JPH0636975A - Electrolyte for driving electrolytic capacitor - Google Patents
Electrolyte for driving electrolytic capacitorInfo
- Publication number
- JPH0636975A JPH0636975A JP20956992A JP20956992A JPH0636975A JP H0636975 A JPH0636975 A JP H0636975A JP 20956992 A JP20956992 A JP 20956992A JP 20956992 A JP20956992 A JP 20956992A JP H0636975 A JPH0636975 A JP H0636975A
- Authority
- JP
- Japan
- Prior art keywords
- electrolytic capacitor
- solvent
- electrolyte
- electrolytic
- electrolytic solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、電解コンデンサ駆動用
の電解液に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolytic solution for driving an electrolytic capacitor.
【0002】[0002]
【従来の技術】電解コンデンサは、電解コンデンサ駆動
用電解液(以下電解液と言う)を浸したセパレータ紙を
アルミニウムの箔とともに巻回してなる電解コンデンサ
素子を、アルミニウム製のケースに収納してゴムパッキ
ングで封口した構造になっており、アルミニウムを陽電
極として使用される。2. Description of the Related Art An electrolytic capacitor comprises a separator paper, which is dipped in an electrolytic solution for driving the electrolytic capacitor (hereinafter referred to as "electrolyte solution"), and an aluminum foil. The structure is sealed by packing, and aluminum is used as a positive electrode.
【0003】このような電解コンデンサの電解液はエチ
レングリコールを主溶媒とし、アジピン酸,ギ酸,安息
香酸等の有機酸、若しくはその塩を溶質とするもの、又
はホウ酸,リン酸等の無機酸、若しくはその塩を溶質と
するものが多く用いられている。The electrolytic solution of such an electrolytic capacitor uses ethylene glycol as a main solvent and an organic acid such as adipic acid, formic acid or benzoic acid, or a salt thereof as a solute, or an inorganic acid such as boric acid or phosphoric acid. Or, those that use the salt as a solute are often used.
【0004】このエチレングリコールを主溶媒とした電
解液は、溶媒の封口用のゴムパッキングに対する透過性
が小さく、溶媒の滲み漏れが少ないが、エチレングリコ
ールがエステル化し易いために、電解液の熱安定性が乏
しい。また、エチレングリコールの融点が高いことか
ら、電解液の低温特性が充分でない等の問題があった。The electrolytic solution containing ethylene glycol as the main solvent has a low permeability to the rubber packing for sealing the solvent and little leakage of the solvent, but the ethylene glycol is easily esterified, so that the electrolytic solution is thermally stable. Poor nature. Further, since the melting point of ethylene glycol is high, there are problems such as insufficient low temperature characteristics of the electrolytic solution.
【0005】また、熱安定性及び低温特性が優れた電解
液として、γ−ブチロラクトン溶媒にフタル酸の四級ア
ンモニウム塩であるフタル酸テトラメチルアンモニウム
塩を溶質とした電解液、γ−ブチロラクトン溶媒にマレ
イン酸の四級アンモニウム塩であるマレイン酸テトラメ
チルアンモニウム塩を溶質とした電解液が提案されてい
る(特開昭63−69213 号公報)。Further, as an electrolytic solution having excellent thermal stability and low temperature characteristics, an electrolytic solution in which γ-butyrolactone solvent is a solute of tetramethylammonium phthalate, which is a quaternary ammonium salt of phthalic acid, is used in γ-butyrolactone solvent. An electrolytic solution has been proposed in which a tetramethylammonium maleic acid tetramethylammonium salt, which is a quaternary ammonium salt of maleic acid, is used as a solute (JP-A-63-69213).
【0006】[0006]
【発明が解決しようとする課題】しかしながら、このよ
うなγ−ブチロラクトンを溶媒とする電解液では、溶媒
の封口用のゴムパッキングに対する透過性がエチレング
リコールと比較して大きく、溶媒が滲み漏れ易い。特
に、高さが低く(低背)小型の電解コンデンサの場合に
は、封口用のゴムパッキングの厚さが薄いため、溶媒が
滲み漏れが顕著に現れて、ついには電解液が乾固する現
象(ドライアップ現象)を生じる。これにより、電解コ
ンデンサの性能を大幅に劣化させ、寿命特性を悪くする
と言う問題があった。However, in such an electrolytic solution using γ-butyrolactone as a solvent, the permeability of the solvent to the rubber packing for sealing is larger than that of ethylene glycol, and the solvent easily leaks and leaks. In particular, in the case of a small electrolytic capacitor with a low height (low profile), the thickness of the rubber packing for sealing is thin, so that the solvent seeps out and leaks noticeably, and finally the electrolyte solution becomes dry. (Dry-up phenomenon) occurs. As a result, there is a problem that the performance of the electrolytic capacitor is significantly deteriorated and the life characteristics are deteriorated.
【0007】本発明は、かかる事情に鑑みてなされたも
のであり、電解液に増粘剤を溶解することにより、電解
コンデンサ、特に低背,小型の電解コンデンサの寿命特
性を良くし、サラニγ−ブチロラクトンを溶媒とするこ
とにより、電解コンデンサの寿命特性,熱安定性及び低
温特性を良くする電解液を提供することを目的とする。The present invention has been made in view of the above circumstances, and by dissolving a thickener in an electrolytic solution, the life characteristics of an electrolytic capacitor, particularly a low-profile and small-sized electrolytic capacitor are improved, and salani γ -An object of the present invention is to provide an electrolytic solution that improves the life characteristics, thermal stability and low temperature characteristics of an electrolytic capacitor by using butyrolactone as a solvent.
【0008】[0008]
【課題を解決するための手段】第1発明に係る電解コン
デンサ駆動用の電解液は、ヒドロキシプロピルセルロー
スを含有してなることを特徴とする。The electrolytic solution for driving an electrolytic capacitor according to the first invention is characterized by containing hydroxypropylcellulose.
【0009】第2発明に係る電解コンデンサ駆動用の電
解液は、その溶媒にγ−ブチロラクトンを用い、ヒドロ
キシプロピルセルロースを含有してなることを特徴とす
る。The electrolytic solution for driving the electrolytic capacitor according to the second aspect of the invention is characterized in that γ-butyrolactone is used as the solvent and contains hydroxypropyl cellulose.
【0010】[0010]
【作用】本発明の電解コンデンサ駆動用の電解液では、
その溶媒にヒドロキシプロピルセルロースを溶解するこ
とにより、電解液の粘度を上昇させて電解質溶液中の粒
子の移動度を下げ、その透過性を低下させる。また、γ
−ブチロラクトンを溶媒に用いることにより、透過性が
低く、更に熱安定性及び低温特性が優れた電解液を得る
ことができる。In the electrolytic solution for driving the electrolytic capacitor of the present invention,
By dissolving hydroxypropyl cellulose in the solvent, the viscosity of the electrolytic solution is increased, the mobility of particles in the electrolytic solution is lowered, and the permeability thereof is lowered. Also, γ
-By using butyrolactone as a solvent, it is possible to obtain an electrolytic solution having low permeability and further excellent thermal stability and low temperature characteristics.
【0011】[0011]
【実施例】以下、本発明をその実施例を挙げて具体的に
説明する。EXAMPLES The present invention will be specifically described below with reference to its examples.
【0012】[0012]
【表1】 [Table 1]
【0013】表1は電解液A,B,C,D,Eについて
の溶媒,溶質,伝導度について示した表である。電解液
A,B,C,Dは本発明の実施例であり、γ−ブチロラ
クトン 100mlを溶媒とし、フタル酸テトラメチルアンモ
ニウム塩20g 及びヒドロキシプロピルセルロースの夫々
10g, 6g, 4g, 2g を溶解している。そして、電解液Eは
従来例であり、γ−ブチロラクトン 100mlを溶媒とし、
フタル酸テトラメチルアンモニウム塩を20g 溶質として
溶解している。Table 1 is a table showing the solvents, solutes and conductivities of the electrolytic solutions A, B, C, D and E. Electrolytes A, B, C, and D are the examples of the present invention. 100 ml of γ-butyrolactone was used as a solvent, and 20 g of tetramethylammonium phthalate salt and hydroxypropyl cellulose were respectively added.
10g, 6g, 4g, 2g are dissolved. The electrolytic solution E is a conventional example, and 100 ml of γ-butyrolactone is used as a solvent,
20 g of tetramethylammonium phthalate salt is dissolved as a solute.
【0014】増粘剤であるヒドロキシプロピルセルロー
スの添加量を増加させると、これらの電解液の粘度は上
昇する。そして、表1に示すように、粘度の増加に従っ
て電解液の伝導度が低下している。溶媒 100mlに対して
増粘剤を10g 添加した電解液Eの場合の伝導度が 7.0mS
/cm (25 ℃) であり、これは使用上問題となる値ではな
い。The viscosity of these electrolytes increases as the amount of hydroxypropyl cellulose, which is a thickener, is increased. Then, as shown in Table 1, the conductivity of the electrolytic solution decreases as the viscosity increases. Conductivity is 7.0mS in case of Electrolyte E with 10g thickener added to 100ml solvent.
/ cm (25 ° C), which is not a problematic value for use.
【0015】次に、これらの電解液A〜Eを用いて、使
用電圧16Vで 100μFの容量を有する電解コンデンサを
試作し、夫々について 115℃,2000時間の高温負荷試験
(定格電圧連続印加試験)を実施した。その結果を以下
の表2に示す。なお、これらのコンデンサは、電解コン
デンサ素子をアルミニウム製のケースに収納し、ゴムパ
ッキングで封口した通常の構造とする。Next, using these electrolytic solutions A to E, trial production of electrolytic capacitors having a capacity of 100 μF at a working voltage of 16 V, and a high temperature load test (rated voltage continuous application test) of 115 ° C. and 2000 hours was made for each. Was carried out. The results are shown in Table 2 below. These capacitors have a normal structure in which the electrolytic capacitor element is housed in an aluminum case and sealed with rubber packing.
【0016】[0016]
【表2】 [Table 2]
【0017】表2は、電解液A〜Eに 115℃,2000時間
の高温負荷試験を行った結果、夫々の電解コンデンサの
容量,電気抵抗値の指標である損失(tanδ) を、初期
値,1000時間後, 1500時間後, 2000時間後について示し
ている。初期値以外の容量については、その変化量の割
合(ΔC/C )を示している。Table 2 shows that the electrolytic solutions A to E were subjected to a high temperature load test at 115 ° C. for 2000 hours, and as a result, the capacity of each electrolytic capacitor and the loss (tan δ) which is an index of the electric resistance value were set to initial values, It shows after 1000 hours, 1500 hours, and 2000 hours. For capacities other than the initial value, the rate of change (ΔC / C) is shown.
【0018】表2から、1000時間後では大きな有意差は
認められないが、1500時間以降では、ヒドロキシプロピ
ルセルロースを添加した電解液A,B,C,Dを用いた
電解コンデンサは、 tanδの増加量が少なく、安定した
特性を示している。また、電解液Dを用いた電解コンデ
ンサは、ヒドロキシプロピルセルロースを添加しない電
解液Eを用いた電解コンデンサに比較して、若干の差異
しか認められないことから、ヒドロキシプロピルセルロ
ースは、電解液の溶媒 100ml当たり4g以上を添加する
ことにより、安定した特性を示す効果が大きいことが判
る。From Table 2, there is no significant difference after 1000 hours, but after 1500 hours, the electrolytic capacitors using the electrolyte solutions A, B, C and D containing hydroxypropyl cellulose showed an increase in tan δ. It has a small amount and shows stable characteristics. Further, since the electrolytic capacitor using the electrolytic solution D shows only a slight difference as compared with the electrolytic capacitor using the electrolytic solution E to which hydroxypropyl cellulose is not added, hydroxypropyl cellulose is a solvent for the electrolytic solution. It can be seen that the addition of 4 g or more per 100 ml has a great effect of showing stable characteristics.
【0019】このように、電解液の溶媒であるγ−ブチ
ロラクトン 100ml当たりに、増粘剤であるヒドロキシプ
ロピルセルロースを4g以上添加することにより、電解
液の粘度を高めて溶媒の滲み漏れを抑制し、ドライアッ
プ現象を防止できるので、この電解液を用いた電解コン
デンサの tanδの増加を抑え、電解コンデンサの熱発生
を抑制して寿命特性を向上させることができる。また、
溶媒がγ−ブチロラクトンであることから、更に、この
電解液により熱安定性及び低温特性の良い電解コンデン
サを得ることができる。As described above, by adding 4 g or more of hydroxypropyl cellulose, which is a thickener, to 100 ml of γ-butyrolactone, which is a solvent of the electrolytic solution, the viscosity of the electrolytic solution is increased and leakage of the solvent is suppressed. Since the dry-up phenomenon can be prevented, the increase in tan δ of the electrolytic capacitor using this electrolytic solution can be suppressed, the heat generation of the electrolytic capacitor can be suppressed, and the life characteristics can be improved. Also,
Since the solvent is γ-butyrolactone, an electrolytic capacitor having good thermal stability and low temperature characteristics can be obtained by using this electrolytic solution.
【0020】なお、本実施例では、溶媒にγ−ブチロラ
クトンを用いたが、これに限るものではなく、 N,Nジメ
チルホルムアミド,N-エチルホルムアミド,メチルカル
ビトール,若しくはメチルセロソルブ等を単独、又は混
合して用いても良く、溶媒の滲み漏れを抑制し、ドライ
アップ現象を防止した、寿命特性の良い電解コンデンサ
を得ることができる。In this example, γ-butyrolactone was used as the solvent. However, the solvent is not limited to this, and N, N dimethylformamide, N-ethylformamide, methylcarbitol, methylcellosolve, etc. may be used alone or They may be mixed and used, and it is possible to obtain an electrolytic capacitor which suppresses solvent leakage and prevents a dry-up phenomenon and has good life characteristics.
【0021】[0021]
【発明の効果】以上のように、本発明の電解コンデンサ
駆動用の電解液においては、電解液の溶媒にヒドロキシ
プロピルセルロースを添加することにより、寿命特性を
向上させた電解コンデンサを得ることができ、更に電解
質溶液の溶媒γ−ブチロラクトン 100ml当たりに、ヒド
ロキシプロピルセルロースを4g以上添加することによ
り、寿命特性を向上させ、熱安定性及び低温特性の良い
電解コンデンサを得ることができる等、本発明は優れた
効果を奏するものである。As described above, in the electrolytic solution for driving an electrolytic capacitor of the present invention, by adding hydroxypropyl cellulose to the solvent of the electrolytic solution, an electrolytic capacitor having improved life characteristics can be obtained. Furthermore, by adding 4 g or more of hydroxypropyl cellulose to 100 ml of the solvent γ-butyrolactone of the electrolyte solution, the life characteristics can be improved and an electrolytic capacitor having good thermal stability and low temperature characteristics can be obtained. It has an excellent effect.
Claims (2)
てなることを特徴とする電解コンデンサ駆動用の電解
液。1. An electrolytic solution for driving an electrolytic capacitor, which comprises hydroxypropyl cellulose.
なることを特徴とする請求項1記載の電解コンデンサ駆
動用の電解液。2. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein γ-butyrolactone is used as the solvent.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20956992A JPH0636975A (en) | 1992-07-13 | 1992-07-13 | Electrolyte for driving electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20956992A JPH0636975A (en) | 1992-07-13 | 1992-07-13 | Electrolyte for driving electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0636975A true JPH0636975A (en) | 1994-02-10 |
Family
ID=16575006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20956992A Pending JPH0636975A (en) | 1992-07-13 | 1992-07-13 | Electrolyte for driving electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0636975A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11545306B2 (en) * | 2018-07-26 | 2023-01-03 | Sun Electronic Industries Corp. | Electrolytic capacitor |
-
1992
- 1992-07-13 JP JP20956992A patent/JPH0636975A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11545306B2 (en) * | 2018-07-26 | 2023-01-03 | Sun Electronic Industries Corp. | Electrolytic capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4885115A (en) | Liquid electrolyte for use in electrolytic capacitor | |
JPH0269916A (en) | Electrolyte for electrolytic capacitor | |
US4915861A (en) | Liquid electrolyte for use in electrolytic capacitor | |
JPH11238653A (en) | Electric double-layered capacitor | |
JPH0636975A (en) | Electrolyte for driving electrolytic capacitor | |
JP3872182B2 (en) | Electric double layer capacitor | |
JPH08250378A (en) | Nonaqueous electrolyte for electrochemical capacitor | |
JPH11340097A (en) | Electrolytic solution for driving electrolytic capacitor | |
KR940010191B1 (en) | Electyolyte for electrolytic condenser | |
JP2572021B2 (en) | Electrolyte for electrolytic capacitors | |
JPS62219508A (en) | Electrolyte for electrolytic capacitor | |
JP3979104B2 (en) | Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor using the same | |
JP2692880B2 (en) | Electrolyte for electrolytic capacitors | |
JP2665243B2 (en) | Electrolyte for electrolytic capacitors | |
JPS6316612A (en) | Electrolyte for driving electrolytic capacitor | |
JPH01245508A (en) | Electrolyte for electrolytic capacitor | |
JP2003109861A (en) | Electrical double layer capacitor and electrolyte therefor | |
JPH0636974A (en) | Electrolyte for driving electrolytic capacitor | |
JPH04343409A (en) | Electrolyte for driving electrolytic capacitor | |
JPH0262026A (en) | Electrolyte for driving electrolytic capacitor | |
JPH01157514A (en) | Driving electrolyte of aluminum electrolytic capacitor | |
JPH1154377A (en) | Electric double layer capacitor | |
JPH0254919A (en) | Electrolytic solution for electrolytic capacitor | |
JP3625234B2 (en) | Electrolytic solution for driving electrolytic capacitors | |
JPS63169018A (en) | Electrolytic capacitor driving electrolyte |