JPH03280522A - Manufacture of organic semiconductor solid electrolytic capacitor - Google Patents
Manufacture of organic semiconductor solid electrolytic capacitorInfo
- Publication number
- JPH03280522A JPH03280522A JP2082503A JP8250390A JPH03280522A JP H03280522 A JPH03280522 A JP H03280522A JP 2082503 A JP2082503 A JP 2082503A JP 8250390 A JP8250390 A JP 8250390A JP H03280522 A JPH03280522 A JP H03280522A
- Authority
- JP
- Japan
- Prior art keywords
- salt
- tcnq
- capacitor
- case
- foil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 64
- 239000007787 solid Substances 0.000 title claims abstract description 15
- 239000004065 semiconductor Substances 0.000 title claims description 14
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical class CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 claims abstract description 46
- 239000011888 foil Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000126 substance Substances 0.000 claims abstract description 11
- 238000009833 condensation Methods 0.000 claims abstract description 8
- 230000005494 condensation Effects 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 7
- 230000018044 dehydration Effects 0.000 claims abstract description 5
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 12
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 2
- 229910052758 niobium Inorganic materials 0.000 claims 1
- 239000010955 niobium Substances 0.000 claims 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims 1
- 229910052715 tantalum Inorganic materials 0.000 claims 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims 1
- 238000004804 winding Methods 0.000 claims 1
- 239000007849 furan resin Substances 0.000 abstract description 15
- 150000003839 salts Chemical class 0.000 abstract description 13
- 239000011347 resin Substances 0.000 abstract description 7
- 229920005989 resin Polymers 0.000 abstract description 7
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 3
- 239000000843 powder Substances 0.000 abstract description 2
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical class N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 abstract description 2
- 239000003822 epoxy resin Substances 0.000 description 9
- 239000010408 film Substances 0.000 description 9
- XPFVYQJUAUNWIW-UHFFFAOYSA-N furfuryl alcohol Chemical compound OCC1=CC=CO1 XPFVYQJUAUNWIW-UHFFFAOYSA-N 0.000 description 9
- 229920000647 polyepoxide Polymers 0.000 description 9
- 239000004925 Acrylic resin Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 230000032683 aging Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007739 conversion coating Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- FLDCSPABIQBYKP-UHFFFAOYSA-N 5-chloro-1,2-dimethylbenzimidazole Chemical compound ClC1=CC=C2N(C)C(C)=NC2=C1 FLDCSPABIQBYKP-UHFFFAOYSA-N 0.000 description 2
- 239000001741 Ammonium adipate Substances 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 235000019293 ammonium adipate Nutrition 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- AWJUIBRHMBBTKR-UHFFFAOYSA-N iso-quinoline Natural products C1=NC=CC2=CC=CC=C21 AWJUIBRHMBBTKR-UHFFFAOYSA-N 0.000 description 1
- 125000002183 isoquinolinyl group Chemical group C1(=NC=CC2=CC=CC=C12)* 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000011833 salt mixture Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は有機半導体固体電解コンデンサの製造方法に関
するものである。更に詳説すると、本発明は電解質とし
てTCNQ錯塩(ここでTCNQ塩とは7・7・8・8
テトラシアノキノジメタンを意味する)を使用する有機
半導体固体電解コンデンサの製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing an organic semiconductor solid electrolytic capacitor. To explain in more detail, the present invention uses TCNQ complex salt (here, TCNQ salt is 7, 7, 8, 8) as an electrolyte.
The present invention relates to a method for manufacturing an organic semiconductor solid electrolytic capacitor using tetracyanoquinodimethane.
(ロ)従来の技術
電解質としてTCNQ錯塩を使用する有機半導体固体電
解コンデンサに関しては、本願出願人より既に種々提案
している。即ち、特開昭58−19]4]4号(HOI
G9102)等に開示されているN位をアルキル基で置
換したイソキノリンとのTCNQ錯塩を用いた固体電解
コンデンサは、特に優れた高周波特性をもっているため
、スイッチング電源用などに広く採用されている。(b) Prior Art Regarding organic semiconductor solid electrolytic capacitors using TCNQ complex salt as an electrolyte, various proposals have already been made by the applicant of the present invention. That is, JP-A-58-19]4]4 (HOI
A solid electrolytic capacitor using a TCNQ complex salt with an isoquinoline substituted with an alkyl group at the N-position, which is disclosed in Japanese Patent Application No. G9102), has particularly excellent high frequency characteristics and is therefore widely used in switching power supplies.
次にコンデンサ素子について説明する。第1図は従来お
よび本発明に使用されているコンデンサ素子を示す。ま
ず、高純度(99,99%以上)のアルミニウム箔を化
学的処理により粗面化し、実効表面積を増加させるため
のいわゆるエツチング処理を行なう。次に電解液中にて
、電気化学的にアルミニウム箔表面に酸化皮膜(酸化ア
ルミニウムの薄膜)を形成する(化成処理)。次にエッ
チンダ処理、化成処理を行なったアルミニウム箔を陽極
箔(1)とし、対向陰極箔(2)との間にセパレータ(
3)としてマニラ紙を挟ろ、第1図に示すように円筒状
に巻き取る。こうしてアルミニウム箔に酸化皮膜を形成
した陽極箔(1)及び陰極箔(2)と両電極箔間に介挿
されたセパレータ(3)とを捲回してコンデンサ素子(
6)が形成される。なお(4)(4’)はアルミリード
、(5)(5’)はリード線である。Next, the capacitor element will be explained. FIG. 1 shows capacitor elements used conventionally and in the present invention. First, a high purity (99.99% or higher) aluminum foil is chemically treated to roughen its surface and subjected to a so-called etching process to increase its effective surface area. Next, an oxide film (thin film of aluminum oxide) is electrochemically formed on the surface of the aluminum foil in an electrolytic solution (chemical conversion treatment). Next, the etched and chemically treated aluminum foil is used as an anode foil (1), and a separator (
3) Sandwich the manila paper and roll it up into a cylindrical shape as shown in Figure 1. In this way, the anode foil (1) and cathode foil (2) with an oxide film formed on the aluminum foil and the separator (3) inserted between both electrode foils are wound to form a capacitor element (
6) is formed. Note that (4) and (4') are aluminum leads, and (5) and (5') are lead wires.
さらにコンデンサ素子(6)に熱処理を施し、セパレー
タ(3)を構成するマニラ紙を炭化して繊維の細径化に
よる密度の低下を計る。Further, the capacitor element (6) is subjected to heat treatment, and the manila paper forming the separator (3) is carbonized to reduce the density by reducing the diameter of the fibers.
第2図はこのコンデンサ素子(6)をアルミケース(7
)内に収納した状態の断面図である。即ち、所定量のT
CNQ錯塩(8)をケース(7)内に入れ、加熱した熱
板上にアルミケース(7)を載置し、本実施例では31
0〜315℃にてケース(7)中の粉末状TCNQ錯塩
を加熱融解させる。Figure 2 shows this capacitor element (6) in an aluminum case (7).
) FIG. That is, a predetermined amount of T
The CNQ complex salt (8) was placed in the case (7), and the aluminum case (7) was placed on a heated hot plate.
The powdered TCNQ complex salt in case (7) is heated and melted at 0 to 315°C.
一方、予め加熱しであるコンデンサ素子(6)をアルミ
ケース(7)内に挿入して、融解したTCNQ錯塩の混
合液をコンデンサ素子(6)に含浸させ、すぐに冷却固
化させる。その後、エポキシ樹脂或は変性アクリル樹脂
(9)を封入し、さらにエポキシ樹脂等(10)で成形
する。前述の如き従来技術においては化成したエツチド
アルミニウム箔(1)と陰極箔(2)をセパレータ(3
)を介して巻回したコンデンサ素子(6)を素子形成時
に損傷した陽極箔の化成皮膜修復のため再度アジピン酸
アンモニウムの水溶液にて再化成並びに熱処理していた
。そして該コンデンサ素子に融解液化したTCNQ塩(
8)を含浸し、樹脂(9)又はゴムで封口した後、コン
デンサの陽極リード線(5)と陰極リード線(5′)間
に正の定格直流電圧(順方向)を印加する工程を経て目
的とする有機半導体固体電解コンデンサを完成させてい
た。On the other hand, the preheated capacitor element (6) is inserted into the aluminum case (7), and the capacitor element (6) is impregnated with the molten TCNQ complex salt mixture, which is immediately cooled and solidified. Thereafter, epoxy resin or modified acrylic resin (9) is sealed, and further molded with epoxy resin or the like (10). In the prior art as described above, a chemically etched aluminum foil (1) and a cathode foil (2) are separated by a separator (3).
) The capacitor element (6) wound through the capacitor element (6) was reconstituted with an aqueous solution of ammonium adipate and heat treated again in order to repair the chemical conversion coating on the anode foil that was damaged during element formation. Then, melted and liquefied TCNQ salt (
8) and sealed with resin (9) or rubber, after which a positive rated DC voltage (forward direction) is applied between the anode lead wire (5) and cathode lead wire (5') of the capacitor. He had completed his goal, an organic semiconductor solid electrolytic capacitor.
しかし、有機半導体固体電解コンデンサは一般の電解液
を用いたコンデンサに比べ酸化皮膜の修復性が若干弱く
、アジピン酸アンモニウムの再度の化成により形成させ
た皮膜においてもTCNQ塩含浸時の機械的ストレス、
熱的ストレス或いは化学的なストレスにより化成皮膜に
は弱体部が存在することになる。これらの要因により化
成皮膜の弱体部が破壊し、等価直列抵抗や漏れ電流が増
大し、歩留りが低くなるという問題がある。However, the repairability of the oxide film in organic semiconductor solid electrolytic capacitors is slightly weaker than that of capacitors using general electrolytes, and even in the film formed by reconversion of ammonium adipate, mechanical stress during impregnation with TCNQ salt,
A weak portion exists in the chemical conversion coating due to thermal stress or chemical stress. These factors cause the problem that weak parts of the chemical conversion coating are destroyed, the equivalent series resistance and leakage current increase, and the yield becomes low.
このような問題を解決するため、従来は有機半導体を含
浸後又は樹脂封口後酸化皮膜を修復し、漏れ電流値を小
さくする目的で100℃前後の高温で電圧処理(エージ
ング)を行なっている。To solve such problems, conventionally, after impregnating with an organic semiconductor or sealing with a resin, the oxide film is repaired and voltage treatment (aging) is performed at a high temperature of around 100° C. in order to reduce the leakage current value.
また、このような漏れ電流の問題を解決するため、本願
出願人は特願昭63−264571号(出願臼、昭和6
3年10月20日)において、コンデンサ素子に融解液
化した有機半導体を含浸させ、冷却固化した後に、素子
の内部に純水を含浸させ、次に素子の水分を乾燥させる
固体電解コンデンサの製造方法を提案した。そして、こ
の場合TCNQ塩の含浸した素子内部に純水を含浸後乾
燥させることにより、酸化皮膜の欠損部に入りこんだ有
機半導体は絶縁体化しやすくなり、電圧処理(エージン
グ)での酸化皮膜の修復性が著しく向上する。In addition, in order to solve this problem of leakage current, the applicant of the present application has filed Japanese Patent Application No. 63-264571
October 20, 2013), a method for manufacturing a solid electrolytic capacitor involves impregnating a capacitor element with a melted and liquefied organic semiconductor, cooling and solidifying it, impregnating the inside of the element with pure water, and then drying the moisture in the element. proposed. In this case, by impregnating the inside of the element impregnated with TCNQ salt with pure water and drying it, the organic semiconductor that has entered the defective part of the oxide film can easily become an insulator, and the oxide film can be repaired by voltage treatment (aging). performance is significantly improved.
しかし乍ら、このような従来の製造方法においては、水
をTCNQ塩含浸済み素子内部に含浸するため、TCN
Q塩は一時多量の水にさらされるわけであるから、当然
水の中にTCNQ塩は溶は出すことになる。この結果、
酸化皮膜の修復性は向上するものの、その反面コンデン
サの性能を決定する特性の一つである等価直列抵抗が著
しく劣化する。However, in such a conventional manufacturing method, since water is impregnated inside the TCNQ salt-impregnated element, the TCNQ salt-impregnated element is impregnated with water.
Since the Q salt is exposed to a large amount of water at one time, the TCNQ salt naturally dissolves in the water. As a result,
Although the repairability of the oxide film is improved, on the other hand, the equivalent series resistance, which is one of the characteristics that determines the performance of a capacitor, is significantly degraded.
(ハ)発明が解決しようとする課題
本発明は、TCNQ塩を固体電解質に用いた有機半導体
固体電解コンデンサにおいて、前述の如き問題、即ち、
水をコンデンサ素子内部に含浸することによりTCNQ
塩が水に溶解し、そのためコンデンサの等価直列抵抗及
び漏れ′tL流が増加するのを抑制することである。(c) Problems to be Solved by the Invention The present invention solves the above-mentioned problems in an organic semiconductor solid electrolytic capacitor using TCNQ salt as a solid electrolyte.
By impregnating water inside the capacitor element, TCNQ
The purpose is to suppress the salt from dissolving in the water and thereby increasing the equivalent series resistance of the capacitor and the leakage 'tL current.
(ニ)課題を解決するための手段
本発明はコンデンサ素子に融解液化したTCNQ塩を含
浸し、冷却同化後、脱水縮合により水を発生する物質、
例えばフラン樹脂にて該コンデンサ素子を被覆する。(d) Means for Solving the Problems The present invention provides a substance that impregnates a capacitor element with melted and liquefied TCNQ salt, cools and assimilates it, and then generates water through dehydration condensation.
For example, the capacitor element is coated with furan resin.
(ホ)作 用
フラン樹脂は、フルフリル・アルコールの樹脂分子であ
る。フリフリル・アルコールは、次のような構造を有し
ており、
その初期縮合の反応機構は、次に示すように脱水縮合に
よるもので、これによりフルフリ・アルコールは高分子
化し、フラン樹脂を形成するのである。尚フリフル・ア
ルコールの縮合によって生ずる水はTCNQ塩を溶解さ
せる程度の量までには至らず、このような量ではコンデ
ンサの等価直列抵抗の劣化はほとんど起こらない。(e) Function Furan resin is a resin molecule of furfuryl alcohol. Furfuryl alcohol has the following structure, and the reaction mechanism for its initial condensation is dehydration condensation, as shown below, whereby Furfuryl alcohol becomes a polymer and forms furan resin. It is. It should be noted that the amount of water produced by the condensation of Friful alcohol is not large enough to dissolve the TCNQ salt, and such an amount hardly causes any deterioration of the equivalent series resistance of the capacitor.
以下余白
ざ
↑
外
本発明はこの性質を用いて、即ちフリフル・アルコール
の縮合の過程に遊離する水分子をTCNQ塩に作用させ
ることにより、酸化皮膜の修復性の改善を図り、等価直
列抵抗の安定した有機半導体固体電解コンデンサを得よ
うとするものである。The following is a margin ↑ The present invention uses this property, that is, by allowing water molecules liberated during the condensation process of friful alcohol to act on TCNQ salt, it aims to improve the repairability of the oxide film and reduce the equivalent series resistance. The purpose is to obtain a stable organic semiconductor solid electrolytic capacitor.
(へ)実施例
エツチング処理および化成処理を行なったアルミニウム
箔を陽極箔(1)とし、対向陰極箔(2)との間にセパ
レータ(3)を挟み、円筒状に巻き取り、コンデンサ素
子(6)を形成する。次にTCNQ塩の粉末、例えば、
N、N−ペンタメチレン・ルチジニウム、・TCNQ、
とN−フェネチル・ルチジニウム・TCNQ、の等量混
合物をケース(7)内に収納し、320℃の温度でTC
NQ塩(8)を融解液化し、コンデンサ素子(6)を浸
漬してTCNQ塩を含浸する。含浸後ケース(7)を冷
却し、TCNQ塩(8)を冷却固化させ、ケース(7)
内にコンデンサ素子(6)を固定する。(f) Example An aluminum foil that has been subjected to etching treatment and chemical conversion treatment is used as an anode foil (1), a separator (3) is sandwiched between it and a counter cathode foil (2), and the capacitor element (6) is wound into a cylindrical shape. ) to form. Next, powder of TCNQ salt, e.g.
N, N-pentamethylene lutidinium, ・TCNQ,
A mixture of equal amounts of N-phenethyl rutidinium TCNQ and
The NQ salt (8) is melted and liquefied, and the capacitor element (6) is immersed to be impregnated with the TCNQ salt. After impregnation, the case (7) is cooled, the TCNQ salt (8) is cooled and solidified, and the case (7)
A capacitor element (6) is fixed inside.
次に第2図におけるエポキシ樹脂(9)に代えて、ケー
ス(7)内にフラン樹脂(例えば日立化成工業株式会社
製ヒタフランVF302)を注入し、ケース開口部上端
まで満たす。Next, instead of the epoxy resin (9) in FIG. 2, a furan resin (for example, Hitafuran VF302 manufactured by Hitachi Chemical Co., Ltd.) is injected into the case (7) to fill the case up to the upper end of the opening.
そして、105℃の温度にてフラン樹脂を硬化させ、1
25℃にて1時間、コンデンサの定格電圧を印加(エー
ジング)して目的とする固体電解コンデンサを完成させ
る。Then, the furan resin was cured at a temperature of 105°C, and 1
The rated voltage of the capacitor is applied (aging) at 25° C. for 1 hour to complete the desired solid electrolytic capacitor.
第1表に本発明の実施例でフラン樹脂にて封止したコン
デンサと従来例で水を含浸した後、乾燥させエポキシ樹
脂(及び変性アクリル樹脂)にて封止したコンデンサの
漏れ電流値並びに等個直列抵抗値の比較データを示す。Table 1 shows the leakage current values and other values of the capacitor sealed with furan resin in the embodiment of the present invention and the conventional capacitor impregnated with water, dried, and sealed with epoxy resin (and modified acrylic resin). Comparison data of individual series resistance values is shown.
尚、参考までに水を含浸せずにTCNQ塩の含浸後、即
座にエポキシ樹脂(及び変性アクリル樹脂)にて封止し
た場合のコンデンサについても比較データを記載する。For reference, comparative data is also provided for capacitors that were sealed with epoxy resin (and modified acrylic resin) immediately after being impregnated with TCNQ salt without being impregnated with water.
以下余白
第
1
表
第1表において(A )(B )(C)(D )(E
)は定格電圧25V、容量1μFのコンデンサである。Margin 1 below In Table 1, (A) (B) (C) (D) (E
) is a capacitor with a rated voltage of 25V and a capacitance of 1μF.
(A)は本発明実施例でフラン樹脂を封止剤に用いた場
合のコンデンサ、(B)および(C)は従来例でTCN
Q塩含浸後水を含浸し、乾燥させたコンデンサであり、
(B)はエポキシ樹脂を封止剤に用いた場合のコンデン
サ、(C)は変性アクリル樹脂を用いた場合のコンデン
サである。(D)および(E)は、水を用いることなく
TCNQ塩含浸後即座にそれぞれエポキシ樹脂および変
性アクリル樹脂にて封止した場合のコンデンサである。(A) is a capacitor according to an embodiment of the present invention in which furan resin is used as a sealant; (B) and (C) are conventional examples in which TCN
Q: A capacitor that is impregnated with salt, then water, and then dried.
(B) is a capacitor using an epoxy resin as a sealant, and (C) is a capacitor using a modified acrylic resin. (D) and (E) are capacitors that were immediately sealed with epoxy resin and modified acrylic resin, respectively, after being impregnated with TCNQ salt without using water.
尚、L、C,は漏れ電流のデータであり、25v印加1
0秒後の値で、試料各10個の値の平均値を示している
。ESRは100KHzにおける等価直列抵抗値で試料
各10個の値の平均値を示している。In addition, L, C, are leakage current data, and 25V applied 1
The value after 0 seconds is the average value of the values of each 10 samples. ESR is an equivalent series resistance value at 100 KHz, and indicates the average value of the values of each 10 samples.
第1表から、本発明品であるフラン樹脂を用いたコンデ
ンサの方が漏れ電流特性及び等個直列抵抗特性ともに良
好な特性を有していることがわかる。From Table 1, it can be seen that the capacitor using furan resin, which is a product of the present invention, has better characteristics in both leakage current characteristics and equal series resistance characteristics.
尚また、上記実施例ではコンデンサ素子をケース(7)
に収納し、フラン樹脂だけでコンデンサ素子(6)を被
覆し、ケース開口部を封止する場合についてのみ述べた
が、フラン樹脂にてコンデンサ素子を被覆後、他の樹脂
例えばエポキシ樹脂をその上から二重に被覆し、ケース
開口部を封止してもよい。またその他の封止手段、例え
ばケースを用いずにコンデンサ素子を全面樹脂封目する
所謂樹脂デイツプタイプを用いることも可能である。Furthermore, in the above embodiment, the capacitor element is placed in the case (7).
We have only described the case where the capacitor element (6) is covered with furan resin alone and the case opening is sealed, but after covering the capacitor element with furan resin, another resin such as epoxy resin is applied over it. The opening of the case may be sealed by double coating. It is also possible to use other sealing means, such as a so-called resin dip type, in which the entire surface of the capacitor element is sealed with resin without using a case.
本発明はTCNQ塩含浸済素子上に直接フラン樹脂層が
形成されたコンデンサであれば、その効果は何ら損なわ
れることがない。また、実施例では、N、N−ベンタメ
チレンルチジニウム、・TCNQ4とN−フェネチル・
ルチジニウム・TCNQ、のそれぞれ等量を混合してな
る電解質に関してのみ述べたが、他のTCNQ塩を単独
で或いは混合して用いた場合でもよく、即ち溶解可能で
熱溶解時コンデンサ素子を実質的に含浸できる程度の熱
安定性を有するTCNQ塩であれば、同様の効果が得ら
れることは明らかであり、本発明は、TCNQ塩の種類
に限定されるものでない。As long as the present invention is a capacitor in which a furan resin layer is directly formed on a TCNQ salt-impregnated element, its effects will not be impaired in any way. In addition, in the examples, N,N-bentamethylenerutidinium, .TCNQ4 and N-phenethyl.
Although we have only described an electrolyte made by mixing equal amounts of rutidinium and TCNQ, other TCNQ salts may also be used alone or in combination. It is clear that similar effects can be obtained with any TCNQ salt that has enough thermal stability to allow impregnation, and the present invention is not limited to the type of TCNQ salt.
(ト)発明の効果
上述の如く、本発明は、コンデンサ素子にTCNQ塩を
融解含浸し、冷却後該コンデンサ素子を脱水縮合により
水を発生する物質、例えばフラン樹脂にて被覆すること
を特徴とする有機半導体固体電解コンデンサであり、フ
ラン樹脂形成時に遊離する水分子がTCNQ塩を溶解さ
せることなく、TCNQ塩に直接作用するため、漏れ電
流特性及び等個直列抵抗特性の優れた有機半導体固体電
解コンデンサが得られる。(G) Effects of the Invention As described above, the present invention is characterized in that a capacitor element is melted and impregnated with TCNQ salt, and after cooling, the capacitor element is coated with a substance that generates water through dehydration condensation, such as furan resin. It is an organic semiconductor solid electrolytic capacitor with excellent leakage current characteristics and equal series resistance characteristics because the water molecules liberated during furan resin formation act directly on the TCNQ salt without dissolving the TCNQ salt. A capacitor is obtained.
第1図はコンデンサ素子の斜視図、第2図は有機半導体
固体電解コンデンサの断面図である。
(1)(2)・・・陽、陰極箔、(3)・・・セパレー
タ、(6戸・・コンデンサ素子、(7)・・・アルミケ
ース、(8)・・・TCNQ錯塩、(9)・・・エポキ
シ樹脂。FIG. 1 is a perspective view of a capacitor element, and FIG. 2 is a sectional view of an organic semiconductor solid electrolytic capacitor. (1) (2)...Positive, cathode foil, (3)...Separator, (6 units...Capacitor element, (7)...Aluminum case, (8)...TCNQ complex salt, (9 )···Epoxy resin.
Claims (1)
する金属を化成しエッチングした箔よりなる陽極箔と該
金属の薄箔よりなる陰極箔との間にセパレータ紙を介し
て巻回して形成したコンデンサ素子に、加熱融解可能で
且つ冷却固化後コンデンサ用電解質として使用し得る電
導度を有するTCNQ塩を加熱して含浸させ、冷却固化
させた後、脱水縮合により水を発生する物質にて前記コ
ンデンサ素子を被覆し、該発生した水を前記TCNQ塩
に作用させることを特徴とする有機半導体固体電解コン
デンサの製造方法。(1) A capacitor formed by winding a separator paper between an anode foil made of a chemically etched foil of a metal with a valve action such as aluminum, tantalum, or niobium, and a cathode foil made of a thin foil of the metal. The capacitor element is heated and impregnated with TCNQ salt that can be melted by heating and has a conductivity that can be used as an electrolyte for a capacitor after cooling and solidifying, and after cooling and solidifying, the capacitor element is made of a substance that generates water through dehydration condensation. A method for manufacturing an organic semiconductor solid electrolytic capacitor, comprising coating the TCNQ salt with the TCNQ salt, and allowing the generated water to act on the TCNQ salt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2082503A JP2950898B2 (en) | 1990-03-29 | 1990-03-29 | Manufacturing method of organic semiconductor solid electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2082503A JP2950898B2 (en) | 1990-03-29 | 1990-03-29 | Manufacturing method of organic semiconductor solid electrolytic capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03280522A true JPH03280522A (en) | 1991-12-11 |
JP2950898B2 JP2950898B2 (en) | 1999-09-20 |
Family
ID=13776306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2082503A Expired - Fee Related JP2950898B2 (en) | 1990-03-29 | 1990-03-29 | Manufacturing method of organic semiconductor solid electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2950898B2 (en) |
-
1990
- 1990-03-29 JP JP2082503A patent/JP2950898B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2950898B2 (en) | 1999-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04229611A (en) | Solid electrolytic capacitor | |
JPH04297012A (en) | Organic semiconductor solid electrolytic capacitor and manufacture thereof | |
JP3339511B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH03280522A (en) | Manufacture of organic semiconductor solid electrolytic capacitor | |
EP0285728B1 (en) | Solid electrolytic capacitor, and method of manufacturing same | |
KR970004277B1 (en) | Method of manufacturing solid electrolytic capacitor | |
JPH09260215A (en) | Manufacture of solid electrolytic capacitor | |
JP2755767B2 (en) | Manufacturing method of organic semiconductor solid electrolytic capacitor | |
JPH03280520A (en) | Manufacture of organic semiconductor solid electrolytic capacitor | |
JP3162738B2 (en) | Solid electrolytic capacitors | |
JPH03241726A (en) | Electrolytic capacitor | |
JP3253126B2 (en) | Solid electrolytic capacitors | |
JPH03280521A (en) | Manufacture of organic semiconductor solid electrolytic capacitor | |
JPH0744131B2 (en) | Method for manufacturing solid electrolytic capacitor | |
JPH062675U (en) | Solid electrolytic capacitor | |
JPH0467331B2 (en) | ||
JPH07115042A (en) | Manufacture of electrolytic capacitor | |
JPH0547607A (en) | Production of electrolytic capacitor | |
JPH05326344A (en) | Solid electrolytic capacitor | |
JPS6151908A (en) | Solid electrolytic condenser | |
JPH0550125B2 (en) | ||
JPH04373115A (en) | Solid electrolytic capacitor and manufacturing method thereof | |
JPS6151910A (en) | Solid electrolytic condenser | |
JPH03106010A (en) | Manufacture of solid state electrolytic capacitor | |
JPS60167413A (en) | Solid electrolytic condenser and method of producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |