JPH0435015A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPH0435015A
JPH0435015A JP14229590A JP14229590A JPH0435015A JP H0435015 A JPH0435015 A JP H0435015A JP 14229590 A JP14229590 A JP 14229590A JP 14229590 A JP14229590 A JP 14229590A JP H0435015 A JPH0435015 A JP H0435015A
Authority
JP
Japan
Prior art keywords
case
saccharide
capacitor element
glucose
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14229590A
Other languages
Japanese (ja)
Inventor
Katsunori Minatomi
水富 勝則
Kenji Kaguma
健二 鹿熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP14229590A priority Critical patent/JPH0435015A/en
Publication of JPH0435015A publication Critical patent/JPH0435015A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To prevent an increase in a leakage current at the time of applying a high voltage or soldering by cooling, after immersing a capacitor element with TCNQ salt, solidifying it, covering it with saccharide (e.g., glucose, glucose polymer), and further covering with epoxy resin. CONSTITUTION:TCNQ salt immersed in a capacitor element 1 is cooled, solidified, and the element 1 is secured in a case 5. Then, aqueous solution of saccharide such as glucose aqueous solution, glucose polymer aqueous solution, etc., is poured to the opening of the case 5. It is left to stand at 50 deg.C for about 1 - 8 hours to evaporate water in the saccharide aqueous solution to form a film 8 of saccharide of 1mm or less thick on the element. After the film 8 is formed, epoxy resin 7 is poured in the case 5, the element 1 is covered double from above the film, and the opening of the case is sealed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、電解質としてTCNQ塩(ここでTCNQ塩
とは7・78・8テトラシアノキノジメタンを意味する
)よりなる有機半導体を用いた固体電解コンデンサに関
する。
Detailed Description of the Invention (a) Industrial Application Field The present invention uses an organic semiconductor made of TCNQ salt (here, TCNQ salt means 7.78.8 tetracyanoquinodimethane) as an electrolyte. Regarding solid electrolytic capacitors.

(ロ)従来の技術 従来、固体電解コンデンサの固体電解質として有機半導
体、特にTCNQ塩を用いることが提案されている(例
えば特公昭62−52939号公報(II01G910
2)参照)。このような従来技術においては、第2図に
示す如く、’FCN Q塩からなる有機半導体の粉末(
6)を適量熱伝導性のケース(アルミニウムケース等)
(5)に適度に加圧して収納し、これを250〜300
℃の温度で融解液化し、あらかじめ予熱しておいたコン
デンサ素子(1)を浸漬する。更にコンデンサ素子(1
)をケースと共に急冷却後、ケース開口部に熱硬化性の
非可撓性樹脂(例えばエポキシ樹脂)(7)を充填し、
85〜105℃の温度で長時間放置して硬化させていた
。尚、ここでコンデンサ素子(1)とはアルミニウム、
タンタル、ニオブ等の弁作用を有する金属の化成箔を陽
極とし、通常これら金属の化成処理を施していない箔を
陰極とし、そしてこれら陰極箔と陽極箔の間にスペーサ
紙を挟んで巻回したものである。また、(2)(3’I
はそれぞれ陽極及び陰極リード線、(4)はリードボス
である。
(B) Conventional technology It has been proposed in the past to use organic semiconductors, especially TCNQ salts, as the solid electrolyte of solid electrolytic capacitors (for example, Japanese Patent Publication No. 62-52939 (II01G910
2)). In such conventional technology, as shown in Fig. 2, organic semiconductor powder (
6) Appropriate amount of heat conductive case (aluminum case, etc.)
(5) and store it under moderate pressure.
The capacitor element (1), which has been melted and liquefied at a temperature of 0.degree. C. and preheated in advance, is immersed therein. Furthermore, a capacitor element (1
) together with the case, the case opening is filled with thermosetting non-flexible resin (e.g. epoxy resin) (7),
It was left to stand for a long time at a temperature of 85 to 105°C to harden. Note that the capacitor element (1) here is aluminum,
A chemically formed foil of a metal with valve action such as tantalum or niobium is used as an anode, a foil of these metals that is not normally subjected to chemical conversion treatment is used as a cathode, and a spacer paper is sandwiched between the cathode foil and anode foil and wound. It is something. Also, (2) (3'I
are anode and cathode lead wires, respectively, and (4) is a lead boss.

