JPS63200516A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPS63200516A
JPS63200516A JP3423787A JP3423787A JPS63200516A JP S63200516 A JPS63200516 A JP S63200516A JP 3423787 A JP3423787 A JP 3423787A JP 3423787 A JP3423787 A JP 3423787A JP S63200516 A JPS63200516 A JP S63200516A
Authority
JP
Japan
Prior art keywords
tcnq
electrolytic capacitor
complex
tcnq complex
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3423787A
Other languages
Japanese (ja)
Inventor
清志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP3423787A priority Critical patent/JPS63200516A/en
Publication of JPS63200516A publication Critical patent/JPS63200516A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、改良した有機半導体からなる固体電解質を用
いた電解コンデンサに関する。  −(従来の技術) 一般に乾式箔形電解コンデンザは、例えば高純1良アル
ミニウムおからなる一対の陽・陰極箔に同じくアルミニ
ウムからなる一対の引出端子−1−++ を接続し、前記一対の陽・陰極箔相互間にスペーサを介
在して巻回したコンデンサ素子に駆動用電解液を含浸し
ケースに収納し、このケース開口部を密閉づるかなどの
外装を施してなるものである。しかして、前記駆動用電
解液は、例えばエチレングリコールなどの有機溶媒にア
ジピン酸アンモニウムなどの有機カルボン酸を使用して
いるため、tanδ特性改善に限瓜があり、また低温で
比抵抗が上がり低温特性が極度に悪化し広域温度範囲で
使用するには信頼性に欠けるなど市場要求を満足覆るた
めには解決すべぎ課題をかかえていた。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electrolytic capacitor using a solid electrolyte made of an improved organic semiconductor. - (Prior Art) In general, a dry foil type electrolytic capacitor is constructed by connecting a pair of anode and cathode foils made of, for example, high-purity 1-quality aluminum to a pair of lead terminals -1-++ also made of aluminum. - A capacitor element is wound with a spacer interposed between cathode foils, impregnated with a driving electrolyte, housed in a case, and the opening of the case is sealed with an exterior covering such as a hook. However, since the driving electrolyte uses an organic carboxylic acid such as ammonium adipate in an organic solvent such as ethylene glycol, there is a limit to the improvement of tan δ characteristics, and the specific resistance increases at low temperatures. There were issues that needed to be resolved in order to meet market demands, such as extremely poor characteristics and lack of reliability for use over a wide temperature range.

イのため近年、駆動用電解液にかえ各種のTCNQ錯体
を用いたものが種々提案され一部実用化を迎えている。
Therefore, in recent years, various solutions using various TCNQ complexes instead of the driving electrolyte have been proposed, and some of them have been put into practical use.

王CNQ錯体を巻回したコンデンサ素子に含浸づる方法
として一般に溶液含浸法1分散含浸法、真空蒸着法があ
るが、TCNQ錯体の特性はいろいろの条件で変化し極
めて扱いにくい物質であるため、使用にあたっては種々
の工夫が講じられている。
There are generally two methods for impregnating a capacitor element wound with a TCNQ complex: solution impregnation method, dispersion impregnation method, and vacuum evaporation method. Various measures have been taken to achieve this goal.

特に、固体電解質の条件としては、コンデンサ特性とし
てのtanδおよび等価直列抵抗に影響するそれ自体と
しての抵抗値が小さく、かつ温度特に高温下でも安定し
た比抵抗値であることが重要である。
In particular, as conditions for the solid electrolyte, it is important that the resistance value itself, which affects tan δ as a capacitor characteristic and the equivalent series resistance, is small, and that the specific resistance value is stable even under temperature, especially high temperature.

しかして、巻回素子へのTCNQ錯体の含浸手段として
T業的に素子内部へまんべんな(必要量浸透させるには
、従来提案されている特許公報または技術文献によって
加熱溶融液化処理が有効とされている。
Therefore, as a means of impregnating the wound element with the TCNQ complex, it has been found that heat-melting and liquefaction treatment is effective for permeating the TCNQ complex into the inside of the element in the required amount, as previously proposed in patent publications or technical literature. It is said that

そのなかで特開昭61−7618号公報、または特開昭
61−47642号公報などに開示されているものは、
従来−膜化しているイソキノリン系やごピリジン系の電
子供与体とTCNQを電子受容体としたTCNQ錯体に
ラクトン系化合物やキノリン系化合物を添加した混合物
を加熱溶融してコンデンサ素子に含浸し、しかるのら同
化し有機半導体からなる固体電解質層を形成するもので
ある。すなわち、融点をもたず加熱すると分解し絶縁化
してしまうTCNQ錯体に化合物を添加し加熱溶融を可
能としたものである。
Among them, those disclosed in JP-A-61-7618, JP-A-61-47642, etc.
Conventional - A mixture of a lactone compound or a quinoline compound added to a TCNQ complex with an isoquinoline or pyridine electron donor and TCNQ as an electron acceptor, which has been formed into a film, is heated and melted and impregnated into a capacitor element. The organic semiconductor is assimilated to form a solid electrolyte layer made of an organic semiconductor. That is, a compound is added to the TCNQ complex, which does not have a melting point and decomposes and becomes insulating when heated, thereby making it possible to melt it by heating.

しかしながら、ラクトン系化合物やキノリン系化合物は
電子受容体としてのTCNQに対し電子供与体としての
働きをもつことが考えられる。そしてTCNQ錯体では
電子供与体と電子受容体であるTCNQの比率によって
比抵抗は大きく変化する。
However, lactone compounds and quinoline compounds are considered to act as electron donors for TCNQ, which acts as an electron acceptor. In the TCNQ complex, the specific resistance varies greatly depending on the ratio of TCNQ, which is an electron donor and an electron acceptor.

例えば電子供与体と電子受容体としてのTCNQの比が
一般に1対2の場合比抵抗は最も低いが、1対1の場合
の比抵抗は数十にΩcar〜数百に0cmと大きくなり
、また1対3の場合は数K Q cm〜数十に0cmと
大きくなる点を考慮すればTCNQ錯体に他の化合物を
混合することば丁CNQ錯体自体の特性を悪くするもの
である。
For example, when the ratio of TCNQ as an electron donor to electron acceptor is generally 1:2, the resistivity is the lowest, but when the ratio is 1:1, the resistivity becomes large, ranging from tens of Ωcar to hundreds of 0 cm, and Considering that in the case of 1 to 3, the ratio becomes large, ranging from several K Q cm to several tens of 0 cm, mixing other compounds with the TCNQ complex will deteriorate the properties of the TCNQ complex itself.

これに対して特開昭58−17609号公報、特開昭5
8−191414号公報または特開昭59−63604
号公報に開示されているものは、一般的に解明されてい
るすなわちTCNQ錯体は、電子供与体となる物質の種
類によって融点をもつものともたないものに別れ、かつ
骨格となる構造が同じでも例えばキノリン系またはイソ
キノリン系で置換基なしゃメチル基で置換したものでは
融点をもたず加熱によって分解し絶縁化してしまうが、
プロピル基、エチル基。
On the other hand, Japanese Patent Application Laid-open No. 17609/1983,
Publication No. 8-191414 or JP-A-59-63604
What is disclosed in the publication is generally understood, that is, TCNQ complexes are divided into those that have melting points and those that do not, depending on the type of substance that serves as an electron donor, and even if the skeleton structure is the same. For example, a quinoline or isoquinoline with a methyl group as a substituent has no melting point and decomposes when heated and becomes insulating.
Propyl group, ethyl group.

ブチル基などで置換したものは、融点をもつことになる
点に着目し、加熱溶融含浸に適したN−n−プロピル(
またはN−イソーブOピル)イソキノリン、N−エチル
イソキノリン、N−n−ブチルイソキノリンN位を炭化
水素基で置換したキノリン、イソキノリンなどからなる
TCNQ錯体を用いたものである。
Focusing on the fact that those substituted with butyl groups have a melting point, N-n-propyl (
or N-isoquinoline, N-ethylisoquinoline, Nn-butylisoquinoline, quinoline substituted with a hydrocarbon group at the N-position, isoquinoline, etc., using a TCNQ complex.

しかして、有機物は一般に熱に弱く上記TCNQ錯体も
例にもれず熱に弱く、後述する発明者の実験結果によれ
ば例えば105℃の放置下で比抵抗値が大きく変化する
問題をもっており、上記TCNQ錯体を用いた電解コン
デンサの105℃寿命試験における諸性性は大きく劣化
するという問題をもっていた。
However, organic substances are generally sensitive to heat, and the above-mentioned TCNQ complex is also sensitive to heat, and according to the inventor's experimental results described below, there is a problem in that the resistivity value changes greatly when left at 105°C, for example. An electrolytic capacitor using a TCNQ complex had a problem in that various properties in a 105°C life test were significantly deteriorated.

(発明が解決しようとする問題点) 以上のように上記構成になる電解コンデンサは、TCN
Q錯体自体の比抵抗特性に問題があり、また高温下での
比抵抗劣化の問題を有していた。
(Problems to be Solved by the Invention) As described above, the electrolytic capacitor having the above structure is TCN
There were problems with the specific resistance characteristics of the Q complex itself, and there was also a problem of specific resistance deterioration at high temperatures.

本発明は上記の点に鑑みてなされたもので、種々の実験
結果をふまえ開発した高温下でも比抵抗の劣化なく加熱
溶融含浸に適したTCNQ錯体を用いた電解コンデンサ
を提供することを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide an electrolytic capacitor using a TCNQ complex that has been developed based on various experimental results and is suitable for heat melt impregnation without deterioration of resistivity even at high temperatures. It is something to do.

[発明の構成] (問題点を解決するための手段) 本発明の電解コンデンサは、弁作用金属からなる陽極箔
および陰極箔間にスペーサを介在して巻回したコンデン
サ素子に固体電解質として加熱溶融した有機半導体を含
浸してなる電解コンデンサにおいて、前記有機半導体と
してN。
[Structure of the Invention] (Means for Solving the Problems) The electrolytic capacitor of the present invention has a capacitor element wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal, and heated and melted as a solid electrolyte. In the electrolytic capacitor impregnated with an organic semiconductor, the organic semiconductor is N.

N−メチルnプロピルピペリジンのTCNQ錯体を用い
たことを特徴とするものである。
It is characterized by using a TCNQ complex of N-methyl n-propylpiperidine.

(作用) 以上の構成になる電解コンデンサによれば、電解質とし
て用いる有機半導体は、高温下での比抵抗変化が少ない
ためコンデンサの高温寿命特性変化が少なく信頼性が向
上する。
(Function) According to the electrolytic capacitor having the above configuration, the organic semiconductor used as the electrolyte has little change in resistivity at high temperatures, so the high temperature life characteristics of the capacitor do not change much and reliability is improved.

(実施例) 以下、本発明の実施例につき詳述する。すなわち第2図
に示すように、まず例えばアルミニウム箔表面をエツチ
ング液で粗面化し表面積を拡大したのち陽極酸化皮膜を
生成した陽極箔1と、アルミニウム箔表面を前記同様エ
ツチング液で粗面化し表面積を拡大した陰極箔2とを用
意する。つぎに、前記陽極箔1と陰極箔2間にクラフト
紙またはマニラ紙などからなるスペーサ3を介在し途中
前記陽極箔1および陰極箔2の任意な箇所それぞれに陽
極引出端子4または陰極引出端子5を取着して巻回しコ
ンデンサ素子6を得る。つぎに第3図に示すように例え
ばアルミニウムなどからなるケース7内にN、N−メチ
ルnプロピルピペリジンのTCNQ錯体を入れ、このN
、N−メチルnプロピルピペリジンのTCNQ錯体を加
熱溶融しN、N−メチルnプロピルピペリジンのTCN
Q錯体溶融液8とし、つぎに第1図に示すように前記コ
ンデンサ素子6を例えば余熱状態で前記ケース7内のT
CNQ錯体溶融液8内に収納し、前記N。
(Examples) Examples of the present invention will be described in detail below. That is, as shown in FIG. 2, first, for example, the surface of the aluminum foil is roughened with an etching solution to increase the surface area, and then the anode foil 1 is formed with an anodic oxide film, and the surface of the aluminum foil is roughened with the same etching solution as described above to increase the surface area. A cathode foil 2 is prepared which is an enlarged version of . Next, a spacer 3 made of kraft paper or Manila paper is interposed between the anode foil 1 and the cathode foil 2, and an anode lead-out terminal 4 or a cathode lead-out terminal 5 is placed at an arbitrary point on the anode foil 1 and the cathode foil 2, respectively. is attached to obtain a wound capacitor element 6. Next, as shown in FIG. 3, a TCNQ complex of N,N-methyl npropylpiperidine is placed in a case 7 made of aluminum, etc.
, TCNQ complex of N-methyl n-propylpiperidine is heated and melted to form TCN of N,N-methyl n-propylpiperidine.
As shown in FIG.
stored in the CNQ complex melt 8, and the N.

N−メチルnプロピルピペリジンのTCNQ錯体溶融液
8をコンデンサ素子6内に含浸し、しかるのち冷却固化
し前記ケース7開口部を封口体9にて密閉してなるもの
である。
A TCNQ complex melt 8 of N-methyl n-propyl piperidine is impregnated into the capacitor element 6, then cooled and solidified, and the opening of the case 7 is sealed with a sealing member 9.

以上の構成になる電解コンデンサは、電解質として用い
た有機半導体としてのN、N−メチルnプロピルCベリ
ジンのTCNQ錯体は以下に示す実験結束から明らかな
ように、王CNQ錯体自体の高温下での比抵抗変化が小
さいことから電解コンデンサにおける高温放置下におけ
る緒特性の安定化に大きく貢献できる。
In the electrolytic capacitor having the above configuration, the TCNQ complex of N,N-methyl n-propyl C veridine as an organic semiconductor used as an electrolyte is resistant to the CNQ complex itself at high temperatures, as is clear from the experimental results shown below. Since the change in resistivity is small, it can greatly contribute to stabilizing the characteristics of electrolytic capacitors when left at high temperatures.

つぎに、本発明に係るN、N−メチルnプロピルピペリ
ジンのTCNQ錯体(イ)と従来の参考例として前述し
た加熱溶融処理に適したもののなかのN−n−ブチルイ
ソキノリンのTCNQ錯体(ロ)のつぎのような方法に
おける105℃での比抵抗変化を測定した結果、第4図
に示すようであった。測定方法は(イ)(ロ)ともそれ
ぞれのTCNQ鉗体0錯体5gを直径13#の金型に入
れ上下からピストンで10トンの圧力をかけ得た成形体
の両面に銀ペーストを塗布−乾燥し電極を形成し、この
電極間の抵抗測定値を初期値とし、しかるのち105℃
の恒温槽中に放置し、一定時間毎に抵抗値を測定するも
のである。
Next, the TCNQ complex (a) of N,N-methyl n-propylpiperidine according to the present invention and the TCNQ complex (b) of N-butylisoquinoline, which is suitable for the heat-melting treatment described above as a conventional reference example. The results of measuring the change in resistivity at 105° C. in the following method were as shown in FIG. The measurement method is to place 5 g of each TCNQ forceps 0 complex in (a) and (b) into a mold with a diameter of 13mm, apply a pressure of 10 tons from above and below with a piston, apply silver paste on both sides of the molded body, and dry. The resistance measured between the electrodes was used as the initial value, and then the temperature was heated to 105°C.
The device is left in a constant temperature bath, and the resistance value is measured at regular intervals.

第4図から明らかなように、本発明に係るN。As is clear from FIG. 4, N according to the present invention.

N−メチルnプロピルピペリジンのTCNQ錯体(イ)
が従来の参考例に係るN−n−ブチルイソキノリンのT
CNQ錯体(ロ)より比抵抗の変化が小さいことを実証
した。
TCNQ complex of N-methyl n-propylpiperidine (a)
is T of N-n-butylisoquinoline according to the conventional reference example.
It was demonstrated that the change in resistivity was smaller than that of CNQ complex (b).

なお、前述した従来の参考例に係るその他のTCNQ錯
体についても上記(ロ)のものと同様の傾向を示す結果
となったのでここでは記述を省略した。
Note that the other TCNQ complexes according to the conventional reference examples described above showed the same tendency as the one in (b) above, so their descriptions are omitted here.

−8= つぎに、上記各TCNQ錯体を用いた電解コンデンサそ
れぞれの105℃高温負荷試験における特性の比較の一
例について述べる。
-8= Next, an example of comparison of characteristics in a 105° C. high temperature load test of electrolytic capacitors using each of the above TCNQ complexes will be described.

実施例A 陽極箔 アルミニウム箔表面を粗面化し表面積を拡大し、しかる
のち陽極酸化皮膜を生成した陽極箔 陰極箔 アルミニウム箔表面を粗面化し表面積を拡大した陰極箔 スペーサ 厚さ50μmのマニラ紙 TCNQ錯体 N、N−メチルnプロピルピペリジンのTCNQ錯体 TCNQ錯体加熱溶融条件 ケース中で250℃10秒間 素子余熱条件 270℃ 含浸条件 250℃30秒間 ケース封口 エポキシ樹脂封口 以上の構成になる定格25V−10μFの電解コンデン
サ。
Example A Anode foil The aluminum foil surface was roughened to increase the surface area, and an anodized film was then formed. Anode foil Cathode foil The aluminum foil surface was roughened and the surface area was expanded. Cathode foil spacer. Manila paper TCNQ with a thickness of 50 μm. Complex N, N-methyl n-propyl piperidine TCNQ complex TCNQ complex heating melting conditions case 250℃ for 10 seconds element preheating condition 270℃ impregnation condition 250℃ 30 seconds case sealing epoxy resin sealing or more Rating 25V-10μF Electrolytic capacitor.

参考例8 TCNQ錯体 N−n−ブチルイソキノリンのT CN Q 錯体以外
は上記実施例と同一構成になる定格25V−10μFの
電解コンデンサ。
Reference Example 8 TCNQ Complex An electrolytic capacitor with a rating of 25V-10μF having the same configuration as the above example except for the TCNQ complex of N-n-butylisoquinoline.

しかして、上記本発明に係る実施例の電解コンデンサA
と従来の参考例Bの電解コンデンサの105℃高温負荷
試験における時間に対する静電容量変化率(%)1時間
に対するtanδおよび時間に対する漏れ電流(μA)
の各特性を調べた結果第5図、第6図および第7図に示
すようになった。
Therefore, the electrolytic capacitor A of the embodiment according to the present invention
and capacitance change rate (%) versus time of electrolytic capacitor of conventional reference example B in high temperature load test at 105°C, tan δ versus time and leakage current versus time (μA)
As a result of investigating each characteristic, the results are shown in FIGS. 5, 6, and 7.

第5図〜第7図から明らかなように、実施例Aは参考例
日と比較していずれの特性においても安定しており、特
に静電容量変化率とtanδ変化に対する安定度は顕著
であることがわかる。
As is clear from FIGS. 5 to 7, Example A is stable in all characteristics compared to the reference example, and the stability with respect to capacitance change rate and tan δ change is particularly remarkable. I understand that.

[発明の効梁] 本発明によれば高温下での使用において信頼性が高く、
実用的価値の高い電解コンデンサを得ることができる。
[Effects of the invention] According to the present invention, the beam is highly reliable when used at high temperatures;
An electrolytic capacitor with high practical value can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例に係り、第1図は電
解コンデンサを示す断面図、第2図は第1図を構成する
コンデンサ素子を示す展開斜視図、第3図はケースにT
CNQ錯体を入れた状態の製造途中の説明図、第4図は
時間〜比抵抗特性曲線図、第5図は時藺−静電容量変化
率特性曲線図、第6図は時間−tanδ特性曲線図、第
7図は時間−漏れ電流特性曲線図である。 1・・・・・・陽極箔      2・・・・・・陰極
箔6・・・・・・コンデンサ素子  7・・・・・・ケ
ース8・・・・・・TCNQ鉗体溶融体 溶融液特許出願人ルコン電子株式会社 時  間 (h) 時  間 (h) 第  6  図 時  間 くh) 第  5  図 時  間 (11) 第  7  図
1 to 3 relate to one embodiment of the present invention, in which FIG. 1 is a sectional view showing an electrolytic capacitor, FIG. 2 is an exploded perspective view showing a capacitor element constituting FIG. 1, and FIG. T on the case
An explanatory diagram of the manufacturing process with the CNQ complex added, Figure 4 is a time-resistivity characteristic curve, Figure 5 is a time-capacitance change rate characteristic curve, and Figure 6 is a time-tan δ characteristic curve. 7 are time-leakage current characteristic curve diagrams. 1... Anode foil 2... Cathode foil 6... Capacitor element 7... Case 8... TCNQ forcep body melt patent Applicant Lecon Electronics Co., Ltd. Time (h) Time (h) Figure 6 Time (h) Figure 5 Time (11) Figure 7

Claims (1)

【特許請求の範囲】[Claims]  弁作用金属からなる陽極箔および陰極箔間にスペーサ
を介在して巻回したコンデンサ素子に、固体電解質とし
て加熱溶融した有機半導体を含浸してなる電解コンデン
サにおいて、前記有機半導体としてN、N−メチルnプ
ロピルピペリジンのTCNQ錯体を用いたことを特徴と
する電解コンデンサ。
An electrolytic capacitor in which a capacitor element wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal is impregnated with a heat-molten organic semiconductor as a solid electrolyte, wherein the organic semiconductor is N,N-methyl. An electrolytic capacitor characterized by using a TCNQ complex of n-propylpiperidine.
JP3423787A 1987-02-16 1987-02-16 Electrolytic capacitor Pending JPS63200516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3423787A JPS63200516A (en) 1987-02-16 1987-02-16 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3423787A JPS63200516A (en) 1987-02-16 1987-02-16 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63200516A true JPS63200516A (en) 1988-08-18

Family

ID=12408547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3423787A Pending JPS63200516A (en) 1987-02-16 1987-02-16 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63200516A (en)

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
JPS63200516A (en) Electrolytic capacitor
US4679124A (en) Solid electrolytic capacitors
JPS63200517A (en) Electrolytic capacitor
JPS63200515A (en) Electrolytic capacitor
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JP3162738B2 (en) Solid electrolytic capacitors
JPS6337609A (en) Manufacture of solid electrolytic capacitor
JP3253126B2 (en) Solid electrolytic capacitors
JPH03241726A (en) Electrolytic capacitor
JPS6151910A (en) Solid electrolytic condenser
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JP3093810B2 (en) Method for manufacturing solid electrolytic capacitor
JPS622519A (en) Manufacture of solid electrolytic capacitor
JPS6358815A (en) Manufacture of laminated type paperless electrolytic capacitor
JPS6294909A (en) Manufacture of toroidal electrolytic capacitor
JPS6294912A (en) Manufacture of toroidal electrolytic capacitor
JPS63140517A (en) Manufacture of solid electrolytic capacitor
JPS6151907A (en) Solid electrolytic condenser
JPS617620A (en) Solid electrolytic condenser and method of producing same
JPS61278125A (en) Manufacture of laminated electrolytic capacitor
JPS62194610A (en) Solid electrolytic capacitor
JPS60171717A (en) Solid electrolytic condenser and method of producing same
JPH0821528B2 (en) Capacitor
JPS6151909A (en) Solid electrolytic condenser