JPH0636974A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor

Info

Publication number
JPH0636974A
JPH0636974A JP20956892A JP20956892A JPH0636974A JP H0636974 A JPH0636974 A JP H0636974A JP 20956892 A JP20956892 A JP 20956892A JP 20956892 A JP20956892 A JP 20956892A JP H0636974 A JPH0636974 A JP H0636974A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrolyte
electrolytic
electrolytic solution
boric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20956892A
Other languages
Japanese (ja)
Inventor
Koichi Morita
晃一 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20956892A priority Critical patent/JPH0636974A/en
Publication of JPH0636974A publication Critical patent/JPH0636974A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To obtain electrolyte for driving an electrolytic capacitor wherein withstand voltage is high, life characteristic and low temperature characteristics are excellent, and stable characteristics under applied voltage are obtained. CONSTITUTION:In the solvent composed of 98ml alpha-butyrolactone and 2ml ethylene glycol, the following are dissolved as solute; 10g triethylmethyl sebacate ammonium salt and 1g boric acid. By using the above electrolyte, an electrolytic capacitor whose rating is 100V-220muF is manufactured for experiment, and subjected to a high temperature load test at 105 deg.C for 2000 hours. The result shows that change amount of tandelta, change amount of leak current, and capacitance change ratio are low as compared with electrolytic capacitors using the conventional electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解コンデンサ駆動用
の電解液に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for driving an electrolytic capacitor.

【0002】[0002]

【従来の技術】電解コンデンサは、駆動用電解液(以下
電解液という)を含浸したセパレータ紙をアルミニウム
の箔とともに巻回してなるコンデンサ素子を、アルミニ
ウム製又は合成樹脂製のケースに収納し密閉した構造を
有している。
2. Description of the Related Art In an electrolytic capacitor, a capacitor element formed by winding separator paper impregnated with a driving electrolytic solution (hereinafter referred to as electrolytic solution) together with an aluminum foil is housed in an aluminum or synthetic resin case and hermetically sealed. It has a structure.

【0003】このような電解コンデンサの電解液には、
エチレングリコールを主溶媒とし、アジピン酸,蟻酸,
安息香酸等の有機酸若しくはその塩、又はほう酸,リン
酸等の無機酸若しくはその塩を溶質とするものが、多く
用いられている。
In the electrolytic solution of such an electrolytic capacitor,
Using ethylene glycol as the main solvent, adipic acid, formic acid,
An organic acid such as benzoic acid or a salt thereof, or an inorganic acid such as boric acid or phosphoric acid or a salt thereof is often used as a solute.

【0004】近年では、耐電圧,熱安定性等の特性が優
れた電解液が求められており、高電導度を有し熱安定性
の優れた電解液として、γ−ブチロラクトンを溶媒とし
フタル酸の四級アンモニウム塩であるフタル酸テトラメ
チルアンモニウム塩を溶質として溶解した電解液が提案
されている(特開昭63−69213 号公報) 。
In recent years, an electrolytic solution having excellent characteristics such as withstand voltage and thermal stability has been demanded. As an electrolytic solution having high electric conductivity and excellent thermal stability, γ-butyrolactone is used as a solvent and phthalic acid is used. An electrolytic solution in which a tetramethylammonium phthalate, which is a quaternary ammonium salt, is dissolved as a solute has been proposed (Japanese Patent Laid-Open No. 63-69213).

【0005】この電解液は、高伝導度を有し、寿命特性
が優れており、溶媒にγ−ブチロラクトン(融点-43.53
℃)を使用しているので、低温特性に優れている。しか
しながら、この電解液は耐電圧が低く、これを用いた電
解コンデンサの定格電圧は、35〜50Vを限界としてい
た。
This electrolytic solution has high conductivity and excellent life characteristics, and has a solvent of γ-butyrolactone (melting point-43.53).
(° C) is used, so it has excellent low temperature characteristics. However, this electrolytic solution has a low withstand voltage, and the rated voltage of the electrolytic capacitor using this electrolytic solution is limited to 35 to 50V.

【0006】[0006]

【発明が解決しようとする課題】また、γ−ブチロラク
トンを溶媒とし、セバシン酸の四級アンモニウム塩を溶
質として溶解した電解液が提案されている(特開昭62−
248217号公報) 。この電解液を用いた電解コンデンサ
は、熱安定性及び寿命特性が優れており、耐電圧が高
い。しかしながら、この電解コンデンサは電圧を印加し
た際に、陽極に形成されている酸化膜が破壊され易く、
そのために耐電圧が急峻に低下する。このことから、こ
の電解液は電解コンデンサに電圧を印加した際に、その
特性を不安定にするという問題があった。
Further, an electrolytic solution in which γ-butyrolactone is used as a solvent and a quaternary ammonium salt of sebacic acid is dissolved as a solute has been proposed (JP-A-62-62).
No. 248217). An electrolytic capacitor using this electrolytic solution has excellent thermal stability and life characteristics and high withstand voltage. However, in this electrolytic capacitor, the oxide film formed on the anode is easily destroyed when a voltage is applied,
Therefore, the withstand voltage sharply decreases. From this, there is a problem that this electrolytic solution makes the characteristics unstable when a voltage is applied to the electrolytic capacitor.

【0007】本発明は、かかる事情に鑑みてなされたも
のであり、耐電圧が高く、寿命特性及び低温特性に優
れ、電圧を印加した際に安定した特性を有する電解コン
デンサの駆動用の電解液を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is an electrolytic solution for driving an electrolytic capacitor having high withstand voltage, excellent life characteristics and low temperature characteristics, and stable characteristics when a voltage is applied. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】第1発明に係る電解コン
デンサ駆動用の電解液は、γ−ブチロラクトンを主溶媒
とし、セバシン酸の四級アンモニウム塩を主溶質とする
電解コンデンサ駆動用の電解液において、ほう酸及びエ
チレングリコールを溶解してあることを特徴とする。
An electrolytic solution for driving an electrolytic capacitor according to a first aspect of the present invention is an electrolytic solution for driving an electrolytic capacitor, which comprises γ-butyrolactone as a main solvent and a quaternary ammonium salt of sebacic acid as a main solute. In (1), boric acid and ethylene glycol are dissolved.

【0009】第2発明に係る電解コンデンサ駆動用の電
解液は、γ−ブチロラクトンを主溶媒とし、セバシン酸
の四級アンモニウム塩を主溶質とする電解コンデンサ駆
動用の電解液において、前記溶媒 100mlに対し、含有量
が 0.5〜2g のほう酸と、含有量が1〜5mlのエチレン
グリコールを溶解してあることを特徴とする。
The electrolytic solution for driving an electrolytic capacitor according to the second aspect of the present invention is an electrolytic solution for driving an electrolytic capacitor, which comprises γ-butyrolactone as a main solvent and a quaternary ammonium salt of sebacic acid as a main solute. On the other hand, it is characterized in that boric acid having a content of 0.5 to 2 g and ethylene glycol having a content of 1 to 5 ml are dissolved.

【0010】[0010]

【作用】図1は電解液の電圧上昇特性を示すグラフであ
る。縦軸は電圧、横軸は時間を表している。図1(a)
は、従来のγ−ブチロラクトン100ml を溶媒とし、セバ
シン酸トリエチルメチルアンモニウム塩10g を溶質とし
て溶解した電解液に電極を装着して、これに印加された
電圧を測定した電圧上昇特性を示している。電圧を徐々
に上昇した場合に、この電解液に印加される電圧は 200
Vまで上昇した後、急峻に下降している。これは、高電
圧を印加することにより陽電極であるアルミニウム表面
に形成された酸化膜が破壊され、この電解液の耐電圧が
低下したためであると思われる。
FIG. 1 is a graph showing the voltage rising characteristic of the electrolytic solution. The vertical axis represents voltage and the horizontal axis represents time. Figure 1 (a)
Shows a voltage rise characteristic obtained by mounting an electrode on an electrolyte solution prepared by dissolving 10 g of conventional γ-butyrolactone as a solvent and 10 g of triethylmethylammonium sebacate salt as a solute, and measuring the voltage applied thereto. When the voltage is gradually increased, the voltage applied to this electrolyte is 200
After rising to V, it drops sharply. It is considered that this is because the oxide film formed on the aluminum surface which is the positive electrode was destroyed by applying a high voltage, and the withstand voltage of this electrolytic solution was lowered.

