較して特段に優れた検出感度と安定性が要求される他に、 1週間以上の長時間にわたる正確で、かつ、安定的な NMRシグナルの検 出が必要である。これは計測中に磁場が変動すると、 NMRシグナルのピ一 クが移動してしまうためであり、特に、相互作用の計測ではピークの移動が 相互作用によるものか、或いは、磁場の不安定性に起因するものか、判別 ができなくなるためである。 Therefore, NMR analyzers used for protein analysis require extremely superior detection sensitivity and stability compared to conventional NMR analyzers, and are accurate over a long period of one week or more. Stable NMR signal detection is required. This is because if the magnetic field fluctuates during the measurement, the peak of the NMR signal shifts.In particular, in the measurement of the interaction, the peak shift is due to the interaction or due to the instability of the magnetic field. What to do Is no longer possible.
また、磁場が不均一であれば、所望のピークが重なってしまい、相互作用 の判別が困難になるなどの問題を生じる。従って、タンパク質の様々な解 析を目的とした今後の NMR技術は、従来の一般的な NMR分析装置の単 純な延長上には無 新たな技術開発が必要なことを、まず留意しておく 必要がある。  In addition, if the magnetic field is non-uniform, desired peaks overlap, which causes problems such as difficulty in determining the interaction. Therefore, it is important to note that future NMR techniques for the various analyzes of proteins will require new technology development beyond the simple extension of conventional general NMR analyzers. There is a need.
一例を挙げると、一般的な NMR装置の磁場均一度の仕様は、試料空 間で 0. 01 ppm、時間安定度で 0. 01 ppm/hである。これを一般的な用 途の 600MHzのプロトン NMRで換算すると、 6Hzの許容誤差になる。  As an example, the specification of the magnetic field uniformity of a general NMR instrument is 0.01 ppm in the sample space and 0.01 ppm / h in the time stability. Converting this to 600 MHz proton NMR for general use gives a 6 Hz tolerance.
し力、し、前述したタンパク質の相互作用解析の場合では、少なくとも 1 . 0 Hz以下の空間、および、時間分解能が必要であり、望ましくは 0. 5Hz以 下が必要である。  In the case of the protein interaction analysis described above, a space of at least 1.0 Hz or less and a time resolution are required, and preferably 0.5 Hz or less.
これらの磁場均一度と磁場の時間的安定度を実現可能な方法で、超伝 導磁石や検出コイルを最適に構成する必要がある。従って、従来、一般的 に利用されていた NMR分析装置の性能では不十分で、従来よりも 1桁以 上高い安定性と磁場均一度が要求される。  It is necessary to optimally configure the superconducting magnet and the detection coil in a way that can achieve the uniformity of the magnetic field and the temporal stability of the magnetic field. Therefore, the performance of NMR spectrometers generally used in the past is insufficient, and stability and magnetic field homogeneity higher by one order of magnitude or more than before are required.
従来技術は、主として、磁場強度の向上に頼って感度向上したため、装 置が大型化し、漏洩磁界の問題と床強度の問題から、専用の建物を必要 とするなど、設置性の問題も新たに生じた。さらに、超電導磁石のコストが 増大するなどの課題を生じた。また、この方法による感度向上は、超電導 材料の臨界磁界による制約で、概ね 21テスラ(T)の上限に達し、これ以 上の感度向上のためには、磁場強度に頼ることの無い、新たな手段による 検出感度向上技術が望まれていた。  In the conventional technology, the sensitivity has been improved mainly by improving the magnetic field strength, so the equipment has become larger, and due to the problems of the leakage magnetic field and the floor strength, a special building is required. occured. In addition, there were problems such as an increase in the cost of superconducting magnets. In addition, the sensitivity improvement by this method is limited by the critical magnetic field of the superconducting material, and almost reaches the upper limit of 21 Tesla (T). To improve sensitivity further, a new method that does not rely on the magnetic field strength is used. Techniques for improving detection sensitivity by means have been desired.
前述したように、ソレノイドコイルを利用した高感度測定方法は、極く微量 の特別のサンプル管と、特別の検出プローブで利用可能であつたが、およそ 1 0ml程度の一般的なタンパク質溶液による解析には適用できなかった。 また、前記特許文献 5の例にあるように、強力な磁石によって水平方向 に磁場を発生し、ソレノイドコイルで NMR信号を検出する方式では、高温超 電導体の表面で 1 OT未満の磁場を発生できるのみであって、試料部分の 磁場は高々数 T程度であり、タンパク質の解析に必要な 1 1 T以上の磁場、 好ましくは、 1 4. 1 T以上の磁場を所望の試料空間に発生することは、この 方法では不可能であった。 As described above, the high-sensitivity measurement method using a solenoid coil can be used with a very small amount of a special sample tube and a special detection probe. Could not be applied to Also, as in the example of Patent Document 5, in the method of generating a magnetic field in the horizontal direction by a strong magnet and detecting an NMR signal by a solenoid coil, a magnetic field of less than 1 OT is generated on the surface of the high-temperature superconductor. The magnetic field of the sample part is only about several T at most, and a magnetic field of 11 T or more required for protein analysis, preferably 14.1 T or more, is generated in the desired sample space. This was not possible with this method.
また、この方法では、タンパク質の解析に必要な時間安定度 1 . 0Hz/ 時以下を達成することは、高温超伝導体の磁束クリープ現象の効果で実 質的に困難であった。  Also, with this method, it was practically difficult to achieve the time stability of less than 1.0 Hz / hour required for protein analysis due to the effect of magnetic flux creep of high-temperature superconductors.
また、タンパク質の解析に必要な、磁場均一度についても、直径 1 Qmm X長さ 20mmの空間で、プロトン核磁気共鳴周波数で 1 . OHz以内の磁場 均一度を達成することは、高温超電導パルク体材料の製造プロセスに起 因した不均質性から困難であった。  Regarding the magnetic field homogeneity required for protein analysis, achieving a magnetic field homogeneity within 1.0 OHz at the proton nuclear magnetic resonance frequency in a space of 1 Qmm in diameter and 20 mm in length requires a high-temperature superconducting bulge. This was difficult due to the heterogeneity caused by the material manufacturing process.
このように、従来技術は、タンパク質の解析ニーズに対応するためのブレ —クスルー技術の開発が求められている一方で、磁場による感度向上の 限界に達してしまった現在、さらなる感度向上のための新しい解決方法が 求められていた。  As described above, while the conventional technology has been required to develop a breakthrough technology to meet the needs of protein analysis, now that the limit of sensitivity improvement by magnetic fields has been reached, A new solution was sought.
今後ニーズが高まると考えられる溶液中におけるタンパク質と基質、リガン ド等の低分子の相互作用を、効率良く、かつ、高精度に解析する場合には 、経験的には、 600~900MHz、中心磁場で 1 4~21 T程度で、適切な サンプル量で測定できることが望ましく、現状より計測感度を高め、スルー プットを高めることが望まれている。  Efficient and high-precision analysis of the interaction between proteins and small molecules such as substrates and ligands in solutions, for which needs are expected to increase in the future, is empirically determined to be 600-900 MHz and a central magnetic field. Therefore, it is desirable to be able to measure with an appropriate sample amount at about 14 to 21 T, and it is desired to improve the measurement sensitivity and to increase the throughput from the current state.
また、一般に、 800MHz以上の装置では、超電導特性を極限まで利用 するため、 4· 2Kの液体ヘリウムを減圧し、 1 . 8Kと過冷却して運転する。 このため、装置運転上の煩雑さが増す他に、メンテナンスも大変である。 また、磁石装置が大型化するため、漏洩磁界が大きく、通常は専用の建 物を必要とする。特に、装置の設置性の観点では、従来方式では、中心 磁界の増大と共に、鉛直方向に漏洩磁界が増大する。そのために、例えば 、 900MHz級の装置では、高さ方向に 5mもの漏洩磁界を生じ、天井高さ のより高い建築物を必要とし、建築コストが増大すると云う問題があった。 I EEE. Transactions on Applied Superconductivity, Vol. 1 1 , No. 1 , p2438 (非特許文献 3)に記載されているように、磁石部分の大き さだけで幅直径 1 · 86m X高さ数メートルとなる。 発明の開示 In general, a device operating at 800 MHz or higher is operated under reduced pressure of 4.2K liquid helium and supercooled to 1.8K in order to utilize the superconductivity to the utmost. For this reason, in addition to increasing the complexity of operation of the apparatus, maintenance is also difficult. In addition, since the size of the magnet device is large, the leakage magnetic field is large. Need things. In particular, from the viewpoint of installability of the device, in the conventional method, the leakage magnetic field increases in the vertical direction as the center magnetic field increases. For this reason, for example, in a 900 MHz class device, a leakage magnetic field of as much as 5 m is generated in the height direction, and a building having a higher ceiling height is required, and there is a problem that the building cost increases. As described in I EEE. Transactions on Applied Superconductivity, Vol. 11, No. 1, p2438 (Non-Patent Document 3), only the size of the magnet part has a width of 1 86 m and a height of several meters. Become. Disclosure of the invention
本発明は、 3.超伝導コイルと、該超伝導コイル及びそれを冷却する冷媒 を収容する低温容器と、超伝導コイルに接続された永久電流スィッチと、 該超伝導コイルに取り囲まれ、被測定試料を挿入する空間と、該空間内 の磁場中心に設置され、上記試料を内部に設置するプローブコイルとを有 し、上記超伝導コイルはある軸を共通の中心軸となるように卷回された複 数のコイルから構成される第 1のコイル群と、前記中心軸を共通の中心軸 として巻回された複数のコイルから構成される第 2のコイル群があり、前記 第 1コイル群および第 2コイル群は、ある空間を隔てて対向するように配置 されており、主磁場と反対向きの磁場を発生する方向に通電されたコイル を逆電流コイルと定義すると、前記第 1コイル群および第 2コイル群を構成 するコイルの内、最大巻半径を有するコイルを除き、少なくとも 1つのコイル が逆電流コイルであることを特徴とする核磁気共鳴用マグネットを提供する また、本発明は、主として通常の 5〜1 Omm径のサンプル管を用い試料 溶液を、概ね 30mm高さに充填した状態で、 600MHz ( 1 4. 1 T)程度で NMRシグナルの計測感度を、従来よりも 40%以上高めた新規な NMR分 析装置を構成できる超電導マグネットを提供するものである。 図面の簡単な説明 The present invention relates to: 3. a superconducting coil, a low-temperature container containing the superconducting coil and a refrigerant for cooling the superconducting coil, a permanent current switch connected to the superconducting coil, and a measurement target surrounded by the superconducting coil. It has a space in which a sample is inserted, and a probe coil installed in the center of the magnetic field in the space and having the sample installed therein. The superconducting coil is wound so that a certain axis becomes a common central axis. A first coil group composed of a plurality of coils, and a second coil group composed of a plurality of coils wound around the central axis as a common central axis. The second coil group is disposed so as to face each other with a certain space therebetween.If a coil that is energized in a direction that generates a magnetic field in a direction opposite to the main magnetic field is defined as a reverse current coil, the first coil group and the second coil group Configure the second coil group The present invention provides a nuclear magnetic resonance magnet characterized in that at least one coil is a reverse current coil except for the coil having the largest winding radius among the coils having the maximum winding radius. A new NMR analysis method that uses a sample tube with a diameter of approximately 30 mm and fills the sample solution with a height of approximately 30 mm, increasing the measurement sensitivity of NMR signals by about 40% or more at about 600 MHz (14.1 T). An object of the present invention is to provide a superconducting magnet which can constitute a device. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明のスプリット型マグネットを使用した NMR装置の概略断面 図である。  FIG. 1 is a schematic sectional view of an NMR apparatus using the split magnet of the present invention.
図 2は電流と磁場の位置関係を示す座標図である。  FIG. 2 is a coordinate diagram showing a positional relationship between a current and a magnetic field.
図 3はコイルと z軸との角度 の関係を示す座標図である。  Fig. 3 is a coordinate diagram showing the relationship between the angle of the coil and the z-axis.
図 4は、実施例 2によるスプリット型マグネットのコイルの配置に関する斜視 図である。  FIG. 4 is a perspective view related to the arrangement of the coils of the split magnet according to the second embodiment.
図 5は、実施例 3によるスプリット型マグネットのコイルの配置構成の断面 図である。  FIG. 5 is a sectional view of an arrangement configuration of coils of a split magnet according to a third embodiment.
図 6は、実施例 4によるスプリット型マグネットのコイル配置に関する断面 図である。  FIG. 6 is a cross-sectional view relating to the coil arrangement of the split magnet according to the fourth embodiment.
図 7は、実施例 5によるスプリット型マグネットのコイル配置に関する断面 図である。  FIG. 7 is a cross-sectional view illustrating a coil arrangement of a split magnet according to a fifth embodiment.
図 8は、実施例 6によるスプリット型マグネットのコイル配置構成の断面図 である。  FIG. 8 is a sectional view of a coil arrangement configuration of a split magnet according to a sixth embodiment.
図 9は、実施例 7によるスプリット型マグネットのコイル配置構成の断面図 である。  FIG. 9 is a sectional view of a coil arrangement configuration of the split magnet according to the seventh embodiment.
図 1 0は、実施例 8によるスプリット型マグネットのコイル配置および漏洩磁 場シールド用コイル配置の断面図である。  FIG. 10 is a cross-sectional view of a coil arrangement of a split type magnet and a coil arrangement for leakage magnetic field shielding according to an eighth embodiment.
図 1 1は、実施例 9によるスプリット型マグネットのコイル配置および漏洩磁 場シールド用強磁性体の断面図である。  FIG. 11 is a cross-sectional view of a coil arrangement of a split type magnet and a ferromagnetic material for leakage magnetic field shielding according to a ninth embodiment.
図 1 2は、実施例 1 0によるスプリット型マグネットのコイル,漏洩磁場シー ルド用強磁性体および漏洩磁場シールド用コイル配置の断面図である。 図 1 3は、実施例 1 1によるスプリット型マグネットのコイル配置および漏洩 磁場シールド用強磁性体および漏洩磁場シールド用コイル配置の断面図 である。 図 1 4は、従来の NMR装置の概略断面図である。 FIG. 12 is a sectional view of the split type magnet coil, the leakage magnetic field shielding ferromagnetic material, and the leakage magnetic field shielding coil arrangement according to the tenth embodiment. FIG. 13 is a cross-sectional view of the coil arrangement of the split magnet, the ferromagnetic material for the leakage magnetic field shield, and the coil arrangement for the leakage magnetic field shield according to Example 11; FIG. 14 is a schematic sectional view of a conventional NMR apparatus.
図 1 5は、実施例 2によるスプリット型マグネットのポビンに巻かれたコイルの 斜視図である。  FIG. 15 is a perspective view of a coil wound around a pobin of the split magnet according to the second embodiment.
図 1 6は、実施例 2によるスプリット型マグネットのコイル配置の断面図であ る。 発明を実施するための最良の形態  FIG. 16 is a sectional view of a coil arrangement of the split magnet according to the second embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
この高感度 NMR装置は、従来のソレノイド磁石ではなく、対向空間を設け 左右に分割された一対のスプリットマグネットで構成する必要がある。 NMR 装置用マグネットには、上述したように、サンプルを計測する空間に pp bォ —ダ一で非常に均一な磁場を発生する必要がある。  This high-sensitivity NMR apparatus needs to be configured not with a conventional solenoid magnet but with a pair of split magnets divided into right and left with a facing space. As described above, a magnet for an NMR apparatus needs to generate a very uniform magnetic field in the order of ppb in the space where the sample is measured.
し力、し、 1 4. 1 Tクラスの高磁場スプリットマグネットでは、ソレノイドマグネッ トに比べ磁場の均一度が得られにく この磁場の均一性を達成する方法 が見出されていなかった。なぜならスプリットマグネットでは、左右のマグネッ 卜の間に対向空間を設けるため、磁場の発生に使える空間が制限され、磁 場の発生と均一性の達成に不利だからである。  With a 14.1 T class high-field split magnet, it is difficult to obtain magnetic field uniformity compared to a solenoid magnet, and no method has been found to achieve this magnetic field uniformity. This is because, in a split magnet, the facing space is provided between the left and right magnets, which limits the space available for generating a magnetic field, and is disadvantageous for generating a magnetic field and achieving uniformity.
なお、本発明では、システムの運転温度を 4. 2Kと定めるものではない。 また、本発明を応用して、極限性能を目指すことも可能であり、用途によつ ては、従来の磁場限界であった 21 , 1丁、即ち、 900MHzで 1 . 8Kで運転 することがあってもよい。その場合、従来の方式と比較して 40 %の感度向 上が可能であり、従来、不可能であった磁場強度による検出感度限界を 大き〈破ることが可能になる。  In the present invention, the operating temperature of the system is not set to 4.2K. It is also possible to aim for the ultimate performance by applying the present invention.In some applications, the conventional magnetic field limit of 21, 1, that is, operation at 1.8 MHz at 900 MHz is possible. There may be. In this case, the sensitivity can be improved by 40% compared to the conventional method, and the detection sensitivity limit due to the magnetic field strength, which was impossible in the past, can be greatly reduced.
本発明者らは、現状の核磁気共鳴装置に共通する問題と、その対策法 について検討した。  The present inventors have studied the problems common to current nuclear magnetic resonance apparatuses and the countermeasures therefor.
現状の NMR装置は、コストと設置性を両立させるために、磁場均一度の 優れた多層空心ソレノイドコイルの中心に、溶液試料を置き、鞍型または鳥 籠型のアンテナで検出する方法で発展してきた。歴史的には、 400MHz 未満の低い磁界から、計測技術と解析法の進歩によって NMRが発展する に伴い、この基本的な形式を守ったまま、中心磁場の強大化によって計測 感度を向上させてきた。 In the current NMR system, a solution sample is placed in the center of a multilayer air-core solenoid coil with excellent magnetic field uniformity, and a saddle or bird It has been developed by a method of detecting with a cage type antenna. Historically, as NMR has progressed from low magnetic fields below 400 MHz due to advances in measurement technology and analysis methods, measurement sensitivity has been improved by increasing the central magnetic field while maintaining this basic format. .
また、最近は熱ノイズを減らすために超電導式の鳥籠型アンテナを用いる 例も報告されている。  Recently, an example of using a superconducting birdcage antenna to reduce thermal noise has been reported.
本発明者らは、磁場強度を同一としたまま、従来 リも著しく信号強度を 高める方法について鋭意検討を重ねてきた。その結果、以下に述べる新 規な方法によれば、この問題を解決できることを見出した。  The inventors of the present invention have intensively studied a method of significantly increasing the signal strength while maintaining the same magnetic field strength. As a result, they found that the new method described below can solve this problem.
そのポイントは、試料空間として直径 5〜1 Ommで、高さ 20mmの溶液 N The point is that a solution space with a diameter of 5 to 1 Omm and a height of 20 mm
MRに適する 400MHz以上の磁場、好まし〈は、 6。0〜900MHz程度 で、検出コイルを通常の NMR研究用のサンプル管がそのまま利用できる 5A magnetic field of 400MHz or more suitable for MR, preferably <6.0 to 900MHz, and the detection coil can be used as it is for a sample tube for ordinary NMR research.
~ 1 Omm 0 X高さ 20mm程度のソレノイド方式の検出コイルを、適用する ことによって感度向上を図るものである。 ~ 1 Omm 0 X The sensitivity is improved by applying a solenoid type detection coil with a height of about 20 mm.
原理的には、検出コイルの形状因子の差によって、少なくとも 1 . 4( 2) 倍の感度向上が期待でき、その他の因子によって更に向上が期待できるも ので、データの積算時間は 1 /2以下に短縮することができるものである。 溶液状のサンプルは、直径 5〜1 Ommサンプル管に高さ 20~30mm程 度入れ、上部から鉛直方向に挿入される。鉛直方向を巻軸としたソレノイド コイルで NMR信号を感度よく検出するには、超電導磁石で発生する磁場 を水平方向に配置し、その磁界中心に、容易に着脱できる溶液サンプルを 配置できるようにする必要がある。  In principle, at least 1.4 (2) times higher sensitivity can be expected due to the difference in the shape factors of the detection coils, and further improvements can be expected due to other factors, so the data integration time is less than 1/2. Can be shortened to The solution sample is placed in a sample tube with a diameter of 5 to 1 Omm at a height of about 20 to 30 mm and inserted vertically from above. To detect NMR signals with high sensitivity using a solenoid coil with a vertical axis as the winding axis, the magnetic field generated by the superconducting magnet is arranged horizontally, and a solution sample that can be easily attached and detached is arranged at the center of the magnetic field. There is a need.
そのため、超電導磁石の構成は、従来の単純なソレノイド磁石と異なり、 左右に分割された一対のスプリットマグネットで構成する必要がある。  Therefore, the configuration of the superconducting magnet is different from a conventional simple solenoid magnet, and it is necessary to configure the superconducting magnet with a pair of split magnets divided into right and left.
NMR装置用マグネットには、前記のように、サンプルを計測する空間に pp bオーダ一で非常に均一な磁場を発生する必要があるが、スプリットマグネ ットでは、この磁場の均一性を達成する方法が見出されていない。 As described above, a magnet for NMR equipment needs to generate a very uniform magnetic field on the order of ppb in the space where the sample is measured. No method has been found in U.S. Pat.
本発明では、複数個のコイルからなる 2組のコイル群力 ある間隔を有し て対向配置されたスプリットマグネットにおいて、主磁場を発生する方向とは 逆向きの電流を搬送するコイルを少なくとも一つ、主磁場発生位置の近く に備えることで、スプリットマグネットの空間的な制限による不利を解消し、 従来のソレノイドマグネットと同等の均一な磁場を得ている。  In the present invention, two sets of coil groups consisting of a plurality of coils are arranged at opposing split magnets at a certain interval, and at least one coil that carries a current in a direction opposite to the direction in which the main magnetic field is generated is provided. By providing it near the position where the main magnetic field is generated, the disadvantage due to the spatial limitation of the split magnet is eliminated, and a uniform magnetic field equivalent to that of a conventional solenoid magnet is obtained.
以下、均一磁場の発生方法について述べる。曲座標(r, Θ, 0)で表さ れた、ある空間の z方向の磁場 Bzは、一般的に r, Θ, øの関数として〔式 1〕で表される。 Hereinafter, a method of generating a uniform magnetic field will be described. Polar coordinate (r, theta, 0) represented by the magnetic field B z in the z-direction of a space, generally r, theta, expressed by [Equation 1] as a function of ų.
【数 1】 [Equation 1]
B2=rnPn m (cos^ )(An msinm0+Bn mcosm0) …〔式 1〕 このように磁場は位置で決まる関数 rnPn mにある係数をかけた形で表さ れる。 ηについて 0から∞までの和をとリ、 π = 0の時の係数を 0次の係数、 ηIn B 2 = r n P n m (cos ^) (A n m sinm0 + B n m cosm0) ... [Equation 1] Thus magnetic field shape obtained by multiplying the coefficients in the function r n P n m which is determined by the position expressed. η is the sum of 0 to ∞, and the coefficient when π = 0 is the 0th order coefficient, η
=2の時の係数を 2次の係数と定義して以下使う。 The coefficient when = 2 is defined as the second-order coefficient and used below.
以下、大きさ Iの円環電流によって発生した磁場の π次の係数の性質につ いて説明する。  In the following, the properties of the π-order coefficient of the magnetic field generated by the ring current of magnitude I are explained.