このような従来の固体電解コンデンサにおいては、コン
デンサ素子の陽極に形成された酸化皮膜及び固体電解質
としての有機半導体が熱硬化性樹脂と有機半導体との反
応により劣化する。その結果、上記要因によ)9酸化皮
膜には弱体部が存在し、高電圧印加時において漏れ電流
が増大したり、ショートに至る。さらに半田付は時にお
いても加熱時の熱ストレスにより酸化皮膜の弱体部が破
壊し、漏れ電流の増大化につながる。
In such conventional solid electrolytic capacitors, the oxide film formed on the anode of the capacitor element and the organic semiconductor serving as the solid electrolyte deteriorate due to the reaction between the thermosetting resin and the organic semiconductor. As a result, due to the above-mentioned factors, there are weak parts in the 9 oxide film, leading to an increase in leakage current or short circuit when high voltage is applied. Furthermore, during soldering, the weak parts of the oxide film are sometimes destroyed due to thermal stress during heating, leading to an increase in leakage current.

(ハ)発明が解決しようとする課題 本発明は前記問題点部ち、コンデンサ素子の陽極に形成
された酸化皮膜及び固体電解質としての有機半導体がエ
ポキシ系樹脂と有機半導体との反応により劣化し、高電
圧印加時又は半田付は時に漏れ電流が増大する点を解決
するものである。
(c) Problems to be Solved by the Invention The present invention solves the problem mentioned above; This solves the problem that leakage current sometimes increases when high voltage is applied or when soldering is applied.

(ニ)課題を解決するための手段 本発明はコンデンサ素子にTCNQ塩を含浸後、冷却固
化し、該コンデンサ素子を糖類(例えばグルコース、グ
ルコース重合体)で被覆し、さらにエポキシ系樹脂で被
覆する。
(D) Means for Solving the Problems The present invention impregnates a capacitor element with TCNQ salt, cools and solidifies it, coats the capacitor element with sugar (e.g. glucose, glucose polymer), and further coats it with an epoxy resin. .

(ホ)作 用 糖類はTCNQ塩とほとんど反応しないので、コンデン
サ素子を糖類にて被覆し、さらにエポキシ樹脂にて被覆
すれば、TCNQ塩とエポキシ系樹脂との間には、TC
NQ塩とほとんど反応しない層が形成される。その結果
、エポキシ系樹脂とTCNQ塩との反応による酸化皮膜
及びT CN Q塩(有機半導体)の劣化は生じない。
(E) Function Since sugars hardly react with TCNQ salt, if the capacitor element is coated with sugar and then coated with epoxy resin, there will be no TCNQ salt between the TCNQ salt and the epoxy resin.
A layer is formed that hardly reacts with the NQ salt. As a result, the oxide film and TCNQ salt (organic semiconductor) do not deteriorate due to the reaction between the epoxy resin and the TCNQ salt.

(へ)実施例 次に本発明の実施例について第1図と共に説明する。エ
ツチング処理および化成処理を行なったアルミニウム箔
を陽極箔とし、対向陰極箔との間にセパレータを挟み円
筒状に巻き取り、コンデンサ素子(1)を形成する。次
にTCNQ塩、例えばN−n−フ゛チルイソキノリニウ
ムTCNQ、の粉末(6)をケース(5)に収納し、融
点以上の温度、例えば290〜300℃の温度でTCN
Q塩(6)を融解液化し、コンデンサ素子(1)を浸漬
してTCNQ塩を含浸する。含浸後、ケース(5)を冷
却し、コンデンサ素子(1)に含浸したTCNQ塩を冷
却固化し、ケース(5)内にコンデンサ素子(1)を固
定する。
(f) Embodiment Next, an embodiment of the present invention will be described with reference to FIG. An aluminum foil that has been subjected to etching treatment and chemical conversion treatment is used as an anode foil, and a separator is sandwiched between it and a counter cathode foil, and the aluminum foil is wound into a cylindrical shape to form a capacitor element (1). Next, the powder (6) of TCNQ salt, for example, Nn-phytylisoquinolinium TCNQ, is stored in the case (5), and the TCN
The Q salt (6) is melted and liquefied, and the capacitor element (1) is immersed to impregnate it with the TCNQ salt. After the impregnation, the case (5) is cooled, the TCNQ salt impregnated into the capacitor element (1) is cooled and solidified, and the capacitor element (1) is fixed within the case (5).

次にケース(5)内に糖類の水溶液(例えば、グルコー
ス水溶液又はグルコース重合体の水溶液など)を注入し
て、ケース(5)の開口部まで注入する。尚、上記糖類
の水溶液は糖類(例えばグルコース又はグルコース重合
体)を水に溶解さしたものであり、50℃で1〜8時間
程度(素子の外径にほぼ比例)放置して糖類水溶液中の
水を蒸発させることによりコンデンサ素子上に厚さ1肛
以下の糖類の皮膜(8)が形成される。糖類の皮膜(8
)の形成後(水蒸発後)ケース(5)内にエポキシ樹脂
(7)を注入して糖類皮膜の上からコンデンサ素子(1
)を二重に被覆し、ケースの開口部を封止する。そして
125℃で1時間コンデンサの定格電圧を印加(エージ
ング)して、目的とする固体電解コンデンサを完成する
Next, a saccharide aqueous solution (for example, a glucose aqueous solution or a glucose polymer aqueous solution) is injected into the case (5) until it reaches the opening of the case (5). The aqueous solution of saccharides is obtained by dissolving saccharides (e.g., glucose or glucose polymers) in water, and is left at 50°C for about 1 to 8 hours (approximately proportional to the outer diameter of the element) to dissolve the saccharides in the aqueous solution of saccharides. By evaporating the water, a saccharide film (8) having a thickness of less than 1 inch is formed on the capacitor element. Sugar film (8
) is formed (after water evaporation), the epoxy resin (7) is injected into the case (5) and the capacitor element (1) is poured over the sugar film.
) and seal the opening of the case. Then, the rated voltage of the capacitor is applied (aging) at 125° C. for 1 hour to complete the desired solid electrolytic capacitor.

次に、第1表は本発明の有機半導体固体電解コンデンサ
(A)と従来の有機半導体固体電解コンデンサ(B)の
エージング後の漏れ電流の歩留りを比較した表である。
Next, Table 1 is a table comparing the leakage current yield after aging of the organic semiconductor solid electrolytic capacitor (A) of the present invention and the conventional organic semiconductor solid electrolytic capacitor (B).

第1表 第1表において(A )(B )は定格電圧35V、容
量0 、68 t、r F 、 T CN Q塩にN−
n−ブチルイソキノリニウムTCNQ2を使用したコン
デンサであり、(A)は本発明の実施例、(B)は従来
例である。尚、L、C,は漏れ電流のデータで、試料1
00個中の不良数と歩留まりを示しているが、L、C,
規格は35V、0.68μFの場合は0.5(μA /
 1.0 sec、 )以下である。
Table 1 In Table 1, (A) and (B) have a rated voltage of 35 V, a capacity of 0, 68 t, r F, T CN Q salt and N-
These are capacitors using n-butylisoquinolinium TCNQ2, in which (A) is an example of the present invention and (B) is a conventional example. In addition, L, C, are leakage current data, and sample 1
It shows the number of defects out of 00 pieces and the yield, but for L, C,
The standard is 35V, 0.68μF is 0.5(μA /
1.0 sec, ) or less.

第1表から本発明により有機半導体(TCNQ塩)を電
解質に用いた固体電解コンデンサの漏れ電流の歩留まり
が従来例と比較して著しく改善されていることがわかる
It can be seen from Table 1 that the leakage current yield of the solid electrolytic capacitor using an organic semiconductor (TCNQ salt) as an electrolyte according to the present invention is significantly improved compared to the conventional example.

第2表に半田付は時の熱を想定したりフロー試験r16
0℃×2分間+230℃X30秒間のりフロー炉)前後
における漏れ電流値を記載する。
Table 2 assumes the heat of soldering and flow test R16
The leakage current values before and after (0°C x 2 minutes + 230°C x 30 seconds glue flow furnace) are described.

尚、リフロー試験に用いた固体電解コンデンサの固体電
解質(TCNQ塩)には前記第1表の場合(N−I〕−
ブチルイソキノリニウム(TCNQ)2とは異なり、N
、N−ペンタメチレン(ルチジニウム)2・ (TCN
Q)lとN−フェネチル・ルチジウム(TCNQ)、の
等量を混合したものを用いた。他の条件は前記第1表の
場合と同様である。
The solid electrolyte (TCNQ salt) of the solid electrolytic capacitor used in the reflow test was (N-I) in the case of Table 1 above.
Unlike butylisoquinolinium (TCNQ)2, N
, N-pentamethylene (lutidinium) 2. (TCN
Q) A mixture of equal amounts of 1 and N-phenethyl rutidium (TCNQ) was used. Other conditions were the same as in Table 1 above.

以下余白 第2表 第2表において(C)(D )は定格電圧25V、容量
1 /−I Fのコンデンサであり、(c)は本発明の
実施例、(D)は従来例である。r−、c 、は漏れ電
流のデータであり、25V印加後60秒後の値で試料各
10個の値の平均値を示している。
In Table 2, (C) and (D) are capacitors with a rated voltage of 25 V and a capacity of 1/-IF, (c) is an embodiment of the present invention, and (D) is a conventional example. r- and c are leakage current data, which are values 60 seconds after the application of 25 V and represent the average value of the values of each 10 samples.

第2表から本発明品が漏れ電流値(L、C)において、
従来品に比べ極めて半田付けに強いことがわかる。
From Table 2, the product of the present invention has the following leakage current values (L, C):
It can be seen that it is extremely resistant to soldering compared to conventional products.

」二連における実施例ではコンデンサ素子をケースに収
納するタイプの場合について述べたが、ケースを用いず
にコンデンサ素子を全面樹脂封目する所謂樹脂デイツプ
タイプのものであっても、本発明による効果は何ら損な
われない。
In the example of the double series, the case of a type in which the capacitor element is housed in a case has been described, but the effect of the present invention is also applicable to a so-called resin dip type in which the capacitor element is completely sealed with resin without using a case. No harm done.

尚、この他のN=n−プロピルキノリン、N−エチルイ
ソキノリン、N−イソプロピルキノリン、N−11−へ
キシルキノリン等のT CN Q 塩についも同様の効
果が得られる。
Note that similar effects can be obtained with other T CN Q salts such as N=n-propylquinoline, N-ethylisoquinoline, N-isopropylquinoline, and N-11-hexylquinoline.

(ト)発明の効果 このように本発明においては、コンデンサ素子をTCN
Q塩とほとんど反応しない糖類(例えば、グルコース、
グルコース重合体)で被覆後、エポキシ樹脂で被覆する
ようにしているので、コンデンサ素子の陽極に形成され
た酸化皮膜及び有機半導体としてのTCNQ塩がエポキ
シ系樹脂とTCNQ塩との反応により劣化することが防
止される。その結果、従来法に比べ漏れ電流歩留まり又
は半田付は時に漏れ電流の増大する点が著しく改善され
る。
(G) Effect of the invention As described above, in the present invention, the capacitor element is TCN
Sugars that hardly react with Q salts (e.g. glucose,
Since the oxide film formed on the anode of the capacitor element and the TCNQ salt as an organic semiconductor deteriorate due to the reaction between the epoxy resin and the TCNQ salt, since the capacitor element is coated with a glucose polymer (glucose polymer) and then an epoxy resin. is prevented. As a result, compared to conventional methods, the leakage current yield or soldering is significantly improved in that the leakage current sometimes increases.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例で糖類にて被覆し、さらにエポ
キシ系樹脂にて外装した場合の断面図である。第2図は
従来例でエポキシ系樹脂にて外装した場合の断面図であ
る。 (1)・・・コンデンサ素子、(2)(3)・・・陽極
および陰極リード線、(5)・・・金属ケース、(6)
・・・有機半導体(TCNQ塩)、(7)・・・エポキ
シ樹脂、(8)・・・糖類。
FIG. 1 is a cross-sectional view of an example of the present invention in which the material is coated with sugar and further covered with epoxy resin. FIG. 2 is a sectional view of a conventional example covered with epoxy resin. (1) Capacitor element, (2) (3) Anode and cathode lead wire, (5) Metal case, (6)
...Organic semiconductor (TCNQ salt), (7)...Epoxy resin, (8)...Saccharide.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム、タンタル、ニオブ等の弁作用を有
する金属の化成箔よりなる陽極箔と該金属の薄箔よりな
る陰極箔との間にセパレータ紙を介して巻回したコンデ
ンサ素子に、加熱融解可能で且つ冷却固化後コンデンサ
用電解質として使用し得る電導度を有するTCNQ塩を
加熱融解して含浸させ、冷却固化後、前記コンデンサ素
子を糖類で被覆した後、該糖類の外方をエポキシ樹脂に
て被覆或いは封口することを特徴とする固体電解コンデ
ンサ。
(1) A capacitor element is heated and melted by winding a separator paper between an anode foil made of a chemically formed metal foil such as aluminum, tantalum, or niobium, and a cathode foil made of a thin foil of the metal. After cooling and solidifying, the capacitor element is coated with saccharide, and the outside of the saccharide is coated with epoxy resin. A solid electrolytic capacitor characterized by being coated or sealed.
(2)糖類はグルコース或いはグルコース重合体である
特許請求の範囲第1項に記載の固体電解コンデンサ。
(2) The solid electrolytic capacitor according to claim 1, wherein the saccharide is glucose or a glucose polymer.
JP14229590A 1990-05-31 1990-05-31 Solid electrolytic capacitor Pending JPH0435015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14229590A JPH0435015A (en) 1990-05-31 1990-05-31 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14229590A JPH0435015A (en) 1990-05-31 1990-05-31 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0435015A true JPH0435015A (en) 1992-02-05

Family

ID=15312058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14229590A Pending JPH0435015A (en) 1990-05-31 1990-05-31 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0435015A (en)

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
JPH0992581A (en) Anodic oxidation of capacitor anode
KR100199321B1 (en) Solid electrolytic capacitor with organic semiconductor and method of manufacturing the same
JPH0435015A (en) Solid electrolytic capacitor
JPH03106010A (en) Manufacture of solid state electrolytic capacitor
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JP2869131B2 (en) Solid electrolytic capacitors
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JP2594101B2 (en) Solid electrolytic capacitors
JP3162738B2 (en) Solid electrolytic capacitors
JP3363508B2 (en) Organic semiconductor solid electrolytic capacitors
JPH03280522A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JPH01205412A (en) Manufacture of solid electrolytic capacitor
JPH0461313A (en) Solid electrolytic capacitor
JPH04352409A (en) Manufacture of solid electrolytic capacitor
JPH0321007A (en) Manufacture of solid electrolytic capacitor
JPS61107716A (en) Solid electrolytic capacitor
JPS617620A (en) Solid electrolytic condenser and method of producing same
JPS60171718A (en) Solid electrolytic condenser and method of producing same
JPS60167413A (en) Solid electrolytic condenser and method of producing same
JPS63200516A (en) Electrolytic capacitor
JPS60171717A (en) Solid electrolytic condenser and method of producing same
JPS617618A (en) Solid electrolytic condenser and method of producing same
JPH0611340U (en) Solid electrolytic capacitor
JPS6147624A (en) Solid electrolytic condenser