【0011】一方、図1(b) は、γ−ブチロラクトン98
ml及びエチレングリコール2ml を溶媒とし、セバシン酸
トリエチルメチルアンモニウム塩10g 及びほう酸1gを溶
質として溶解した電解液に電極を装着して、これに印加
された電圧を測定した電圧上昇特性を示している。この
電解液では、電圧を徐々に上昇した場合に印加される電
圧は略 190Vでピークに達して 190Vを保ち、降下する
ことはない。このことから、ほう酸及びこれを溶解する
ためのエチレングリコールを含有することにより、高電
圧を印加したことによる酸化膜の破壊が抑制されると言
える。
On the other hand, FIG. 1 (b) shows γ-butyrolactone 98.
Electrodes were attached to an electrolyte solution in which 10 ml of triethylmethylammonium sebacate and 1 g of boric acid were dissolved as a solute using 2 ml of ethylene glycol and 2 ml of ethylene glycol as a solvent, and the voltage applied to this electrode was measured. In this electrolytic solution, when the voltage is gradually increased, the voltage applied reaches a peak of about 190V, maintains 190V, and does not drop. From this, it can be said that the inclusion of boric acid and ethylene glycol for dissolving the boric acid suppresses the destruction of the oxide film due to the application of a high voltage.

【0012】本発明の電解コンデンサ駆動用の電解液で
は、γ−ブチロラクトンを主溶媒とし、セバシン酸の四
級アンモニウム塩を主溶質とする電解コンデンサ駆動用
の電解液に、ほう酸及びエチレングリコールを含有させ
る。このとき、ほう酸をエチレングリコールに溶解し
て、γ−ブチロラクトンと混合する。これにより、この
電解液を用いた電解コンデンサは、耐電圧が高く、寿命
特性及び低温特性に優れ、電圧を印加した際に安定した
特性を示す。また、これらの含有量は、溶媒 100mlに対
して、ほう酸は0.5 〜2g で、エチレングリコールは1
〜5mlである場合に、より優れた効果を示す。
In the electrolytic solution for driving an electrolytic capacitor of the present invention, γ-butyrolactone is used as a main solvent and the quaternary ammonium salt of sebacic acid is used as a main solute. The electrolytic solution for driving an electrolytic capacitor contains boric acid and ethylene glycol. Let At this time, boric acid is dissolved in ethylene glycol and mixed with γ-butyrolactone. As a result, an electrolytic capacitor using this electrolytic solution has a high withstand voltage, excellent life characteristics and low temperature characteristics, and exhibits stable characteristics when a voltage is applied. The contents of these are 0.5 to 2 g of boric acid and 1 of ethylene glycol with respect to 100 ml of the solvent.
A superior effect is exhibited when the amount is ~ 5 ml.

【0013】[0013]

【実施例】以下、本発明の実施例を従来例と共に挙げて
具体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below along with conventional examples.

【0014】[0014]

【表1】 [Table 1]

【0015】表1は電解液A,B,C,D,E,Fにつ
いての溶媒,溶質について示した表である。γ−ブチロ
ラクトン及びエチレングリコールを溶媒とし、セバシン
酸トリエチルメチルアンモニウム塩及びほう酸を溶質と
して溶解したものを、実施例の電解液A,B,Cとす
る。電解液A,B,Cは夫々溶媒の混合比,溶質の混合
比を異ならせたものであり、電解液Aはγ−ブチロラク
トン及びエチレングリコールを95:5(%) の溶媒に、溶媒
100mlに対してセバシン酸トリエチルメチルアンモニウ
ム塩を10g,ほう酸を2g溶解したものであり、電解液Bは
γ−ブチロラクトン及びエチレングリコールを98:2(%)
の溶媒にセバシン酸トリエチルメチルアンモニウム塩を
10g,ほう酸を1g溶解したもの、電解液Bはγ−ブチロラ
クトン及びエチレングリコールを99:1(%) の溶媒にセバ
シン酸テトラメチルアンモニウム塩を10g,ほう酸を0.5g
溶解したものである。ここで、ほう酸はエチレングリコ
ールに溶解し、γ−ブチロラクトンと混合される。
Table 1 is a table showing the solvents and solutes of the electrolytic solutions A, B, C, D, E and F. Electrolyte solutions A, B, and C of Examples were prepared by dissolving γ-butyrolactone and ethylene glycol as solvents and using triethylmethylammonium sebacate and boric acid as solutes. Electrolyte solutions A, B, and C have different mixture ratios of solvent and solute, respectively. Electrolyte solution A contains γ-butyrolactone and ethylene glycol in a solvent of 95: 5 (%),
10 g of triethylmethylammonium sebacate salt and 2 g of boric acid were dissolved in 100 ml, and the electrolytic solution B contained γ-butyrolactone and ethylene glycol at 98: 2 (%).
Solvent of triethylmethylammonium sebacate
10 g, 1 g of boric acid dissolved, electrolyte B is γ-butyrolactone and ethylene glycol 99: 1 (%) in a solvent of 10 g of tetramethylammonium sebacate and 0.5 g of boric acid.
It is melted. Here, boric acid is dissolved in ethylene glycol and mixed with γ-butyrolactone.

【0016】電解液D,E,Fは従来例であり、電解液
Dはγ−ブチロラクトン 100mlを溶媒として、フタル酸
テトラメチルアンモニウム塩20g を溶質として溶解した
ものであり、電解液Eはγ−ブチロラクトン 100mlを溶
媒として、セバシン酸トリエチルメチルアンモニウム塩
10g を溶解してもの、電解液Fはエチレングリコール10
0mlを溶媒として、アジピン酸アンモニウム10g を溶解
したものである。
The electrolytic solutions D, E and F are conventional examples, and the electrolytic solution D is a solution in which 100 ml of γ-butyrolactone is used as a solvent and 20 g of tetramethylammonium phthalate salt is dissolved as a solute, and the electrolytic solution E is γ-. Sebacic acid triethylmethyl ammonium salt with 100 ml of butyrolactone as solvent
Even if 10g is dissolved, the electrolyte F is ethylene glycol 10
It was prepared by dissolving 10 g of ammonium adipate in 0 ml of a solvent.

【0017】これらの電解液A,B,C,D,E,Fに
電極を装着し、電導度,耐電圧を測定した結果、及びこ
れらの電解液A,B,C,D,E,Fを用いた電解コン
デンサ(定格 100V− 220μF,外形寸法がφ16mm×25
mm)を試作し、85℃, 100Vのエージングを行った場合
の状況を表2に示す。
Electrodes were attached to these electrolytes A, B, C, D, E, F, and the results of measuring the electric conductivity and withstand voltage, and the electrolytes A, B, C, D, E, F Electrolytic capacitor (rated 100V-220μF, external dimensions φ16mm × 25
mm) was prototyped and the condition when aged at 85 ° C and 100V is shown in Table 2.

【0018】[0018]

【表2】 [Table 2]

【0019】表2に示すように、従来例の電解液Dは耐
電圧が低く、これを用いた電解コンデンサに 100Vのエ
ージングを1時間,85℃で行ったところ、耐電圧以上の
電圧が負荷されて、電解コンデンサの陽極と陰極とが接
触するショートが発生し、パンクを多発させて(以下シ
ョートパンクと言う)、エージングが不可能であった。
As shown in Table 2, the electrolytic solution D of the conventional example has a low withstand voltage, and when an electrolytic capacitor using this was aged at 100 V for 1 hour at 85 ° C., a voltage higher than the withstand voltage was applied. As a result, a short circuit occurs in which the anode and the cathode of the electrolytic capacitor come into contact with each other, causing a large number of punctures (hereinafter referred to as short puncture), which makes aging impossible.

【0020】これらの電解コンデンサを夫々20個ずつ試
作し、 105℃, 2000時間の高温負荷試験(定格電圧連続
印加試験)を実施した。2000時間後の容量変化率(ΔC
/C),電気抵抗値の指標である損失( tanδ)及び漏
れ電流の測定値を、初期値については容量, tanδ及び
漏れ電流の値を表3に示す。
Twenty of each of these electrolytic capacitors were prototyped and subjected to a high temperature load test (rated voltage continuous application test) at 105 ° C. for 2000 hours. Capacity change rate after 2000 hours (ΔC
/ C), measured values of loss (tan δ) which is an index of electric resistance and leakage current, and initial values of capacity, tan δ and leakage current are shown in Table 3.

【0021】[0021]

【表3】 [Table 3]

【0022】表3に示すように、従来例の電解液Fを用
いた電解コンデンサは容量変化率及び tanδが高くなっ
ており、寿命特性が悪いことが判る。また、従来例の電
解液Eを用いた電解コンデンサは高温負荷試験を実施中
に2個にショートパンクが発生している。これは、長時
間に渡る高温負荷試験中に電解コンデンサの酸化被膜が
破壊され、耐電圧に急激な変化が起こるためであると考
えられる。
As shown in Table 3, it can be seen that the electrolytic capacitor using the electrolytic solution F of the conventional example has a high rate of change in capacitance and tan δ, and has poor life characteristics. Further, in the electrolytic capacitors using the electrolytic solution E of the conventional example, two short punctures occurred during the high temperature load test. It is considered that this is because the oxide film of the electrolytic capacitor is destroyed during the high temperature load test for a long time, causing a rapid change in the withstand voltage.

【0023】これらと比較して本実施例の電解液A,
B,Cを用いた電解コンデンサは、容量変化率,tanδ及
び漏れ電流値は低く、ショートパンクも発生せず、安定
した特性を示していることが判る。
In comparison with these, the electrolytic solution A of this embodiment,
It can be seen that the electrolytic capacitors using B and C have a low capacity change rate, tan δ and leakage current value, do not cause short puncture, and show stable characteristics.

【0024】また、表2に示すように、電解液A,B,
Cの伝導度は、ほう酸及びエチレングリコールの添加量
が多くなるほど低くなっていること、表3に示すよう
に、ほう酸が添加されない電解液Eではショートパンク
が発生していること、ほう酸の添加量が多くなると溶媒
に溶け難くなることから、ほう酸の添加量は0.5g〜2g
が適量であることが言える。この添加量のほう酸を溶解
するためのエチレングリコールの添加量は1ml〜5mlが
適量である。
Further, as shown in Table 2, the electrolytic solutions A, B,
The conductivity of C decreases as the amount of boric acid and ethylene glycol added increases, and as shown in Table 3, the electrolyte solution E to which boric acid is not added causes short puncture, and the amount of boric acid added. As the amount of boric acid becomes difficult to dissolve in the solvent, the amount of boric acid added is 0.5g to 2g.
Can be said to be an appropriate amount. The appropriate amount of ethylene glycol for dissolving this amount of boric acid is 1 ml to 5 ml.

【0025】[0025]

【発明の効果】以上のように、本発明の電解コンデンサ
駆動用の電解液は、γ−ブチロラクトンを主溶媒とし、
セバシン酸の四級アンモニウム塩を主溶質とする電解液
に、ほう酸及びエチレングリコールを添加することによ
り、耐電圧が高く、寿命特性及び低温特性に優れ、高電
圧を印加した際に安定した特性を有する電解コンデンサ
を得ることができ、本発明は優れた効果を奏する。
As described above, the electrolytic solution for driving the electrolytic capacitor of the present invention contains γ-butyrolactone as the main solvent,
By adding boric acid and ethylene glycol to the electrolytic solution containing quaternary ammonium salt of sebacic acid as the main solute, high withstand voltage, excellent life characteristics and low temperature characteristics, and stable characteristics when high voltage is applied are obtained. An electrolytic capacitor having the same can be obtained, and the present invention has excellent effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】電解液の電圧上昇特性を示すグラフである。FIG. 1 is a graph showing a voltage rising characteristic of an electrolytic solution.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 γ−ブチロラクトンを主溶媒とし、セバ
シン酸の四級アンモニウム塩を主溶質とする電解コンデ
ンサ駆動用の電解液において、ほう酸及びエチレングリ
コールを溶解してあることを特徴とする電解コンデンサ
駆動用の電解液。
1. An electrolytic capacitor, characterized in that boric acid and ethylene glycol are dissolved in an electrolytic solution for driving an electrolytic capacitor containing γ-butyrolactone as a main solvent and a quaternary ammonium salt of sebacic acid as a main solute. Electrolyte for driving.
【請求項2】 前記溶媒 100mlに対し、前記ほう酸の含
有量が 0.5〜2g であり、前記エチレングリコールの含
有量が1〜5mlであることを特徴とする請求項1記載の
電解コンデンサ駆動用の電解液。
2. The electrolytic capacitor driving apparatus according to claim 1, wherein the content of the boric acid is 0.5 to 2 g and the content of the ethylene glycol is 1 to 5 ml with respect to 100 ml of the solvent. Electrolyte.
JP20956892A 1992-07-13 1992-07-13 Electrolyte for driving electrolytic capacitor Pending JPH0636974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20956892A JPH0636974A (en) 1992-07-13 1992-07-13 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20956892A JPH0636974A (en) 1992-07-13 1992-07-13 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0636974A true JPH0636974A (en) 1994-02-10

Family

ID=16574990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20956892A Pending JPH0636974A (en) 1992-07-13 1992-07-13 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0636974A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010354A (en) * 2019-03-06 2019-07-12 湖南艾华集团股份有限公司 A kind of electrolyte and preparation method thereof suitable for high-pressure aluminum electrolytic capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010354A (en) * 2019-03-06 2019-07-12 湖南艾华集团股份有限公司 A kind of electrolyte and preparation method thereof suitable for high-pressure aluminum electrolytic capacitor

Similar Documents

Publication Publication Date Title
US5507966A (en) Electrolyte for an electrolytic capacitor
JP2000150316A (en) Electrolyte for use in a capacitor
US6765785B2 (en) Polymer electrolyte composite for driving an electrolytic capacitor, an electrolytic capacitor using the same, and a method of making the electrolytic capacitor
EP0358239A2 (en) Solid electrolytic capacitor and method of manufacturing the same
KR0122882B1 (en) Liquid electrolyte for use in electrolytic capacitor
JPH0636974A (en) Electrolyte for driving electrolytic capacitor
JPH11126732A (en) Aluminium electrolytic capacitor
JPS6054422A (en) Electrolytic condenser
EP0956573B1 (en) Electrolyte for electrolytic capacitor
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP2003109861A (en) Electrical double layer capacitor and electrolyte therefor
JPH09115782A (en) Electrolyte for driving electrolytic capacitor
JPH09213581A (en) Electrolyte for driving electrolytic capacitor
JP2001307960A (en) Aluminum electrolytic capacitor
JP3918885B2 (en) Electrolytic solution for electrolytic capacitor drive
KR100279331B1 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JP2811640B2 (en) Aging method for solid electrolytic capacitors
JPH1154377A (en) Electric double layer capacitor
JPH0636973A (en) Electrolyte for driving electrolytic capacitor
JP2000036439A (en) Polarized aluminum electrolytic capacitor
JP2003249421A (en) Polymer electrolytic complex for electrolytic-capacitor driving, electrolytic capacitor using the same, and manufacturing method of the same
JPH05121272A (en) Electrolyte for driving electrolytic capacitor
JPH09213579A (en) Electrolyte for driving electrolytic capacitor
JPH0636975A (en) Electrolyte for driving electrolytic capacitor
JPH0337854B2 (en)