図 2に電流と磁場の座標図を示す。原点からの距離 f、 fと z軸との角度 の位置にある導体 11に、 z軸方向に磁場を作る向き、つまりプラスの向 きの円電流 Iが流れているとする。ここでは、 z軸方向に磁場を作る向きの電 流をプラス方向の電流と呼び、これと逆向きの電流をマイナス方向の電流 と呼ぶ。  Figure 2 shows a coordinate diagram of the current and the magnetic field. It is assumed that a circular current I in a direction in which a magnetic field is generated in the z-axis direction, that is, a plus direction, is flowing through the conductor 11 at a distance f from the origin and an angle between the f-axis and the z-axis. Here, the current that creates a magnetic field in the z-axis direction is called the plus current, and the opposite current is called the minus current.
また、円環電流ではなく、電流がコイルを流れている時は、コイルの中心 軸はほぼ z軸であるとし、原点からコイル中心までの距離を f、コイル中心と 原点を結ぶ直線と中心軸との成す角をひとする。以下、コイル中心と原点 を結ぶ直線とコイルの中心軸との成す角を と定義する。この円電流が曲 座標(r, Θ, ø)で表される位置に作る磁場を曲座標系で求めると、 z方向 の磁場 Bzの軸対称成分は次式で表される。 【数 2】 When the current is flowing through the coil, not the ring current, the center axis of the coil is assumed to be approximately the z-axis, the distance from the origin to the coil center is f, and the straight line connecting the coil center and the origin is the center axis. The angle between Hereinafter, the angle between the straight line connecting the coil center and the origin and the center axis of the coil is defined as. When the magnetic field created by this circular current at the position represented by the curved coordinates (r, Θ, ø) is obtained in the curved coordinate system, The axially symmetric component of the magnetic field B z is expressed by the following equation. [Equation 2]
P x n+1 (cos ) Pn (cos0)P x n + 1 (cos) P n (cos0)
Figure imgf000014_0001
I
Figure imgf000014_0001
I
··· 〔式 2〕 上式のように磁場は nについての和で表される。これをそれぞれ n次の磁 場とし \う。以下、磁場は全て Bzであるとして、 n次の Bzを Bnと書く。 NMR計 測に必要な中心磁場は B 0であり、これ以外の磁場 B πは均一度を乱す磁 場であるため、 η次の不整磁場と呼ばれる。 ··· [Equation 2] As shown in the above equation, the magnetic field is represented by the sum of n. Let this be the nth order magnetic field, respectively. Hereinafter, the magnetic field as are all B z, write an order n B z and B n. The central magnetic field required for NMR measurement is B 0, and the other magnetic field B π is called the η-order irregular magnetic field because it is a magnetic field that disturbs the uniformity.
Βηの と Θに依存しない部分を、 The part of η η independent of と
【数 3】 [Equation 3]
μ olsinct P 1 Ji +! (cos a) μ olsinct P 1 Ji +! (cos a)
An= … (式 3〕  An =… (Equation 3)
2 f n+1 とし、これを n次の展開係数と呼ぶ。 n=2の時、 2次の展開係数 A2は、 A2 ocP3 1 (GOSQ となる。 【数 4】 2 f n + 1 , which is called the n-th order expansion coefficient. When n = 2, the second order expansion coefficient A 2 is A 2 ocP 3 1 (GOSQ.
Pa1 (cosa)= (3/2 1 -cos2a (5cos a- 1) ··· 〔式 4〕 より、 0く cos <1で Ρ3 (GOSQ = 0になるのは、 or <arccos(1//V"5) = 63.43°である。 これにより正の電流を配置する角度 によって 2次の展開係数の符号が 決まり、 0く く 63.43°で A2>0、 63.43°く く( ττ/2)で A2く 0と なる。 Pa 1 (cosa) = (3/2 1 -cos than 2 a (5cos a- 1) ··· [Equation 4], 3 [rho 0 rather cos <1 (become GOSQ = 0 is, or <arccos (1 / / V "5) = 63.43 °. The sign of the second order expansion coefficient is determined by the angle at which the positive current is arranged, and A 2 > 0 and 63.43 ° at 0 and 63.43 ° ( At ττ / 2), A 2 becomes 0.
図 3は、コイルと Z軸との角度 の関係を示す座標図である。図 3での 15 がコイルであり、直線 13が z軸との角度が、 Qf2 = arccos(1/V"5) = 63.43°となる直線を表している。 FIG. 3 is a coordinate diagram showing the relationship between the angle of the coil and the Z axis. In Fig. 3, 15 is the coil, and the straight line 13 is the angle with the z axis. Qf2 = arccos (1 / V "5) = 63.43 ° represents a straight line.
同様に 4次の磁場の係数 A4は A4ocP5 1 (cos )となり、 A4の符号は P 51 (cos )の符号で决まる。 Similarly the coefficient A 4 of fourth order field A 4 ocP 5 1 (cos), and the sign of A 4 is Decisive round the sign of P 5 1 (cos).
【数 5】 [Equation 5]
PB 1(cosa) = (l 5/8> 1 -cos2a (2 lcos4a- 14cos2a+ 1) P B 1 (cosa) = (l 5/8> 1 -cos 2 a (2 lcos 4 a- 14 cos 2 a + 1)
… 〔式 5〕 より、 0く cos く"!で P5 1
Figure imgf000015_0001
... than [Equation 5], rather than 0 rather cos "! In the P 5 1
Figure imgf000015_0001
or=arccosV"((7-l-2)V"7))/21 =40.09°, 73.43°である。 or = arccosV "((7-l-2) V" 7)) / 21 = 40.09 °, 73.43 °.
よって 4次の展 ϋ係数の符号は、 0<ひ<40.09°で Α4>0、40.09 。く く 73.43°で、 Α4<0、 73.43°くびく 90°で、 Α4>〇となる。 Thus the fourth order exhibition ϋ coefficient code is 0 <shed <40.09 ° in Α 4> 0,40.09. At 73.43 °, Α 4 <0, and at 90 ° 73.43 °, Α 4 > 〇.
図 3では、直線 12が ζ軸となす角度 1が、  In Figure 3, the angle 1 that the straight line 12 makes with the ζ axis is
»1 =arccos^((7 + 2)V"7))/21 =40.09°となる直線を表しており 、直線 14が z軸となす角度 3が、 »1 = arccos ^ ((7 + 2) V" 7)) / 21 = 40.09 ° represents a straight line, and the angle 3 that the straight line 14 makes with the z-axis is
^3 = arccosV"((7-2)^7))X21 =73.43°となる直線を表している 図 3で、 z軸からの角度 の位置に配置されたコイル 15が作る不整磁場 の説明をする。  ^ 3 = arccosV "((7-2) ^ 7)) X21 = 73.43 ° represents a straight line.In Fig. 3, the explanation of the irregular magnetic field created by the coil 15 placed at an angle from the z axis I do.
コイル 15は、プラス方向に通電されているとし、 NMR計測の主磁場向き の磁場を作るとする。 z軸と直線 12の間の角度が前記 or 1、 z軸と直線 13 の間の角度が前記 2、 z軸と直線 14の間の角度が前記 or 3である。  The coil 15 is assumed to be energized in the plus direction, and creates a magnetic field in the direction of the main magnetic field for NMR measurement. The angle between the z-axis and the straight line 12 is or 1, the angle between the z-axis and the straight line 13 is 2, and the angle between the z-axis and the straight line 14 is or 3.
直線 13はプラスの電流を持つコイル 15の作る 2次の不整磁場がゼロにな る位置を表しており、直線 13と z軸に挟まれた領域では 2次の不整磁場が 正になり、直線 13と X軸に挟まれた領域では 2次の不整磁場が負になる。 また、直線 12と 14は、プラスの電流を持つコイル 15の作る 4次の不整磁 場がゼロになる位置を表しており、 z軸と直線 12に挟まれた領域、および、 直線 1 4と x軸で挟まれた領域では 4次の不整磁場は正になり、直線 1 2と 直線 1 4で挟まれた領域では 4次の不整磁場は負になる。 The straight line 13 indicates the position where the second-order irregular magnetic field created by the coil 15 having a positive current becomes zero.In the region between the straight line 13 and the z-axis, the second-order irregular magnetic field becomes positive, In the region between 13 and the X axis, the second-order irregular magnetic field becomes negative. Lines 12 and 14 indicate the positions where the fourth-order irregular magnetic field created by the coil 15 having a positive current becomes zero, and the region sandwiched between the z-axis and the line 12, and The fourth-order irregular magnetic field is positive in the region between the straight line 14 and the x-axis, and the fourth-order irregular magnetic field is negative in the region between the straight lines 12 and 14.
上記のように、スプリット型の超電導マグネットでは、従来のソレノイド型超 電導マグネットと比較して、タンパク質構造解析に必要な磁場均一度を得 ること力《難しい。  As described above, the split-type superconducting magnet is more difficult to obtain the magnetic field homogeneity required for protein structure analysis than the conventional solenoid-type superconducting magnet.
なぜなら、 X軸を挟んでギャップを設けるため、直線 1 3と X軸に挟まれた 空間にプラス方向に通電されたコイルを配置して、得られる負の 2次の磁 場成分の発生量、および、直線 1 4と X軸に挟まれた空間に、プラス方向に 通電されたコイルを配置して得られる正の 4次の磁場成分の発生量が制 限されるからである。  Because a gap is provided across the X axis, a coil energized in the plus direction is placed in the space between the straight line 13 and the X axis, and the resulting negative secondary magnetic field component generation amount, Also, the amount of the positive fourth-order magnetic field component obtained by arranging the coil energized in the plus direction in the space between the straight line 14 and the X axis is limited.
そこで、プラス方向に通電されたコイルを配置すると正の 2次の磁場成分 を発生する領域、および、プラス方向に通電されたコイルを配置すると負の 4次の磁場成分を発生する領域に、マイナス方向に通電されたコイルを配 置することで、負の 2次の磁場成分、および、正の 4次の磁場成分を発生さ せる。  Therefore, a negative secondary magnetic field component is generated when a coil energized in the plus direction is generated, and a negative fourth magnetic field component is generated when a coil energized in the positive direction is arranged. By placing a coil that is energized in the direction, a negative second-order magnetic field component and a positive fourth-order magnetic field component are generated.
これにより、スプリット型超電導マグネットにおいても、従来の多層ソレノィ ドと同等以上の、非常に均一な磁場を発生することが可能となる。  As a result, even in the split type superconducting magnet, it is possible to generate a very uniform magnetic field equal to or more than that of the conventional multilayer solenoid.
次に、各コイルの最適な配置について述べる。中心磁場を保ちつつ、タン パク質解析に必要な磁場の均一度を得るためには、コイル層の比較的外 側を構成しているコイルで中心磁場を発生させ、このコイルの出す高次の 磁場をコイル層の比較的内側を構成しているコイルを使って、補正するの が効率がよい。  Next, the optimal arrangement of each coil will be described. In order to obtain the uniformity of the magnetic field required for protein analysis while maintaining the central magnetic field, a central magnetic field is generated by a coil constituting the relatively outer side of the coil layer. It is efficient to correct the magnetic field using a coil that forms a relatively inner part of the coil layer.
なぜなら、前記〔式 1〕より、原点とコイル中心との距離 fが小さいほど高次 の磁場が大きくなるため、電流量が少ないコイルでも補正可能だからである 。また、中心軸に近い位置にあるコイル層を、複数のコイルに分割すること で、 fが比較的小さい領域で、コイルの電流の向きや大きさ、コイル配置等 の組合わせの自由度が増えるために、少ない電流量でより正確な磁場の 調整ができるようになる。し力、し、コイル数が増えると作製にも手間がかかリ 、コストも増える。 This is because, from the above [Equation 1], since the higher-order magnetic field becomes larger as the distance f between the origin and the coil center becomes smaller, it is possible to correct even a coil having a small amount of current. In addition, by dividing the coil layer near the center axis into multiple coils, the direction and magnitude of coil current, coil arrangement, etc. can be adjusted in a region where f is relatively small. Since the degree of freedom of the combination of the magnetic field increases, the magnetic field can be adjusted more accurately with a small amount of current. As the number of coils increases, the time and effort required for fabrication increases, and the cost also increases.
タンパク質の解析に必要な磁場の均一度を得つつ、コイル数が減らせる ようなコイル配置を次に考える。  Next, consider a coil arrangement that can reduce the number of coils while obtaining the uniformity of the magnetic field required for protein analysis.
前記〔式 1〕より、余分な高次の磁場を発生させないために、コイルは原点 力、らある程度離した位置に配置するのがよい。原点からコイルまで、ある程 度距離を保っために、コイルの中心軸を通る断面上で見た時に、マイナス 方向に通電されたコイルの断面のほぼ中心が、円または楕円状になるょゔ に配置する。  According to the above [Equation 1], the coil is preferably arranged at a position somewhat away from the origin force so as not to generate an extra high-order magnetic field. In order to keep a certain distance from the origin to the coil, when viewed on a cross-section passing through the center axis of the coil, the center of the cross-section of the coil that is energized in the minus direction will have a circular or elliptical shape. Deploy.
〔式 1〕より、磁場は原点とコイル中心を結んだ直線と、その直線と z軸の 角度 αに依存する性質を持つ。 ζ軸からの角度 α力 ほぼ同程度の位置 に配置されたコイルが複数個あると、それらのコイルによって発生する磁場 は原点からの距離 fの組合せによってのみ決まるため、コイルの組合せによ る磁場の調整がし易くなる。これによつて、コイルの中心軸を通る断面上で 見た時に、マイナス方向に通電されたコイル断面のほぼ中心を、円または 楕円状に配置し、その円または楕円の半径方向外側、または、外側と内 側にマイナス方向に通電されたコイルと同じ程度の を持つ位置に、プラス 方向に通電されたコイルの断面が来るように配置する。 ' その結果、中心軸を通る断面で見た時に、マイナス方向に通電されたコ ィルの断面が配置されている円または楕円状の外側、或いは、外側と内側 に、プラス方向に通電されたコイルの断面を円または楕円状に配置すると、 少ないコイル数で高次の磁場の打消しが効率良〈できるようになる。  From [Equation 1], the magnetic field has a property that depends on the straight line connecting the origin and the coil center, and the angle α between the straight line and the z-axis. Angle α from ζ axis α force If there are multiple coils placed at approximately the same position, the magnetic field generated by those coils is determined only by the combination of the distance f from the origin, so the magnetic field generated by the combination of coils Adjustment becomes easier. As a result, when viewed on a cross-section passing through the center axis of the coil, the center of the cross-section of the coil energized in the negative direction is arranged in a circle or an ellipse, and the outside of the circle or the ellipse in the radial direction, or Arrange so that the cross section of the coil that is energized in the positive direction comes to a position that has the same degree as the coil that is energized in the negative direction on the outside and the inside. '' As a result, when viewed in a cross-section passing through the central axis, the coil was energized in the positive or negative direction outside or inside and outside the circle or ellipse where the cross-section of the coil was energized in the negative direction. By arranging the cross section of the coil in a circular or elliptical shape, it becomes possible to efficiently cancel high-order magnetic fields with a small number of coils.
また、マイナス方向に通電されたコイルは中心磁場と逆向きの磁場を作 る。そのため、均一度を得るためマイナス方向に通電されたコイルを使うと、 NMR計測のための主磁場が打ち消され、それを捕うためにプラス電流のコ ィルを大きくしなければならず、マグネット全体のサイズが大きくなる。 In addition, a coil that is energized in the negative direction creates a magnetic field that is opposite to the central magnetic field. Therefore, if a coil that is energized in the negative direction is used to obtain uniformity, the main magnetic field for NMR measurement is canceled, and a positive current coil is used to capture it. The size of the magnet must be increased, which increases the size of the entire magnet.
マイナス方向に通電されたコイルを用いて、タンパク質の構造解析に必要 な均一度を得て、かつ、マイナス方向に通電されたコイルが作る中心磁場 と反対向きの磁場を最小限に抑え、マグネット全体のサイズを小さくするた めには、マイナス方向に通電されたコイルを、磁場発生位置付近に集中さ せる。  Using a coil that is energized in the negative direction, it obtains the homogeneity required for protein structural analysis, and minimizes the magnetic field in the opposite direction to the central magnetic field created by the coil that is energized in the negative direction. In order to reduce the size of the coil, the coils energized in the minus direction are concentrated near the position where the magnetic field is generated.
これを式(1 )を使って説明する。原点からの距離 f、電流一 Iに通電された コイルが発生する 0次の z方向の磁場 と、 2次の z方向の磁場 B2は、そ れぞれ次式で表される。 This will be described using equation (1). Distance from the origin f, and the magnetic field of zero order in the z direction in which the coil is energized to the current one I generated, the magnetic field B 2 of the second-order z-direction, respectively Re its Re is expressed by the following equation.
【数 6】 [Equation 6]
Bo =—( z。 I sina〉/2) P!^cos ) Po(cos0) (1/f ) "· 〔式 6〕 Bo = — (z. I sina> / 2) P! ^ Cos) P o (cos0) (1 / f) "· [Equation 6]
B2 = -( O Isina)/2) P 3 1 (cos a) P 3(cos ) (r Vf 3) B 2 =-(O Isina) / 2) P 3 1 (cos a) P 3 (cos) (r Vf 3 )
… 〔式 7〕 ここで、原点からの距離 2fのコイルで、同じ 2次の磁場 B2を発生させると する。それに必要な電流の大きさドは、 ... [Equation 7] Here, the coil of the distance 2f from the origin to generate the same second-order magnetic field B 2. The amount of current required for that is
【数 7】 [Equation 7]
— (/i。 sina)/2)P3 1(cosa)P2(cos0〉(r2/<2i) 3) — (/ I. Sina) / 2) P 3 1 (cosa) P 2 (cos0> (r 2 / <2i) 3 )
= -(jti0 Isina)/2)P3 1(cosa)P2(cos0)(r f 8)=-(jti 0 Isina) / 2) P 3 1 (cosa) P 2 (cos0) (rf 8 )
… 〔式 8〕… [Equation 8]
I ' =8 I となり、.原点からの距離が 2倍になると同じ磁場 B2を作るために、 8倍の電 流が必要となることが分かる。また、この時、このコイルが作る中心磁場と逆 向きの磁場 B。'は、 【数 8】 I '= 8 I, which means that when the distance from the origin is doubled, eight times the current is needed to create the same magnetic field B 2 . At this time, a magnetic field B in the opposite direction to the central magnetic field created by this coil. ' [Equation 8]
B0'=—( 。 8 Isina)/2)P1 1(cos )Po(cos0) (1/2 f ) = 4Ββ B 0 '= — (.8 Isina) / 2) P 1 1 (cos) P o (cos0) (1/2 f) = 4Β β
… 〔式 9〕 となり、原点からの距離が 2fのコイルが作る中心磁場と反対向きの磁場の 大きさは、原点からの距離 fのコイルが作る中心磁場と反対向きの磁場の 大きさの 4倍となる。  … [Equation 9], and the magnitude of the magnetic field in the direction opposite to the central magnetic field created by the coil whose distance from the origin is 2f is 4 times the magnitude of the magnetic field in the direction opposite to the central magnetic field created by the coil at the distance f from the origin. Double.
よって、マイナス方向に通電されたコイルの電流量を減らすため、かつ、 中心磁場と反対向きの磁場を小さくし、マグネット全体のサイズを小さくする ため、マイナス方向に通電されたコイルは、なるべく原点に近い位置に配置 する。  Therefore, in order to reduce the amount of current of the coil that is energized in the minus direction, and to reduce the magnetic field in the direction opposite to the central magnetic field and reduce the size of the entire magnet, the coil that is energized in the minus direction should be as close to the origin as possible. Place it near.
以上に述べてきたコイル配置力、直径 1 cm~2cm程度の空間に 1 ppb オーダ一の均一度を持った 1 OT以上の強磁場を発生させるためには、磁 場の性質上最も適しており、核磁気共鳴用マグネットのコイル配置に適して いる。  In order to generate a strong magnetic field of 1 OT or more with a uniformity of the order of 1 ppb in a space with a coil diameter of about 1 cm to 2 cm as described above, it is most suitable due to the properties of the magnetic field. It is suitable for the coil arrangement of the magnet for nuclear magnetic resonance.
〔実施例 1〕  (Example 1)
図 1は、スプリット型マグネットを使用した NMR装置の概略断面図である。 ソレノイド型の超電導マグネット 1が水平方向に置かれており、装置上部か ら挿入され、鉛直方向に置かれたタンパク質試料の溶液サンプル 9に、横 方向から磁場が印加される。  FIG. 1 is a schematic sectional view of an NMR apparatus using a split type magnet. A solenoid type superconducting magnet 1 is placed in the horizontal direction, inserted from the top of the apparatus, and a magnetic field is applied to the solution sample 9 of the protein sample placed in the vertical direction from the lateral direction.
NMR信号の検出には、常温保持された銅製のソレノイド型プローブコイル 8、または、 5〜20Kに冷却された Y系または MgB2からなるソレノイド型プロ —ブコイル 8が用いられる。 For the detection of the NMR signal, a copper solenoid type probe coil 8 kept at room temperature or a Y type or MgB 2 solenoid type probe coil 8 cooled to 5 to 20K is used.
超電導マグネット 1は、永久電流スィッチ 5によって、永久電流モードに保 たれてぉリ、超電導マグネット 1を形成するそれぞれのコイルは、超電導接 続 6によって接続され、保護回路 4によってクェンチ時に焼失しないよう保 護されている。 超電導マグネット 1は、その冷却手段である液体ヘリウム 3に浸潰されて 低温に保持され、外側を液体窒素 2で覆う二重構造として、ヘリウムの消 費を節約する低温容器で構成されている。また、防振支持脚 7によって、 外部の振動が超電導マグネット 1に伝わらないようにしてある。 The superconducting magnet 1 is maintained in the persistent current mode by the persistent current switch 5, and the respective coils forming the superconducting magnet 1 are connected by the superconducting connection 6 and protected by the protection circuit 4 from burning out during quenching. Protected. The superconducting magnet 1 is immersed in liquid helium 3 as a cooling means, is kept at a low temperature, and has a double structure covered with liquid nitrogen 2 and is constituted by a low-temperature container for saving helium consumption. In addition, the anti-vibration support leg 7 prevents external vibration from being transmitted to the superconducting magnet 1.
〔実施例 21 (Example 21
図 1 5は、本実施例によるスプリット型マグネットのボビンに巻かれたコイル の斜視図である。超電導コイル 93〜1 00は、それぞれポビンに巻回されて いる。ポビン中央部の空間をボアと呼び、径の大きなポビンのポアの中に径 の小さなポビン入れ、また、そのポアの中にさらに小さな径のポビンが入った 、入れ子構造をとつており、各超電導コイルはそれぞれの位置を保っている 。図 4は、ポビンを省略し超電導コイルのみを示す斜視図である。  FIG. 15 is a perspective view of a coil wound around a bobbin of the split magnet according to the present embodiment. The superconducting coils 93 to 100 are wound around pobins, respectively. The space in the center of the pobin is called a bore, and a small-diameter pobin is placed in the pore of a large-diameter pobin, and a nested structure with a smaller-diameter pobin is placed in the pore. The coils maintain their position. FIG. 4 is a perspective view showing a superconducting coil without a pobin.
マグネットの中心軸 23をほぼ中心となるように巻回された複数の超電導 コイル 1 6, 1 7, 1 8, 1 9, 20, 21 , 22カヽらなるコイル群が、ギャップを隔て て、左右ほぼ鏡面対称になるように配置されている。ギャップとポアの交差 する位置に横方向の均一磁場が形成される。  A group of a plurality of superconducting coils 16, 17, 18, 19, 20, 21, and 22, wound around the center axis 23 of the magnet substantially at the center, is separated by a gap. They are arranged so as to be almost mirror-symmetric. A uniform transverse magnetic field is formed at the intersection of the gap and the pore.
図 4の中心軸を通る断面上で見たものが図 1 6である。超電導コイル 1 07 , 1 08は、中心軸方向に巻線部が重なるように配置されている。このマグネ ットを形成する超電導コイル 20, 22力、逆電流コイルである。  FIG. 16 is a cross-sectional view taken along the center axis of FIG. The superconducting coils 107 and 108 are arranged such that the windings overlap in the central axis direction. The superconducting coils 20, 22 and the reverse current coils that form this magnet.
このように逆電流コイルを用いることで、効率よく均一磁場を得ることがで き、マグネット全体のコイル数が低減され、それぞれのコイルの大きさを小さ くすることができるため、設置性に優れた装置を安価に提供できることにな る。  By using the reverse current coil in this way, a uniform magnetic field can be obtained efficiently, the number of coils in the entire magnet can be reduced, and the size of each coil can be reduced. Equipment can be provided at low cost.
また、マグネットの中心軸 23を通る断面上でコイル断面を見た時に、超 電導コイル断面の中心と原点を結ぶ直線と、中心軸との角度を αと定義 すると、超電導コイル 20, 22はびく 2、または、 1くひく 2の位置に 配置され、他の超電導コイルが作る 2次の不整磁場、または、他の超電導 コイルが作る 2次の不整磁場と 4次の不整磁場を打ち消している。 When the coil section is viewed on a section passing through the center axis 23 of the magnet, the angle between the center axis and the straight line connecting the center of the section of the superconducting coil and the origin is defined as α. 2 or 1 is located at 2 position and another superconducting coil creates a secondary irregular magnetic field or other superconducting It cancels out the second and fourth order magnetic fields created by the coil.
このような構成にすることで、スプリット型マグネットでも従来のソレノイド型 マグネットと同等以上の、非常に均一な磁場を発生することができる。 以上の実施例 1, 2に、本発明によるスプリット型コイル構成を用いたマグ ネットによる NMRシステムの概説と、マグネットを示した。以下の実施例では With such a configuration, it is possible to generate a very uniform magnetic field equal to or more than that of the conventional solenoid type magnet even with the split type magnet. In the first and second embodiments, an outline of a magnet-based NMR system using the split coil configuration according to the present invention and a magnet are shown. In the following example
、 NMRシステムの中で、超電導コイルの構成方法のみを開示した実施例 を、マグネットの中心軸を通る断面図を使って示す。 An embodiment in which only a method of configuring a superconducting coil in an NMR system is disclosed using a cross-sectional view passing through a center axis of a magnet.
〔実施例 3〕  (Example 3)
図 5は、本実施例における中心軸を通る断面上で見た超電導コイル断 面の配置を示す模式断面図である。  FIG. 5 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil as viewed on a cross-section passing through the central axis in the present embodiment.
超電導コイル 24〜34および 24 '〜34 'は、水平方向のマグネットの中心 軸 35に対しほぼ同心に配置され、左右のコイル群は、ほぼ共通な中心軸 に対して巻回されており、垂直な中央面に対してはほぼ鏡面対称に配置し ている。  The superconducting coils 24 to 34 and 24 'to 34' are arranged substantially concentrically with respect to the central axis 35 of the horizontal magnet, and the left and right coil groups are wound around a substantially common central axis, and It is arranged almost mirror-symmetrical with respect to the central plane.
左右の超電導コイル群の中心軸に近いコイルは、 中心軸方向に卷線部 が重なるように、それぞれ2個以上の超電導コィル28〜34 (28 '〜34 ' ) が配置されている。このように、均一磁場空間に近い位置にあるコイルを細 かく分け、位置や大きさを調整することで、均一磁場が得られ易くなる。超 電導コイル 32と 34は、逆電流コイルであり、それぞれ、 orく 2、または、 1く αく 2の位置に配置されて、他の超電導コイルが作る 2次の不整 磁場、または、他の超電導コイルが作る 2次の不整磁場と 4次の不整磁場 とを打ち消している。  Two or more superconducting coils 28 to 34 (28 'to 34') are arranged so that the coils close to the central axis of the left and right superconducting coil groups overlap each other in the central axis direction. In this way, a coil located at a position close to the uniform magnetic field space is finely divided and its position and size are adjusted, so that a uniform magnetic field can be easily obtained. The superconducting coils 32 and 34 are reverse current coils, which are arranged at positions of or 2 and 1 and α, respectively, so that the second-order irregular magnetic field generated by the other superconducting coils or other It cancels out the second and fourth order magnetic fields created by the superconducting coil.
また、超電導コイル 27, 28, 29, 30, 31の内の少ヽなくとも一つは、 < 1の領域に配置され、他の超電導コイルが作る 4次の不整磁場を打ち消 している。  At least one of the superconducting coils 27, 28, 29, 30, and 31 is arranged in a region of <1, and cancels the fourth-order irregular magnetic field created by the other superconducting coils.
これにより、マグネット全体の不整磁場を効率よく打ち消すことができ、コィ ル中心位置に 1 p p bオーダ一で均一な磁場を形成し、微弱な核磁気共鳴 のシグナルを明確に測定できるようになり、タンパク質の搆造解析が可能と なる。 This makes it possible to efficiently cancel the irregular magnetic field of the entire magnet, A uniform magnetic field is formed at the order of 1 ppb at the center of the nucleic acid, which makes it possible to clearly measure weak nuclear magnetic resonance signals, enabling the analysis of protein structure.
〔実施例 4〕  (Example 4)
図 6は、本実施例における中 軸を通る断面上で見た超電導コイル断 面の配置を示す模式断面図である。  FIG. 6 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil as viewed on a cross-section passing through the center axis in the present embodiment.
超電導コイリレ 36~43および 36 '〜43 'は、水平方向の中心軸に対して ほぼ同心に配置され、左右のコイル群はほぼ共通な中心軸に対して卷線さ れており、垂直な中央面に対してほぼ鏡面対称に配置している。  The superconducting coillets 36 to 43 and 36 'to 43' are arranged almost concentrically with respect to the horizontal center axis, and the left and right coil groups are wound around a substantially common center axis. They are arranged almost mirror-symmetric with respect to the plane.
左右の超電導コイル群の中心軸に近いコイルは、中心軸方向に巻線部 が重なりを持つように配置されており、それぞれ 2個以上の超電導コイル 39 〜43によって構成されている。超電導コイル 39, 40は、均一磁場を得や すくするために中心軸方向に分割されている。  The coils close to the central axis of the left and right superconducting coil groups are arranged so that the windings overlap in the central axis direction, and each is composed of two or more superconducting coils 39 to 43. The superconducting coils 39, 40 are divided in the direction of the central axis in order to easily obtain a uniform magnetic field.
この内の超電導コイル 41と 42は逆電流コイルであり、それぞれ、 orく 2 、または、 1 < < 2の位置に配置され、他の超電導コイルが作る 2次 の不整磁場、または、他の超電導コイルが作る 2次の不整磁場と 4次の不 整磁場とを打ち消している。  Of these, superconducting coils 41 and 42 are reverse current coils, which are located at or or 2 or 1 <<2, respectively, and the secondary irregular magnetic field created by other superconducting coils or other superconducting coils It cancels out the second and fourth order magnetic fields created by the coil.
また、超電導コイル 39, 40, 43の内の少なくとも一つは、 く 1の領 域に配置され、他の超電導コイルが作る 4次の不整磁場を打ち消している これにより、マグネット全体の不整磁場を効率よく打ち消すことができ、コィ ル中心位置に 1 ppbオーダーで均一な磁場を形成している。  In addition, at least one of the superconducting coils 39, 40, and 43 is arranged in the first region, and cancels the fourth-order irregular magnetic field created by the other superconducting coils. Efficient cancellation is possible, and a uniform magnetic field of 1 ppb order is formed at the center of the coil.
また、コイルの中心軸を通る断面で見た時に、コイル 41 , 41および 42, 4 2の断面は、ある共通の円または楕円の弧に重なるように配置されている。 このように磁場発生位置から、ある程度の距離を保つことで、余分な高次 の不整磁場の発生を防いでいる。 また、コイル 41, 41 'および 42, 42 'のコイル断面が配置されている円ま たは楕円よりも、内側の領域に配置された超電導コイル 43は、さらに高次 の磁場を補正している。このような配置にすることで、均一な磁場を効率よ く発生させること力《できる。 Further, when viewed in a cross section passing through the center axis of the coil, the cross sections of the coils 41, 41 and 42, 42 are arranged so as to overlap a common circular or elliptical arc. By maintaining a certain distance from the magnetic field generation position in this way, the generation of extra high-order irregular magnetic fields is prevented. Also, the superconducting coil 43 arranged in the area inside the circle or ellipse in which the coil cross sections of the coils 41, 41 'and 42, 42' are arranged corrects higher-order magnetic fields. . With such an arrangement, it is possible to generate a uniform magnetic field efficiently.
〔実施例 5〕 (Example 5)
本実施例では、磁場の性質に着目し、効率よく均一磁場を得るためのコ ィル配置を示す。図 7は、本実施例におけるスプリット型マグネットの中心軸 を通る断面上で見た、超電導コイル断面の配置を示す模式断面図である 超電導コィノレ 44〜52および 44 '〜52 'は、水平方向の中心軸に対して ほぼ同心に配置されており、左右のコイル群は、ほぼ共通の中心軸に対し て巻線されており、中央面に対してギャップを挟んで、ほぼ鏡面対称に配 置されている。  This embodiment focuses on the properties of the magnetic field, and shows a coil arrangement for efficiently obtaining a uniform magnetic field. FIG. 7 is a schematic cross-sectional view showing the arrangement of the cross section of the superconducting coil as viewed on a cross section passing through the central axis of the split magnet in this embodiment.The superconducting coils 44 to 52 and 44 'to 52' The coils are arranged substantially concentrically with respect to the central axis, and the left and right coil groups are wound with respect to a substantially common central axis, and are arranged substantially mirror-symmetrically with a gap interposed between the central planes. ing.
左右の超電導コイル群の中心軸に近いコイルは、中心軸方向に卷線部 が重なるように配置された複数の超電導コイル 48〜52によって構成され ており、この内超電導コイル 49, 49 'および 50, 50 'は、逆電流コイルであ り、それぞれ、 くひ 2、または、 1 < ひ < 2に配置されている。  The coil close to the central axis of the left and right superconducting coil groups is composed of a plurality of superconducting coils 48 to 52 arranged so that the windings overlap in the central axis direction. , 50 ′ are reverse current coils, which are arranged in the order of 2 or 1 <2.
これにより、他の超電導コイルが作る 2次の不整磁場、または他の超電導 コイルが作る 2次の不整磁場および 4次の不整磁場を打ち消している。 超電導コイル 47, 48, 51 , 52の内の少なくとも一つは、 く 1の領域 に配置され、他の超電導コイルが作る 4次の不整磁場を打ち消している。こ れにより、マグネット全体の不整磁場を効率よく打ち消すことができ、コイル 中心位置に 1 ppbオーダ一で均一な磁場を形成している。  This cancels out the second-order irregular magnetic field created by other superconducting coils, or the second and fourth-order irregular magnetic fields created by other superconducting coils. At least one of the superconducting coils 47, 48, 51, and 52 is located in one area, and cancels the fourth-order irregular magnetic field created by the other superconducting coils. As a result, the irregular magnetic field of the entire magnet can be effectively canceled, and a uniform magnetic field is formed at the coil center position on the order of 1 ppb.
また、コイルの中心軸を通る断面でコイルの断面を見た時に、超電導 jィ ル 49, 49 ' , 50, 50 'の断面は、ある共通の円または楕円の弧に重なるよ うに配置されている。そして、その円または楕円の外側に超電導コイル 46, 46 ' , 47, 47 ' , 48, 48 'の断面力 ある円または楕円の弧に重なるよう に配置され、内側に超電導コイル 51, 51 ', 52, 52 'の断面が、ある円ま たは楕円の弧に重なるように配置されている。 Also, when the cross section of the coil is viewed along a cross section passing through the center axis of the coil, the cross section of the superconducting jir 49, 49 ', 50, 50' is arranged so as to overlap a common circular or elliptical arc. I have. And the superconducting coil 46, outside the circle or ellipse 46 ', 47, 47', 48, 48 'sectional force The superconducting coils 51, 51', 52, 52 'are arranged so as to overlap with the arc of a circle or ellipse. It is arranged to overlap the arc of the ellipse.
このように、中心軸を通る断面上で、コイル断面が円または楕円状に配 置されている超電導コイルを、通電電流方向が互いに逆向きになるように、 円または楕円の半径方向に交互に配置することで、効率的に高次の磁場 まで打ち消すことが可能になり、均一な磁場を発生させることができる。 核磁気共鳴の計測に必要な、 1 ppbオーダ一の均一度を持った 1 0T以 上の強磁場を、直径 1 err!〜 2cm程度の空間に、効率よく発生させるため には、磁場の性質上このような配置が適している。  In this way, the superconducting coils whose coil cross sections are arranged in a circle or an ellipse on a cross section passing through the central axis are alternately arranged in the radial direction of the circle or the ellipse so that the directions of the flowing currents are opposite to each other. By arranging them, it is possible to efficiently cancel even higher-order magnetic fields, and a uniform magnetic field can be generated. A strong magnetic field of 10T or more with a uniformity of the order of 1 ppb required for nuclear magnetic resonance measurement, with a diameter of 1 err! Such an arrangement is suitable for efficient generation in a space of about 2 cm due to the nature of the magnetic field.
〔実施例 6〕 (Example 6)
本実施例では、マグネットを製作し易くするため、コイル数がなるベぐ少なく 、かつ、効率よく均一磁場を得るためのコイル配置を示す。図 8は、本実施 例における中心軸を通る断面上で見た超電導コイル断面の配置を示す模 式断面図である。  In the present embodiment, a coil arrangement for obtaining a uniform magnetic field efficiently and with a very small number of coils is shown to facilitate the manufacture of the magnet. FIG. 8 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil as viewed on a cross-section passing through the central axis in the present embodiment.
超電導コイル 53〜59および 53 '〜59 'は、水平方向の中心軸に対して ほぼ同心に配置され、左右のコイル群はほぼ共通の中心軸に対して巻線さ れており、中央面に対してギャップを挟んで、ほぼ鏡面対称に配置されてい る。  The superconducting coils 53 to 59 and 53 'to 59' are arranged almost concentrically with respect to the center axis in the horizontal direction, and the left and right coil groups are wound around a substantially common center axis. On the other hand, they are arranged almost mirror-symmetrically with a gap in between.
左右の超電導コイル群の超電導コイル 57, 58は中心軸に沿って巻線部 が重なるように配置されている。超電導コイル 58, 59は逆電流コイルであり 、それぞれ、 びくひ 2、または、 び1く く 2に配置されており、他の超電 導コイルが作る 2次の不整磁場、または、他の超電導コイルが作る 2次の 不整磁場と 4次の不整磁場とを打ち消している。  The superconducting coils 57, 58 of the left and right superconducting coil groups are arranged such that the windings overlap along the central axis. The superconducting coils 58 and 59 are reverse current coils, which are respectively arranged in the second and / or first two, and the second irregular magnetic field generated by the other superconducting coils or other superconducting coils. It cancels out the second and fourth order magnetic fields created by the coil.
また、超電導コイル 56、 57の内の少なくとも一つはびく《1に配置されて おり、他の超電導コイルが作る 4次の不整磁場を打ち消している。これによ リ、マグネット全体の不整磁場を効率よく打ち消すことができ、コイル中心位 置に 1 ppbオーダーで均一な磁場を形成している。 In addition, at least one of the superconducting coils 56 and 57 is arranged in a vibrating << 1 to cancel the fourth-order irregular magnetic field created by the other superconducting coils. This (4) The irregular magnetic field of the entire magnet can be effectively canceled, and a uniform magnetic field of the order of 1 ppb is formed at the center of the coil.
また、コイルの中心軸を通る断面でコイル断面を見た時に、超電導コイル 58, 58 'および 59, 59 'の断面は、ある共通の円または楕円の弧に重な るように配置されてしヽる。そして、その外 fflに超電導コイリレ 55, 55 ', 56, 5 6 ' , 57, 57 'の断面は、ある円または楕円の弧に重なるに配置されている 。これにより、より少ないコイル数で、マグネット全体の不整磁場を効率よく 打ち消している。  Also, when the cross section of the coil is viewed along a cross-section passing through the center axis of the coil, the cross sections of the superconducting coils 58, 58 'and 59, 59' are arranged so as to overlap a common circular or elliptical arc. Puru. In addition, the cross section of the superconducting coil 55, 55 ', 56, 56', 57, 57 'on the ffl is arranged so as to overlap the arc of a certain circle or ellipse. As a result, the irregular magnetic field of the entire magnet is efficiently canceled with a smaller number of coils.
また、逆電流コイル 58, 59は、その他の超電導コイルよりも磁場発生位 置に近い位置に配置されている。これにより、逆電流コイルが作る中心磁 場と反対向きの磁場の大きさが小さくでき、マグネット全体のサイズを小さく することができる。  The reverse current coils 58 and 59 are located closer to the magnetic field generation position than the other superconducting coils. Thus, the magnitude of the magnetic field in the direction opposite to the central magnetic field created by the reverse current coil can be reduced, and the size of the entire magnet can be reduced.
このような配置にすることで、少ないコイル数でもコイル中心位置に 1 ppb オーダ一で均一な磁場を形成することができ、さらにマグネットの大きさを小 さくすることができる。  With such an arrangement, even with a small number of coils, a uniform magnetic field can be formed at the coil center position on the order of 1 ppb, and the size of the magnet can be further reduced.
〔実施例 7〕 (Example 7)
本実施例では、最も実現性が高く、マグネットを製作しやすくするため、コ ィル数がなるベぐ少な かつ、効率よく均一磁場を得るためコイル配置を 示す。図 9は、本実施例における中心軸を通る断面上で見た超電導コイル 断面の配置を示す模式断面図である。  In the present embodiment, the coil arrangement is shown in order to obtain a uniform magnetic field efficiently and with the smallest number of coils in order to obtain the most feasible and easy to manufacture magnets. FIG. 9 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil as viewed on a cross-section passing through the central axis in the present embodiment.
超電導コイリレ 60〜66および 60 ' ~66 'は、水平方向の中心軸に対して ほぼ同心に配置され、左右のコイル群はほぼ共通の中心軸に対して卷線さ れており、中央面に対してギャップを挟んで、ほぼ鏡面対称に配置している 左右の超電導コイル群の超電導コイル 64, 65は中心軸に沿って、卷線 部が重なるように配置されている。超電導コイル 65, 66は逆電流コイルで あり、それぞれ、 or < 2、または、 び 1 < く 2に配置されており、他の 超電導コイルが作る 2次の不整磁場、または、他の超電導コイルが作る 2 次の不整磁場と 4次の不整磁場とを打ち消している。 The superconducting coils 60-66 and 60'-66 'are arranged almost concentrically with respect to the horizontal center axis, and the left and right coil groups are wound around a substantially common center axis. On the other hand, the superconducting coils 64 and 65 of the left and right superconducting coil groups, which are arranged almost mirror-symmetrically with a gap therebetween, are arranged so that the winding portions overlap each other along the central axis. Superconducting coils 65 and 66 are reverse current coils Are located at or <2 or 1 and <2, respectively, and the second-order irregular magnetic field created by another superconducting coil, or the second-order irregular magnetic field created by another superconducting coil and the fourth-order It cancels out the irregular magnetic field.
また、超電導コイル 63, 64の少な〈とも一つは < 1に配置されており 、他の超電導コイルが作る 4次の不整磁場を打ち消している。また、コイル の中心軸を通る断面上で、超電導コイル 65, 65 'および 66, 66 'の断面 は、ある共通の円または楕円の弧に重なるように配置されている。  In addition, at least one of the superconducting coils 63 and 64 is arranged at <1, thereby canceling the fourth-order irregular magnetic field created by the other superconducting coils. Also, on a cross section passing through the center axis of the coil, the cross sections of the superconducting coils 65, 65 'and 66, 66' are arranged so as to overlap a common circular or elliptical arc.
このように、均一磁場空間からある程度距離を保つことで余分な高次の 不整磁場の発生を防ぐ。そして、その外側に超電導コイル 62, 62 ', 63, 63 ', 64, 64 'の断面が、ある円または楕円の弧に重なるように配置され ている。  In this way, by maintaining a certain distance from the uniform magnetic field space, the generation of extra high-order irregular magnetic fields is prevented. The cross section of the superconducting coils 62, 62 ', 63, 63', 64, 64 'is arranged outside thereof so as to overlap a certain circle or ellipse arc.
これにより、より少ないコイル数で、マグネット全体の不整磁場を効率よく 打ち消すことができ、コイル中心位置に 1 ppbオーダ一で均一な磁場を形 成している。  As a result, the irregular magnetic field of the entire magnet can be efficiently canceled with a smaller number of coils, and a uniform magnetic field is formed at the coil center position on the order of 1 ppb.
また、逆電流コイル 65, 66は、その他の超電導コイルよりも磁場発生位 置に近い位置に配置されている。これにより、逆電流コイルが作る中心磁 場と、反対向きの磁場の大きさが小さくでき、マグネット全体のサイズを小さ 〈することができる。  The reverse current coils 65 and 66 are located closer to the magnetic field generation position than the other superconducting coils. As a result, the magnitude of the central magnetic field generated by the reverse current coil and the magnitude of the magnetic field in the opposite direction can be reduced, and the size of the entire magnet can be reduced.
また、コイルの中心軸から遠い距離にある超電導コイル 60は、主磁場と 同じ向きの磁場を作っており、 2く α、または、 3く に配置されてい て、他の超電導コイルが作る 2次の不整磁場、または、他の超電導コイル が作る 2次の不整磁場と 4次の不整磁場とを打ち消している。  Also, the superconducting coil 60, which is far from the center axis of the coil, creates a magnetic field in the same direction as the main magnetic field, and is arranged at 2 or α or 3 so that the secondary It cancels out the irregular magnetic field of, or the secondary and tertiary magnetic fields created by other superconducting coils.
超電導コイル 60をこのように配置すれば、磁場発生位置に近い位置にあ るマイナス方向に通電されたコイルと同じ働きをするため、マイナス方向の 電流量を小さくすることができる。よって、マイナス方向の電流が作る中心 磁場と逆向きの磁場を小さくすることができ、マグネットのサイズを小さくする ことができる。 By arranging the superconducting coil 60 in this manner, the coil has the same function as a coil that is energized in the negative direction near the position where the magnetic field is generated, so that the amount of current in the negative direction can be reduced. Therefore, the magnetic field in the opposite direction to the central magnetic field generated by the negative current can be reduced, and the size of the magnet is reduced. be able to.
〔実施例 8〕 (Example 8)
NMR装置は、漏洩磁場が小さいことが望ましい。従って、漏洩磁場のシ 一ルド方法を含めた本発明の実施例を次に示す。図 1 0は、本実施例にお ける中心軸を通る断面上で見た超電導コイル断面の配置を示す模式断 面図である。  It is desirable that the NMR apparatus has a small leakage magnetic field. Therefore, an embodiment of the present invention including the method of shielding the leakage magnetic field will be described below. FIG. 10 is a schematic cross-sectional view showing an arrangement of a cross section of the superconducting coil as viewed on a cross section passing through the central axis in the present embodiment.
超電導コイル 1 60〜1 66はマグネット中央に均一な磁場を発生する。本 実施例では、超電導コイル 1 65と 1 66力《逆電流コイルであり、マグネット全 体で I ppbオーダ一の均一な磁場を発生している。超電導コイル 1 67, 1 6 7 'はアクティブシールドコイルであって、外部へ磁場の漏れを小さく抑制し ている。  The superconducting coils 160 to 166 generate a uniform magnetic field at the center of the magnet. In the present embodiment, the superconducting coils 165 and 166 are << reverse current coils, and generate a uniform magnetic field of the order of I ppb over the entire magnet. The superconducting coils 1 67 and 16 7 ′ are active shield coils, which minimize the leakage of the magnetic field to the outside.
〔実施例 9〕 (Example 9)
図 1 1は、本実施例における中心軸を通る断面上で見た超電導コイル断 面の配置をおよび漏洩磁場シールドのための強磁性体を示す模式断面図 である。超電導コイル 1 73~ 1 79はマグネット中央に均一な磁場を発生す る。本実施例では超電導コイル 1 78と 1 79力《逆電流コイルである。  FIG. 11 is a schematic cross-sectional view showing the arrangement of the cross-section of the superconducting coil and the ferromagnetic material for the leakage magnetic field shield as viewed on a cross-section passing through the central axis in the present embodiment. The superconducting coils 173 to 179 generate a uniform magnetic field at the center of the magnet. In this embodiment, the superconducting coils 178 and 179 are << reverse current coils.
円筒状強磁性体 1 71および円盤状強磁性体 1 72は磁路を形成し、超 電導コイル群が発生する磁場が外部に漏れるのを抑制している。  The cylindrical ferromagnetic material 171 and the disk-shaped ferromagnetic material 172 form a magnetic path, and suppress the leakage of the magnetic field generated by the superconducting coil group to the outside.
〔実施例 1 0〕  (Example 10)
図 1 2は、本実施例における中心軸を通る断面上で見た超電導コイル断 面の配置をおよび漏洩磁場シールドのための強磁性体を示す模式断面図 である。超電導コイル 1 84〜1 88はマグネット中央に均一な磁場を発生す る。均一磁場空間に最も近い超電導コイル 1 88が逆電流コイルである。逆 電流コイルの数は少ないほうが、中心磁場の打消しが少ないため全体とし てマグネットのサイズを小さくできる。超電導コイル 1 86と 1 87は磁場の調整 のため分割されている。 超電導コイル 1 83、 1 82は磁場が半径方向外側に漏れることを抑制し、 円盤状強磁性体 1 81は、磁場が軸方向に漏れることを抑制している。 〔実施例 1 1〕 FIG. 12 is a schematic cross-sectional view showing the arrangement of the cross-sections of the superconducting coil as viewed on a cross-section passing through the central axis and a ferromagnetic material for a leakage magnetic field shield in the present embodiment. The superconducting coils 184-188 generate a uniform magnetic field at the center of the magnet. The superconducting coil 188 closest to the uniform magnetic field space is a reverse current coil. The smaller the number of reverse current coils, the less the cancellation of the central magnetic field, and the smaller the size of the magnet as a whole. The superconducting coils 186 and 187 are split for adjusting the magnetic field. The superconducting coils 183, 182 prevent the magnetic field from leaking outward in the radial direction, and the disc-shaped ferromagnetic material 181 suppresses the magnetic field from leaking in the axial direction. (Example 11)
図 1 3は、本実施例における、中心軸を通る断面上で見た超電導コイル 断面の配置をおよび漏洩磁場シールドのための強磁性体を示す模式断面 図である。超電導マグネット 1 94~200はマグネット中央部に均一な磁場 を発生する。超電導コイル 1 99と 200力《逆電流コイルである。 1 96と 1 97 は磁場調整のため分割されている。  FIG. 13 is a schematic cross-sectional view showing a superconducting coil cross-sectional arrangement viewed on a cross-section passing through a central axis and a ferromagnetic material for a leakage magnetic field shield in the present embodiment. The superconducting magnets 194 to 200 generate a uniform magnetic field at the center of the magnet. Superconducting coil 1 99 and 200 force << reverse current coil. 196 and 197 are split for magnetic field adjustment.
超電導コイル 1 92, 1 93は磁場が軸方向に漏れることを抑制し、円筒状 強磁性体 1 91は、磁場が半径方向に漏れることを抑制している。  The superconducting coils 192 and 193 prevent the magnetic field from leaking in the axial direction, and the cylindrical ferromagnetic material 191 suppresses the magnetic field from leaking in the radial direction.
以上、実施例に基づき本発明を説明してきた。前述の各実施例では、マ グネット内部のコイルは全て超電導コイルである力、本発明は超電導コイル のみに限定されるものではなく、例えば、銅線などを用いたコイルであっても よぐ更に、電流を搬送できるものであれば、如何なるものでも良い。  The present invention has been described based on the embodiments. In each of the above-described embodiments, the coils inside the magnet are all superconducting coils. The present invention is not limited to only superconducting coils, and may be, for example, coils using copper wires or the like. Any material may be used as long as it can carry current.
また、静磁場発生源の起磁力源に永久磁石を使っても良い。製作誤差 や設置誤差による磁場の乱れを補正するためのシ厶コイルを備えていても 良い。スプリットマグネットの左右のコイル群は、ほぼ鏡面対称に配置されて いる。より良い均一度を得るために、鏡面対称に配置するのが望ましい。 本発明の上記実施例によれば、スプリット型マグネットを用いた溶液分析 用 NMR装置の計測空間に、 1 ppbオーダーで均一な磁場を発生し、この 領域にマグネットのスプリットギャップを利用して、ソレノイド型のプロ一ブコィ ルを揷入することができる。例えば、 800MHzの装置であっても、従来の 1 GHz級 NMR装置と同等の SN感度を持った計測が可能となる。  Further, a permanent magnet may be used as the magnetomotive force source of the static magnetic field generation source. A shim coil for correcting magnetic field disturbance due to manufacturing errors or installation errors may be provided. The left and right coil groups of the split magnet are arranged almost mirror-symmetrically. In order to obtain better uniformity, it is desirable to arrange them in mirror symmetry. According to the above embodiment of the present invention, a uniform magnetic field of the order of 1 ppb is generated in the measurement space of the NMR analyzer for solution analysis using a split magnet, and the solenoid is utilized in this region by utilizing the split gap of the magnet. You can import a type of probe coil. For example, even with an 800 MHz device, measurement with SN sensitivity equivalent to that of a conventional 1 GHz class NMR device can be performed.
更に、中心磁場強度が比較的低いことから、漏洩磁場のシールドが可能 となり、設置性が大幅 (こ向上する。 産業上の利用可能性 Furthermore, since the central magnetic field strength is relatively low, it is possible to shield the leaked magnetic field, and the installability is greatly improved. Industrial applicability
本発明の核磁気共鳴装置及びそれに用いられる超電導マグネットは計 測磁場空間に 1 pp b以下の均一な磁場を発生することができ、 S/N比の高 い計測が可能となる。  The nuclear magnetic resonance apparatus of the present invention and the superconducting magnet used therein can generate a uniform magnetic field of 1 ppb or less in the measurement magnetic field space, and can perform measurement with a high S / N ratio.

Claims

請 求 の 範 囲 The scope of the claims
1 . スプリット型マグネットを備え、前記スプリット型マグネットを構成するコィ ルのうち少なくとも一つのコイルが他のコイルと逆向きの磁場を発生する逆 電流コイルであることを特徴とする核磁気共鳴分析装置。  1. A nuclear magnetic resonance analyzer comprising a split-type magnet, wherein at least one of the coils constituting the split-type magnet is a reverse current coil for generating a magnetic field in a direction opposite to that of another coil. .
2. 1 ppbオーダーを一桁台の数値と定義したとき、磁場の均一度が 1 pp bオーダー、望ましくは 1〜2ppbである請求項 1記載の核磁気共鳴分析装 置。 2. The nuclear magnetic resonance analyzer according to claim 1, wherein the magnetic field uniformity is in the order of 1 ppb, preferably 1 to 2 ppb, where the order of 1 ppb is defined as a single digit.
3. 超伝導コイルと、該超伝導コイル及びそれを冷却する冷媒を収容する 低温容器と、超伝導コイルに接続された永久電流スィッチと、該超伝導コ ィルに取り囲まれ、被測定試料を挿入する空間と、該空間内の磁場中心 に設置され、上記試料を内部に設置するプローブコイルとを有し、上記超伝 導コイルはある軸を共通の中心軸となるように巻回された複数のコイルから 構成される第 1のコイル群と、前記中心軸を共通の中心軸として巻回され た複数のコイルから構成される第 2のコイル群があり、前記第 1コイル群およ び第 2コイル群は、ある空間を隔てて対向するように配置されており、主磁 場と反対向きの磁場を発生する方向に通電されたコイルを逆電流コイルと 定義すると、前記第 1コイル群および第 2コイル群を構成するコイルの内、 最大巻半径を有するコイルを除き、少なくとも 1つのコイルが逆電流コイルで あることを特徴とする核磁気共鳴装置。  3. A superconducting coil, a cryogenic container containing the superconducting coil and a refrigerant for cooling the same, a permanent current switch connected to the superconducting coil, and a sample to be measured surrounded by the superconducting coil. It has a space to be inserted, and a probe coil installed at the center of the magnetic field in the space and having the sample placed inside, and the superconducting coil is wound so that a certain axis becomes a common central axis. There is a first coil group composed of a plurality of coils, and a second coil group composed of a plurality of coils wound around the central axis as a common central axis. The second coil group is disposed so as to oppose with a certain space therebetween, and if a coil that is energized in a direction that generates a magnetic field in the opposite direction to the main magnetic field is defined as a reverse current coil, the first coil group And the coils that make up the second coil group Except a coil having a maximum winding radius, nuclear magnetic resonance apparatus, characterized in that at least one coil is a reverse current coil.
4. ある軸を共通の中心軸となるように巻回された複数のコイルから構成 される第 1のコイル群と、前記中心軸を共通の中心軸として巻回された複 数のコイルから構成される第 2のコイル群があり、前記第 1コイル群および第 2コイル群は、ある空間を隔てて対向するように配置されており、前記空間 内に計測領域が形成されている核磁気共鳴装置用マグネットであって、主 磁場と反対向きの磁場を発生する方向に通電されたコイルを逆電流コイル と定義すると、前記第 1コイル群および第 2コイル群を構成するコイルの内、 最大巻半径を有するコイルを除き、少なくとも 1つのコイルが逆電流コイルで あることを特徴とする核磁気共鳴装置用マグネット。 4. A first coil group composed of a plurality of coils wound around a certain axis as a common central axis, and a plurality of coils wound around the central axis as a common central axis A first coil group and a second coil group are disposed so as to face each other with a certain space therebetween, and a nuclear magnetic resonance having a measurement area formed in the space. When a coil that is energized in a direction that generates a magnetic field in a direction opposite to the main magnetic field and is defined as a reverse current coil is a device magnet, of the coils forming the first coil group and the second coil group, A magnet for a nuclear magnetic resonance apparatus, wherein at least one coil is a reverse current coil except for a coil having a maximum winding radius.
5. 前記中心軸方向から前記第 1コイル群または第 2コイル群を見た時に 、巻線部が重なるように中心軸方向に配置されたコイル群を含む請求項 4 に記載の核磁気共鳴装置用マグネット。  5. The nuclear magnetic resonance apparatus according to claim 4, comprising a coil group arranged in a central axis direction such that winding portions overlap each other when the first coil group or the second coil group is viewed from the central axis direction. For magnet.
6. 前記巻線部が重なるように配置されたコイル群が、中心軸に近い領 域に配置されている請求項 5に記載の核磁気共鳴装置用マグネット。 6. The magnet for a nuclear magnetic resonance apparatus according to claim 5, wherein the coil group in which the winding portions are arranged so as to overlap with each other is arranged in a region near a central axis.
7. 前記巻線部が重なるように中心軸方向に配置されたコイルのうち、少 なくとも一つのコイルが逆電流コイルで構成されている請求項 6に記載の核 磁気共鳴装置用マグネット。 7. The magnet for a nuclear magnetic resonance apparatus according to claim 6, wherein at least one of the coils arranged in the central axis direction such that the winding portions overlap each other is formed of a reverse current coil.
8. 巻線部が重なるように配置されたコイル郡を層と定義した時、中心軸 側に第一の逆電流コイルを含む層を形成し、その外側に、第二の逆電流コ ィルを含む層を形成し、前記第二の逆電流コイルの位置を前記第一の逆 電流コイルよりもギャップに近い位置に配置したことを特徴とする核磁気共 鳴装置用マグネット。  8. When a group of coils arranged so that the windings overlap each other is defined as a layer, a layer containing the first reverse current coil is formed on the center axis side, and a second reverse current coil is formed outside the layer. Wherein the second reverse current coil is located at a position closer to the gap than the first reverse current coil.
9. 前記中心軸を通る断面上でコイル断面を見た時、均一磁場が形成さ れている計測空間を原点と定義し、コイル断面の中心と原点を結ぶ直線と 中心軸との成す角を と定義すると、前記逆電流コイルの断面が orく 63 . 43° となる位置に E置されている請求項 1 ~5のいずれかに記載の核磁 気共鳴装置用マグネット。  9. When observing the coil cross section on the cross section passing through the central axis, define the measurement space where the uniform magnetic field is formed as the origin, and define the angle between the straight line connecting the center of the coil cross section and the origin and the central axis. 6. The magnet for a nuclear magnetic resonance apparatus according to claim 1, wherein the reverse current coil is disposed at a position where the cross section of the reverse current coil is approximately 63.43 °.
1 0. 前記中心軸を通る断面上でコイル断面を見た時、前記中心軸に近 い位置にあるコイルのうち、逆電流コイルの少なくとも一つ力 く 40. 09 ° となる位置に配置されている請求項 4~9のいずれかに記載の核磁気共 鳴装置用マグネット。  10 0. When the coil section is viewed on a section passing through the center axis, at least one of the reverse current coils among the coils located close to the center axis is positioned at a position where the angle is 40.09 °. The magnet for a nuclear magnetic resonance device according to any one of claims 4 to 9, wherein:
1 1 . 前記中心軸を通る断面上でコイル断面を見た時、前記逆電流コィ ルの断面が、ある共通の円または楕円の弧に重なるように配置されている 請求項 4〜9に記載の核磁気共鳴装置用マグネット。 1 1. When the coil cross section is viewed on a cross section passing through the center axis, the cross section of the reverse current coil is arranged so as to overlap a common circular or elliptical arc. A magnet for a nuclear magnetic resonance apparatus according to claim 4.
1 2. 前記中心軸を通る断面上でコイル断面を見た時の、前記逆電流コ ィルの全ての断面が、配置されている円または楕円の内側と外側または外 側に、主磁場と同じ向きの磁場を発生するコイルの断面が、ある共通の円 または楕円の弧に重なるように配置されている請求項 1 1に記載の核磁気 共鳴装置用マグネット。  1 2. When the cross section of the coil is viewed on a cross section passing through the central axis, all cross sections of the reverse current coil are positioned inside and outside or outside the circle or ellipse where the main magnetic field is located. 12. The magnet for a nuclear magnetic resonance apparatus according to claim 11, wherein the cross sections of the coils generating the magnetic field in the same direction are arranged so as to overlap a common circular or elliptical arc.
1 3. 前記逆電流コイルが、その他の主磁場と同じ向きの磁場を発生する コイルよりも磁場発生位置に近い位置に配置されている請求項 4〜9のい ずれかに記載の核磁気共鳴装置用マグネット。  1 3. The nuclear magnetic resonance according to any one of claims 4 to 9, wherein the reverse current coil is arranged at a position closer to a magnetic field generation position than a coil that generates a magnetic field in the same direction as other main magnetic fields. Magnet for equipment.
1 4. 中心軸からの距離が遠いコイルで主磁場と同じ向きの磁場を発生 するコイルの内、、少なくとも一つが > 73. 43° となる位置に配置されてい る請求項 4〜9のいずれかに記載の核磁気共鳴装置用マグネット。 1 4. Any one of claims 4 to 9, wherein at least one of the coils that generate a magnetic field in the same direction as the main magnetic field in a coil far from the central axis is located at a position of> 73.43 ° A magnet for a nuclear magnetic resonance apparatus according to the above item.
1 5. 第 1および第 2の多層コイル群は、対向面に鏡面対称に配置されて いる請求項 4〜9のいずれかに記載の核磁気共鳴装置用マグネット。 1 5. The magnet for a nuclear magnetic resonance apparatus according to any one of claims 4 to 9, wherein the first and second multilayer coil groups are arranged mirror-symmetrically on opposing surfaces.
1 6. 漏洩磁場をシールドするためのシールドコイル、およびノまたは、漏洩 磁場をシールドするための強磁性体を備えている請求項 4~9のいずれか に記載の核磁気共鳴装置用マグネット。 10. The magnet for a nuclear magnetic resonance apparatus according to any one of claims 4 to 9, further comprising a shield coil for shielding a leakage magnetic field and a ferromagnetic material for shielding a leakage magnetic field.
1 7. 円筒状強磁性体とシールドコイルを用いた請求項 1 6に記載の核磁 気共鳴装置用マグネット。  17. The magnet for a nuclear magnetic resonance apparatus according to claim 16, wherein a cylindrical ferromagnetic material and a shield coil are used.
1 8. 円盤状強磁性体とシールドコイルを用いた請求項 1 7に記載の核磁 気共鳴装置用マグネット。 18. The magnet for a nuclear magnetic resonance apparatus according to claim 17, wherein a disc-shaped ferromagnetic material and a shield coil are used.
1 9. 製作誤差や設置誤差等による均一磁場の乱れを補正するためのシ 厶コイルを内側、または、内側と外側に備えている請求項 4~9のいずれか に記載の核磁気共鳴装置用マグネット。  1 9. The nuclear magnetic resonance apparatus according to any one of claims 4 to 9, wherein a steam coil for correcting disturbance of a uniform magnetic field due to a manufacturing error or an installation error is provided inside or inside and outside. magnet.
20. コイルが超電導特性を有する物質からなり、該コイルが超電導特性 を示す温度以下に該コイルを冷却する冷却手段を有している請求項 4〜9 にいずれかに記載の核磁気共鳴装置用マグネット。 20. The coil according to claim 4, wherein the coil is made of a material having superconducting properties, and the coil has cooling means for cooling the coil to a temperature lower than the temperature at which the coil exhibits superconducting properties. The magnet for a nuclear magnetic resonance apparatus according to any one of the above.
PCT/JP2004/002908 2003-04-24 2004-03-05 Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus WO2004095046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003120245A JP4034224B2 (en) 2003-04-24 2003-04-24 Magnet for nuclear magnetic resonance apparatus and nuclear magnetic resonance analyzer using the same
JP2003-120245 2003-04-24

Publications (1)

Publication Number Publication Date
WO2004095046A1 true WO2004095046A1 (en) 2004-11-04

Family

ID=33308128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/002908 WO2004095046A1 (en) 2003-04-24 2004-03-05 Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus

Country Status (2)

Country Link
JP (1) JP4034224B2 (en)
WO (1) WO2004095046A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001084A1 (en) * 2007-06-26 2008-12-31 Oxford Instruments Plc Magnet system for use in magnetic resonance imaging
US7830146B2 (en) 2006-02-15 2010-11-09 Hitachi, Ltd. NMR solenoidal coil for RF field homogeneity

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286795A (en) * 2005-03-31 2006-10-19 Sumitomo Heavy Ind Ltd Superconductive magnet device
JP2015123161A (en) * 2013-12-26 2015-07-06 株式会社神戸製鋼所 Superconductive magnet device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246928A (en) * 1989-03-20 1990-10-02 Toshiba Corp Magnetic field generator
JPH03141619A (en) * 1989-07-17 1991-06-17 Shimadzu Corp Magnet for generating magnetic field uniform in wide region
JPH08273923A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Superconducting magnet device for nmr analyzer and its operating method
WO1997020326A1 (en) * 1995-11-30 1997-06-05 Hitachi Medical Corporation Superconducting magnet device
WO1999027851A1 (en) * 1997-12-01 1999-06-10 Hitachi Medical Corporation Magnet apparatus and mri apparatus
WO2000033100A1 (en) * 1998-11-27 2000-06-08 Koninklijke Philips Electronics N.V. Magnetic resonance imaging system
JP2001264402A (en) * 2000-03-17 2001-09-26 National Institute For Materials Science High magnetic field and high homogeneous superconducting magnet device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02246928A (en) * 1989-03-20 1990-10-02 Toshiba Corp Magnetic field generator
JPH03141619A (en) * 1989-07-17 1991-06-17 Shimadzu Corp Magnet for generating magnetic field uniform in wide region
JPH08273923A (en) * 1995-03-30 1996-10-18 Hitachi Ltd Superconducting magnet device for nmr analyzer and its operating method
WO1997020326A1 (en) * 1995-11-30 1997-06-05 Hitachi Medical Corporation Superconducting magnet device
WO1999027851A1 (en) * 1997-12-01 1999-06-10 Hitachi Medical Corporation Magnet apparatus and mri apparatus
WO2000033100A1 (en) * 1998-11-27 2000-06-08 Koninklijke Philips Electronics N.V. Magnetic resonance imaging system
JP2001264402A (en) * 2000-03-17 2001-09-26 National Institute For Materials Science High magnetic field and high homogeneous superconducting magnet device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7830146B2 (en) 2006-02-15 2010-11-09 Hitachi, Ltd. NMR solenoidal coil for RF field homogeneity
US8040136B2 (en) 2006-02-15 2011-10-18 Hitachi, Ltd. NMR solenoidal coil for RF field homogeneity
WO2009001084A1 (en) * 2007-06-26 2008-12-31 Oxford Instruments Plc Magnet system for use in magnetic resonance imaging

Also Published As

Publication number Publication date
JP4034224B2 (en) 2008-01-16
JP2004325252A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
US7053621B2 (en) Split type NMR magnet device and NMR apparatus for solution analysis with at least an 11 T static magnetic field and different energizing directions of the NMR magnets
JP4030910B2 (en) Magnet for NMR analyzer and NMR analyzer using the same
JPH0222649B2 (en)
GB2237883A (en) Nuclear magnetic resonance imaging spectrometer
WO1999027851A1 (en) Magnet apparatus and mri apparatus
JP2003130937A (en) Nuclear magnetic resonance analyzer for solution
CN112444766A (en) Magnetic resonance system and shimming method thereof
US20140218025A1 (en) Transverse volume coils and related magnetic resonance systems and methods
US5568110A (en) Closed MRI magnet having reduced length
JP5203128B2 (en) NMR probe head with multiple resonator systems for simultaneous measurement of multiple samples in coupled mode
US6084497A (en) Superconducting magnets
EP0154996B1 (en) Magnetic resonance imaging apparatus using shim coil correction
JP2011510261A (en) Radio frequency coil for arcuate saddle-shaped nuclear magnetic resonance
EP0514483A1 (en) Magnetic field generating assembly.
WO2004095046A1 (en) Nuclear magnetic resonance analyzer and magnet for nuclear magnetic resonance apparatus
US5521571A (en) Open MRI magnet with uniform imaging volume
JP2005181046A (en) Superconducting magnet device
JPH0728857B2 (en) Inspection device using nuclear magnetic resonance
WO2004061468A1 (en) Radio frequency nmr resonator with split axial shields
JP4034223B2 (en) Superconducting magnet for NMR apparatus and NMR apparatus
JP2005512646A (en) Gradient coil arrangement structure
JP4363856B2 (en) Method for influencing a uniform static magnetic field in the z-axis direction in a nuclear magnetic resonance apparatus, and a nuclear magnetic resonance resonator
US7479860B2 (en) Magnetic field generating assembly and method
US20060125477A1 (en) Sample inspection apparatus for combining nmr with esr or icr-mass spectroscopy
He et al. Design of biplanar shim coils for ultra-low field MRI

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase