JPS63200517A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPS63200517A
JPS63200517A JP3423887A JP3423887A JPS63200517A JP S63200517 A JPS63200517 A JP S63200517A JP 3423887 A JP3423887 A JP 3423887A JP 3423887 A JP3423887 A JP 3423887A JP S63200517 A JPS63200517 A JP S63200517A
Authority
JP
Japan
Prior art keywords
tcnq
complex
electrolytic capacitor
foil
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3423887A
Other languages
Japanese (ja)
Inventor
清志 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP3423887A priority Critical patent/JPS63200517A/en
Publication of JPS63200517A publication Critical patent/JPS63200517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、改良した有機半導体からなる固体電解質を用
いた電解コンデンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to an electrolytic capacitor using a solid electrolyte made of an improved organic semiconductor.

(従来の技術) 一般に乾式箔形電解コンデンサは、例えば高純度アルミ
ニウム箔からなる一対の陽・陰極箔に同じくアルミニウ
ムからなる一対の引出端子を接続し、前記一対の陽・陰
極箔相互間にスペーサを介在して巻回したコンデンサ素
子に駆動用電解液を含浸しケースに収納し、このケース
開口部を密閉するかなどの外装を施してなるものである
。しかして、前記駆動用電解液は、例えばエチレングリ
コールなどの有機溶媒にアジピン酸アンモニウムなどの
有機カルボン酸を使用しているため、tanδ特性改善
に限度があり、また低温で比抵抗が上がり低温特性が極
麿に悪化し広域温度範囲で使用するには信頼性に欠ける
など市場要求を満足するためには解決すべき課題をかか
えていた。
(Prior art) In general, a dry foil electrolytic capacitor has a pair of anode and cathode foils made of, for example, high-purity aluminum foil connected to a pair of lead terminals also made of aluminum, and a spacer is placed between the pair of anode and cathode foils. A capacitor element is wound with a capacitor element interposed therebetween, impregnated with a driving electrolyte, and housed in a case, and the opening of the case is sealed or otherwise covered. However, since the driving electrolyte uses an organic carboxylic acid such as ammonium adipate in an organic solvent such as ethylene glycol, there is a limit to the improvement of tan δ characteristics, and the resistivity increases at low temperatures, resulting in low-temperature characteristics. There were issues that needed to be resolved in order to meet market demands, such as extremely poor performance and lack of reliability for use over a wide temperature range.

そのため近年、駆動用電解液にかえ各種のTCNQ錯体
を用いたものが種々提案され一部実用化を迎えている。
Therefore, in recent years, various devices using various TCNQ complexes instead of the driving electrolyte have been proposed, and some of them have been put into practical use.

TCNQ鉗体を錯体したコンデンサ素子に含浸する方法
どして一般に溶液含浸法1分散含浸法、真空蒸着法があ
るが、王CNQ錯体の特性はいろいろの条件で変化し極
めて扱いにくい物質であるため、使用にあたっては種々
の工夫が講じられている。
Generally speaking, there are two methods for impregnating TCNQ forceps into a complexed capacitor element: solution impregnation method, dispersion impregnation method, and vacuum evaporation method, but the characteristics of the CNQ complex change under various conditions and it is an extremely difficult material to handle. , various measures have been taken for its use.

特に、固体電解質の条件としては、コンデンサ特性とし
てのtanδおよび等価直列抵抗に影響するそれ自体と
しての抵抗値が小さく、かつ温度特に高温下でも安定し
た比抵抗値であることが重要である。
In particular, as conditions for the solid electrolyte, it is important that the resistance value itself, which affects tan δ as a capacitor characteristic and the equivalent series resistance, is small, and that the specific resistance value is stable even under temperature, especially high temperature.

しかして、巻回素子へのTCNQ錯体の含浸手段として
工業的に素子内部へまんべんなく必要量浸透させるには
、従来提案されている特許公報または技術文献によって
加熱溶融液化処理が有効とされている。
Therefore, as a means for impregnating a wound element with a TCNQ complex, heating melting and liquefaction treatment is considered to be effective in industrially permeating the required amount of TCNQ complex into the inside of the element, according to conventionally proposed patent publications or technical literature.

そのなかで特開昭61−7618号公報、または特開昭
61−47642号公報などに開示されているものは、
従来−膜化しているイソキノリン系やビピリジン系の電
子供与体とTCNQを電子受容体としたTCNQ銘体に
錯体トン系化合物やキノリン系化合物を添加した況合物
を加熱溶融してコンデンサ素子に含浸し、しかるのち固
化し有機半導体からなる固体電解質層を形成するもので
ある。すなわち、融点をもたず加熱すると分解し絶縁化
してしまう丁CNQ錯体に化合物を添加し加熱溶融を可
能としたものである。
Among them, those disclosed in JP-A-61-7618, JP-A-61-47642, etc.
Conventional method - A mixture of TCNQ nameplate with isoquinoline or bipyridine electron donor and TCNQ as electron acceptor, which has been formed into a film, and a complex compound or quinoline compound added is heated and melted and impregnated into the capacitor element. However, it is then solidified to form a solid electrolyte layer made of an organic semiconductor. That is, a compound is added to the CNQ complex, which does not have a melting point and decomposes and becomes insulating when heated, thereby making it possible to melt it by heating.

しかしながら、ラクトン系化合物やキノリン系化合物は
電子受容体としてのTCNQに対し電子供与体としての
働きをもつことが考えられる。そしてTCNQ錯体では
電子供与体と電子受容体であるTCNQの比率によって
比抵抗は大きく変化する。
However, lactone compounds and quinoline compounds are considered to act as electron donors for TCNQ, which acts as an electron acceptor. In the TCNQ complex, the specific resistance varies greatly depending on the ratio of TCNQ, which is an electron donor and an electron acceptor.

例えば電子供与体と電子受容体としてのTCNQの比が
一般に1対2の場合比抵抗は最も低いが、1対1の場合
の比抵抗は数+KOcm〜数百に0cmと大きくなり、
また1対3の場合は数にΩCm〜数十に0cmと大きく
なる点を考慮すればT CN Q 錯体に他の化合物を
混合することはTCNQ銘体自錯体特性を悪くするもの
である。
For example, when the ratio of TCNQ as an electron donor to an electron acceptor is generally 1:2, the resistivity is the lowest, but when the ratio is 1:1, the resistivity becomes large, ranging from several + KO cm to several hundred to 0 cm.
In addition, in the case of 1:3, considering that the ratio becomes large from ΩCm to several tens of 0cm, mixing other compounds with the TCNQ complex deteriorates the TCNQ self-complex properties.

これに対して特開昭58−17609号公報、特開昭5
8−191414号公報または特開昭59−63604
号公報に開示されているものは、一般的に解明されてい
るすなわちTCNQ錯体は、電子供与体となる物質の種
類によって融点をもつものともたないものに別れ、かつ
骨格となる構造が同じでも例えばキノリン系またはイソ
キノリン系で置換基なしゃメチル基で置換したものでは
融点をもたず加熱によって分解し絶縁化してしまうが、
プロピル基、エチル基。
On the other hand, Japanese Patent Application Laid-open No. 17609/1983,
Publication No. 8-191414 or JP-A-59-63604
What is disclosed in the publication is generally understood, that is, TCNQ complexes are divided into those that have melting points and those that do not, depending on the type of substance that serves as an electron donor, and even if the skeleton structure is the same. For example, a quinoline or isoquinoline with a methyl group as a substituent has no melting point and decomposes when heated and becomes insulating.
Propyl group, ethyl group.

エチル基などで置換したものは、融点をもつことになる
点に着目し、加熱溶融含浸に適したN−n−プロピル(
またはN−イソ−プロピル)イソキノリン、N−エチル
イソキノリン、N−n−ブチルイソキノリンN位を炭化
水素基で置換したキノリン、イソキノリンなどからなる
TCNQ錯体を用いたものである。
Focusing on the fact that those substituted with ethyl groups have a melting point, N-n-propyl (
Alternatively, a TCNQ complex consisting of quinoline, isoquinoline, etc. in which the N-position of N-position of N-isopropyl isoquinoline, N-ethylisoquinoline, and Nn-butylisoquinoline is substituted with a hydrocarbon group is used.

しかして、有機物は一般に熱に弱く上記TCN Q n
体も例にもれず熱に弱く、後述する発明者の実験結果に
よれば例えば105℃の放置下で比抵抗値が大きく変化
する問題をもっており、上記TCNQ錯体を用いた電解
コンデンサの105℃寿命試験における諸性性は大きく
劣化するという問題をもっていた。
However, organic substances are generally weak against heat and the above TCN Q n
The body is also sensitive to heat, and according to the inventor's experimental results described later, for example, there is a problem that the resistivity value changes greatly when left at 105 degrees Celsius, and the 105 degrees Celsius lifespan of the electrolytic capacitor using the above TCNQ complex has a problem. The problem was that various properties in the test deteriorated significantly.

(発明が解決しようとする問題点) 以上のように上記構成になる電解コンデンサは、TCN
Q錯体自体の比抵抗特性に問題があり、また高温下での
比抵抗劣化の問題を有していた。
(Problems to be Solved by the Invention) As described above, the electrolytic capacitor having the above structure is TCN
There were problems with the specific resistance characteristics of the Q complex itself, and there was also a problem of specific resistance deterioration at high temperatures.

本発明は上記の点に鑑みてなされたもので、種々の実験
結果をふまえ開発した高温下でも比抵抗の劣化なく加熱
溶融含浸に適したTCNQ錯体を用いた電解コンデンサ
を提供することを目的とするものである。
The present invention has been made in view of the above points, and an object of the present invention is to provide an electrolytic capacitor using a TCNQ complex that has been developed based on various experimental results and is suitable for heat melt impregnation without deterioration of resistivity even at high temperatures. It is something to do.

[発明の構成] (問題点を解決するための手段) 本発明の電解コンデンサは、弁作用金属からなる陽極箔
および陰極箔間にスペーサを介在して巻回したコンデン
サ素子に固体電解質として加熱溶融した有機半導体を含
浸してなる電解コンデンサにおいて、前記有機半導体と
してN−メチル−3−nプロピルイミダゾルのTCNQ
錯体を用いたことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The electrolytic capacitor of the present invention has a capacitor element wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal, and heated and melted as a solid electrolyte. In the electrolytic capacitor impregnated with an organic semiconductor, the organic semiconductor is TCNQ of N-methyl-3-n propylimidazole.
It is characterized by the use of a complex.

(作用) 以上の構成になる電解コンデンサによれば、電解質とし
て用いる有機半導体は、高温下での比抵抗変化が少ない
ためコンデンサの高温寿命特性変化が少なく信頼性が向
上する。
(Function) According to the electrolytic capacitor having the above configuration, the organic semiconductor used as the electrolyte has little change in resistivity at high temperatures, so the high temperature life characteristics of the capacitor do not change much and reliability is improved.

(実施例) 以下、本発明の実施例につき詳述する。すなわち第2図
に示すように、まず例えばアルミニウム箔表面を1ツヂ
ング液で粗面化し表面積を拡大したのち陽極酸化皮膜を
生成した陽極箔1と、アルミニウム箔表面を前記同様エ
ツチング液で粗面化し表面積を拡大した陰Iti箔2と
を用意する。つぎに、前記陽極箔1と陰極箔2間にクラ
フト紙またはマニラ紙などからなるスペーサ3を介在し
途中前記陽極箔1および陰極箔2の任意な箇所それぞれ
に陽極引出端子4または陰極引出端子5を取着して巻回
しコンデンサ素子6を得る。つぎに第3図に示すように
例えばアルミニウムなどからなるケース7内にN−メチ
ル−3−nプロピルイミダゾルのT CN Q ’4B
体を入れ、このN−メチル−3−nプロピルイミダゾル
のTCNQ錯体を加熱溶融しN−メチル−3−nプロピ
ルイミダゾルのTCNQ錯体溶融8I28とし、つぎに
第1図に示すように前記コンデンサ索子6を例えば余熱
状態で前記ケース7内のTCNQ釦体溶融体溶融液8内
し、前記N−メチル−3−nプロピルイミダゾルのTC
NQ錯体溶融液8をコンデンサ素子6内に含浸し、しか
るのち冷却固化し前記ケース7開口部を封口体9にて密
閉してなるものである。
(Examples) Examples of the present invention will be described in detail below. That is, as shown in FIG. 2, first, for example, the surface of an aluminum foil is roughened with an etching solution to enlarge the surface area, and then the anode foil 1 with an anodized film formed thereon and the surface of the aluminum foil are roughened with an etching solution in the same manner as described above. A negative Iti foil 2 with an expanded surface area is prepared. Next, a spacer 3 made of kraft paper or Manila paper is interposed between the anode foil 1 and the cathode foil 2, and an anode lead-out terminal 4 or a cathode lead-out terminal 5 is placed at an arbitrary point on the anode foil 1 and the cathode foil 2, respectively. is attached to obtain a wound capacitor element 6. Next, as shown in FIG.
The TCNQ complex of N-methyl-3-n propylimidazole is heated and melted to obtain a TCNQ complex of N-methyl-3-n propylimidazole molten 8I28, and then the capacitor is melted as shown in FIG. For example, the cord 6 is placed in the TCNQ button melt 8 in the case 7 in a preheated state, and the TC of the N-methyl-3-n propylimidazole is heated.
The NQ complex melt 8 is impregnated into the capacitor element 6, then cooled and solidified, and the opening of the case 7 is sealed with a sealing member 9.

以上の構成になる電解コンデンサは、電解質として用い
た有機半導体としてのN−メチル−3−nプロピルイミ
ダゾルのTCNQ錯体は以下に示す実験結果から明らか
なように、TCNQ錯体自体の高温下での比抵抗変化が
小さいことから電解コンデンサにおける高温放置下にお
ける緒特性の安定化に大きく貢献できる。
In the electrolytic capacitor having the above configuration, the TCNQ complex of N-methyl-3-n propylimidazole as an organic semiconductor used as an electrolyte is resistant to the TCNQ complex itself under high temperature, as is clear from the experimental results shown below. Since the change in resistivity is small, it can greatly contribute to stabilizing the characteristics of electrolytic capacitors when left at high temperatures.

つぎに、本発明に係るN−メチル−3−nプロピルイミ
ダゾルのTCNQ錯体(イ)と従来の参考例として前述
した加熱溶融処理に適したもののなかのN−n−ブチル
イソキノリンのTCNQ錯体(ロ)のっぎのような方法
における105℃での比抵抗変化を測定した結果、第4
図に示すようであった。測定方法は(イ) (ロ)とも
それぞれの丁CNQ錯体0.25gを直径13#の金型
に入れ上下からピストンで10トンの圧力をかけ得た成
形体の両面に銀ペーストを塗布−乾燥し電極を形成し、
この電極間の抵抗測定値を初期値とし、しかるのち10
5℃の恒温槽中に放置し、一定時間毎に抵抗値を測定す
るものである。
Next, the TCNQ complex (a) of N-methyl-3-n propylimidazole according to the present invention and the TCNQ complex (a) of N-butylisoquinoline, which is suitable for the above-mentioned heat melting treatment as a conventional reference example. b) As a result of measuring the change in resistivity at 105℃ using a method such as Nogi, the fourth
It was as shown in the figure. The measurement method is (a) and (b). 0.25g of each CNQ complex is placed in a mold with a diameter of 13# and a pressure of 10 tons is applied from above and below with a piston. Silver paste is applied to both sides of the molded body and dried. to form an electrode,
This resistance measurement value between the electrodes is used as the initial value, and then 10
It is left in a constant temperature bath at 5°C, and the resistance value is measured at regular intervals.

第4図から明らかなように、本発明に係るN−メチル−
3−nプロピルイミダゾルのTCNQ鉗体(錯体が従来
の参考例に係るN−n−ブチルイソキノリンのT CN
 Q 68体(ロ)より比抵抗の変化が小さいことを実
証した。
As is clear from FIG. 4, N-methyl-
TCNQ forceps of 3-n propylimidazole (complex is TCN of N-n-butylisoquinoline according to the conventional reference example)
It was demonstrated that the change in specific resistance was smaller than that of Q68 body (b).

なお、前述した従来の参考例に、係るモの他のTCNQ
銘体に錯体ても上記(ロ)のものと同様の傾向を示す結
果となったのでここでは記述を省略した。
In addition, in the conventional reference example mentioned above, there are other TCNQs of this type.
Since the results showing the same tendency as those in (b) above were obtained when complexing with an inscription, the description is omitted here.

−8一 つぎに、上記各TCNQ錯体を用いた電解」ンデンサそ
れぞれの105℃高温負荷試験における特性の比較の一
例について述べる。
-8 Next, an example of a comparison of the characteristics of electrolytic capacitors using each of the above TCNQ complexes in a high temperature load test at 105°C will be described.

実施例A 陽極箔 アルミニウム箔表面を粗面化し表面積を拡大し、しかる
のち陽極酸化皮膜を生成した陽極箔 陰極箔 アルミニウム箔表面を粗面化し表面積を拡大した陰極箔 スペーサ 厚さ50μmのマニラ紙 丁CNQ錯体 N−メチル−3−nプロピルイミダゾルのTCNQ錯体 丁CNQ錯体加熱溶融条4![ り=ス中で250℃10秒間 素子余熱条件 270℃ 含浸条件 250℃30秒間 ケース封口 エポキシ樹脂封口 以上の構成になる定格25V−10μFの電解コンデン
サ。
Example A Anode foil Cathode foil spacer with roughened aluminum foil surface to increase surface area and then generate an anodic oxide film Cathode foil spacer with roughened aluminum foil surface to increase surface area Manila paper strip with a thickness of 50 μm CNQ complex N-methyl-3-n propylimidazole TCNQ complex CNQ complex heating melting strip 4! [An electrolytic capacitor with a rating of 25V-10μF that has a configuration with an epoxy resin seal and a case sealed with an epoxy resin seal.

参考例B TCNQ鏡体 N−n−ブチルイソキノリンのTCNQ錯体以外は上記
実施例と同一構成になる定格25V−ioμFの電解コ
ンデンサ。
Reference Example B An electrolytic capacitor with a rating of 25V-ioμF having the same configuration as the above example except for the TCNQ complex of TCNQ mirror N-n-butylisoquinoline.

しかして、上記本発明に係る実施例の電解コンデンIす
Aと従来の参考例Bの電解コンデンサの105℃高温負
荷試験における時間に対する静電容量変化率(%)2時
間に対するtanδおよび時間に対する漏れ電流(μA
)の各特性を調べた結果第5図、第6図および第7図に
示すようになった。
Therefore, in the 105°C high temperature load test of the electrolytic capacitor IA of the embodiment according to the present invention and the electrolytic capacitor of the conventional reference example B, the capacitance change rate (%) versus time, tan δ versus time for 2 hours, and leakage versus time were determined. Current (μA
), the results are shown in FIGS. 5, 6, and 7.

第5図〜第7図から明らかなように、実施例Aは参考例
Bと比較していずれの特性においても安定しており、特
に静電容量変化率とtanδ変化に対する安定度は顕著
であることがわかる。
As is clear from FIGS. 5 to 7, Example A is more stable in all characteristics than Reference Example B, and the stability with respect to capacitance change rate and tan δ change is particularly remarkable. I understand that.

[発明の効果] 本発明によれば高温下での使用において信頼性が高く、
実用的価値の高い電解コンデンサを得ることができる。
[Effects of the Invention] According to the present invention, reliability is high in use under high temperatures;
An electrolytic capacitor with high practical value can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は本発明の一実施例に係り、第1図は電
解コンデンサを示す断面図、第2図は第1図を構成する
コンデンサ素子を示す展開斜視図、第3図はケースにT
CNQ錯体を入れた状態の製造途中の説明図、第4図は
時間−比抵抗特性曲線図、第5図は時間−静電容母変化
率特性曲線図、第6図は時間−tanδ特性曲線図、第
7図は時間−漏れ電流特性曲線図である。 1・・・・・・陽極箔      2・・・・・・陰極
箔6・・・・・・コンデンサ素子  7・・・・・・ケ
ース8・・・・・・TCNQ錯体溶融液 特許出願人  マル]ン電子株式会社 時  間 (h) 時  間 (h) 第  6  図 時  間 (1−1> 第  5  図 時  間 (h) 第  7  図
1 to 3 relate to one embodiment of the present invention, in which FIG. 1 is a sectional view showing an electrolytic capacitor, FIG. 2 is an exploded perspective view showing a capacitor element constituting FIG. 1, and FIG. T on the case
An explanatory diagram of the manufacturing process with the CNQ complex added, Fig. 4 is a time-resistivity characteristic curve diagram, Fig. 5 is a time-capacitance population change rate characteristic curve diagram, and Fig. 6 is a time-tan δ characteristic curve diagram. , FIG. 7 is a time-leakage current characteristic curve diagram. 1... Anode foil 2... Cathode foil 6... Capacitor element 7... Case 8... TCNQ complex melt patent applicant Maru Time (h) Time (h) Figure 6 Time (1-1> Figure 5 Time (h) Figure 7

Claims (1)

【特許請求の範囲】[Claims]  弁作用金属からなる陽極箔および陰極箔間にスペーサ
を介在して巻回したコンデンサ素子に、固体電解質とし
て加熱溶融した有機半導体を含浸してなる電解コンデン
サにおいて、前記有機半導体としてN−メチル−3−n
プロピルイミダゾルのTCNQ錯体を用いたことを特徴
とする電解コンデンサ。
An electrolytic capacitor in which a capacitor element wound with a spacer interposed between an anode foil and a cathode foil made of a valve metal is impregnated with a heat-molten organic semiconductor as a solid electrolyte, wherein N-methyl-3 is used as the organic semiconductor. -n
An electrolytic capacitor characterized by using a TCNQ complex of propylimidazole.
JP3423887A 1987-02-16 1987-02-16 Electrolytic capacitor Pending JPS63200517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3423887A JPS63200517A (en) 1987-02-16 1987-02-16 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3423887A JPS63200517A (en) 1987-02-16 1987-02-16 Electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS63200517A true JPS63200517A (en) 1988-08-18

Family

ID=12408576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3423887A Pending JPS63200517A (en) 1987-02-16 1987-02-16 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS63200517A (en)

Similar Documents

Publication Publication Date Title
JP3070408B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH0158856B2 (en)
US4580855A (en) Solid electrolyte capacitor
JPS63200517A (en) Electrolytic capacitor
JPS63200516A (en) Electrolytic capacitor
JPS63200515A (en) Electrolytic capacitor
JP2950575B2 (en) Electrolytic capacitor
US4982312A (en) Charge transfer complex and solid electrolytic capacitor employing the same
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
JP3253126B2 (en) Solid electrolytic capacitors
US3504237A (en) Electrolytic capacitor and electrolyte therefor
JPS622519A (en) Manufacture of solid electrolytic capacitor
JPS6151910A (en) Solid electrolytic condenser
JP3162738B2 (en) Solid electrolytic capacitors
JPS63219120A (en) Solid electrolytic capacitor
JPH0426534B2 (en)
JPS6151909A (en) Solid electrolytic condenser
JPH0636974A (en) Electrolyte for driving electrolytic capacitor
JPS6151907A (en) Solid electrolytic condenser
JPS6236372B2 (en)
JPS61129807A (en) Solid electrolytic capacitor
JP2003142342A (en) Heat-resistant solid electrolytic capacitor and method for manufacturing the same
JPS61218127A (en) Solid electrolytic capacitor
JPH01230217A (en) Driving electrolyte for electrolytic capacitor
JPS6147624A (en) Solid electrolytic condenser