JP2665243B2 - Electrolyte for electrolytic capacitors - Google Patents

Electrolyte for electrolytic capacitors

Info

Publication number
JP2665243B2
JP2665243B2 JP25184688A JP25184688A JP2665243B2 JP 2665243 B2 JP2665243 B2 JP 2665243B2 JP 25184688 A JP25184688 A JP 25184688A JP 25184688 A JP25184688 A JP 25184688A JP 2665243 B2 JP2665243 B2 JP 2665243B2
Authority
JP
Japan
Prior art keywords
electrolytic
electrolyte
compound
voltage
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25184688A
Other languages
Japanese (ja)
Other versions
JPH02100308A (en
Inventor
俊一 高杉
哲哉 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP25184688A priority Critical patent/JP2665243B2/en
Publication of JPH02100308A publication Critical patent/JPH02100308A/en
Application granted granted Critical
Publication of JP2665243B2 publication Critical patent/JP2665243B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解コンデンサ用電解液の改良に関し、さ
らに詳しくは、独特の構造の化合物を電解液に添加する
ことにより特に電解コンデンサの耐電圧を上昇させる改
良に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of an electrolytic solution for an electrolytic capacitor, and more particularly, to a method of adding a compound having a unique structure to an electrolytic solution, and particularly to the improvement of the withstand voltage of an electrolytic capacitor. Related to the improvement of

〔従来の技術〕[Conventional technology]

電解コンデンサは、小形、大容量、安価で整流出力の
平滑化等に優れた特性を示し各種電気・電子機器の重要
な構成要素の1つであり、一般に表面を電解酸化によっ
て酸化被膜に変えたアルミニウムフィルムを陽極とし、
この酸化被膜を誘電体とし集電陰極との間に電解液を介
在させて作成される。
Electrolytic capacitors are small, large-capacity, inexpensive and have excellent characteristics such as smoothing of rectified output, and are one of the important components of various electric and electronic devices. Generally, the surface is changed to an oxide film by electrolytic oxidation. Aluminum film as anode,
The oxide film is formed as a dielectric material with an electrolytic solution interposed between the oxide film and the collector cathode.

電解コンデンサは、使用中に化学反応を行わせながら
常に誘電体酸化被膜を再生しつつ使用するものであるた
め、表面を酸化被膜としたアルミニウム電極と電解液と
の間で起る化学反応の定常状態を維持し、誘電体とする
アルミニウム酸化被膜を良好に保持することが性能の安
定化に重要である。
Since the electrolytic capacitor is used while constantly regenerating the dielectric oxide film while performing a chemical reaction during use, the steady state of the chemical reaction that occurs between the aluminum electrode with the oxide film on the surface and the electrolyte solution It is important to stabilize the performance that the state is maintained and the aluminum oxide film serving as the dielectric is kept well.

電解コンデンサの使用中に進行する化学反応におい
て、電解液はイオンの移動の媒体たるイオン伝導体を形
成する。電解液と電極との界面では電極反応の進行によ
って電荷が移動し、陽極面では酸化反応が、陰極面では
還元反応が進行し、それと共にイオン伝導体たる電解液
の中をイオンが移動して電流が流れる。従って、電解液
の電気伝導度の逆数である比抵抗は、電解コンデンサの
使用中に進行する化学反応におけるイオン伝導体たる電
解液の特性を反映する。コンデンサの負荷電圧が上昇し
高電圧負荷による誘電体の物性変化が進行し時間的な誘
電率の変化が生じる結果電気化学的状態が動揺する現象
をシンチレーションというが、このような現象が認めら
れる電圧をシンチレーション電圧(火花電圧)としてコ
ンデンサの耐電圧性の尺度とすることができ、シンチレ
ーション電圧(火花電圧)が高い程コンデンサの耐電圧
性が大きいことを示す。
In a chemical reaction that proceeds during the use of an electrolytic capacitor, the electrolyte forms an ionic conductor that is a medium for the transfer of ions. At the interface between the electrolyte and the electrode, the charge moves due to the progress of the electrode reaction, the oxidation reaction proceeds on the anode surface, the reduction reaction proceeds on the cathode surface, and ions move in the electrolyte solution, which is the ion conductor. Electric current flows. Therefore, the specific resistance, which is the reciprocal of the electric conductivity of the electrolytic solution, reflects the characteristics of the electrolytic solution, which is an ionic conductor, in a chemical reaction that proceeds during use of the electrolytic capacitor. A phenomenon in which the electrochemical state fluctuates as a result of a change in the physical properties of a dielectric material due to an increase in the load voltage of a capacitor and a high voltage load resulting in a temporal change in dielectric constant is called scintillation. Can be used as a measure of the withstand voltage of the capacitor as a scintillation voltage (spark voltage), and the higher the scintillation voltage (spark voltage), the higher the withstand voltage of the capacitor.

その他、コンデンサ特性の指標としては、静電容量
(Cap)、誘電正接(tanδ)、漏れ電流(LC)等があ
る。充電電流の位相と外部電界の位相との差である損失
角の正接すなわち誘電正接は、コンデンサの消費電力の
目安として用いられ、その値が小さければ消費電力が小
さいことを示す。充電開始後一定値に達したときに流れ
る電流である漏れ電流は、誘電体の荷電担体の定常的な
移動によるもので、誘電体中の不純物の解離等によって
生じたイオンが荷電担体の主体をなすと考えられてお
り、漏れ電流の大小は誘電体の電気化学的状態の安定性
を反映する。
Other indexes of the capacitor characteristics include capacitance (Cap), dielectric loss tangent (tan δ), and leakage current (LC). The tangent of the loss angle, that is, the dielectric loss tangent, which is the difference between the phase of the charging current and the phase of the external electric field, is used as a measure of the power consumption of the capacitor. A smaller value indicates that the power consumption is smaller. Leakage current, which is a current that flows when the charge reaches a certain value after the start of charging, is due to steady movement of the charge carrier of the dielectric, and ions generated by dissociation of impurities in the dielectric form the main component of the charge carrier. It is believed that the magnitude of the leakage current reflects the stability of the electrochemical state of the dielectric.

従来の一般的な電解コンデンサ用電解液においては、
電解液の耐電圧は主として主溶質の特性に依存して一義
的に規定されていた。すなわち、使用する溶媒と溶質と
が決まれば、作成した電解コンデンサを使用できる電圧
範囲は自動的に規定され、それ以上の耐電圧性を実現す
ることは非常に困難であった。一方で、耐電圧性の向上
のみに着目して溶媒や溶質の種類を変更すると、耐電圧
は向上しても他の特性が低下する場合が常であり、電解
質の特性あるいはコンデンサ製品の特性を悪化させるこ
となく耐電圧を上昇させることが望まれていた。
In the conventional general electrolytic solution for electrolytic capacitors,
The withstand voltage of the electrolyte has been uniquely defined mainly depending on the characteristics of the main solute. That is, once the solvent and the solute to be used are determined, the voltage range in which the produced electrolytic capacitor can be used is automatically specified, and it has been extremely difficult to achieve a higher withstand voltage. On the other hand, if the type of solvent or solute is changed by focusing only on the improvement of the withstand voltage, the other characteristics are usually reduced even if the withstand voltage is improved. It has been desired to increase the withstand voltage without deteriorating.

シリコンやチタンの化合物は、界面活性剤や金属とポ
リマとを結合させるカップリング剤として一般に使用さ
れている。特にチタンはコンデンサの電極にも使用可能
な金属であり、アルミニウムとの合金を用いるコンデン
サも検討され、コスト的な面は別にして、アルミニウム
単体より特性的に優れていることが分っている。そこで
チタン化合物を電解コンデンサ用電解液に応用する可能
性について検討を続けた結果、特定のチタン化合物を電
解液に添加することにより火花電圧が著しく上昇するこ
とをこの度突き止めた。
Compounds of silicon and titanium are generally used as a surfactant or a coupling agent for bonding a metal to a polymer. In particular, titanium is a metal that can also be used as a capacitor electrode, and capacitors using an alloy with aluminum have been studied. It has been found that apart from the cost aspect, characteristics are superior to aluminum alone. . Therefore, as a result of continuing study on the possibility of applying a titanium compound to an electrolytic solution for an electrolytic capacitor, it was found that the spark voltage was significantly increased by adding a specific titanium compound to the electrolytic solution.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は独特の構造の化合物を電解液に添加すること
により、電解質の特性を悪化させることなく耐電圧の上
昇を図ってショート等の不良を低減し、さらに本来耐電
圧性が特に大きい組成の電解液のより高電圧での使用を
可能とすることを目的とする。
The present invention adds a compound having a unique structure to the electrolytic solution, thereby increasing the withstand voltage without deteriorating the characteristics of the electrolyte, reducing defects such as short circuits, and further having a composition having a particularly large withstand voltage inherently. An object of the present invention is to enable use of an electrolyte at a higher voltage.

〔課題を解決するための手段〕[Means for solving the problem]

本発明によれば、アルミニウム電解コンデンサ駆動用
の電解液において、分子中に次の式: (式中、nは整数である)のチタンポリマ構造を有する
化合物を添加してなることを特徴とする電解コンデンサ
用電解液が提供される。
According to the present invention, in an electrolyte for driving an aluminum electrolytic capacitor, the following formula is contained in a molecule: (Wherein, n is an integer) wherein a compound having a titanium polymer structure is added.

チタンポリマ構造を有する化合物が溶剤溶解性を付与
し得る置換基を導入して変性したチタンポリマ構造を有
する化合物であれば好適である。
It is preferable that the compound having a titanium polymer structure be a compound having a titanium polymer structure modified by introducing a substituent capable of imparting solvent solubility.

無機ポリマであるチタンポリマは一般には溶剤に溶解
しないため、次のような構造に変性させるのが好適であ
る: 式中、nおよびmは整数であり、Rは溶剤溶解性を付
与し得る置換基を表す。これらの変性チタンポリマに溶
剤溶解性を付与すべく有機変性を行うに際し、有機部分
の比率を無機部分より多くする場合もある。従って、 骨格が分子鎖中で常に主鎖となるとは限らないが、機能
的にはこの構造は必須である。
Since the inorganic polymer, titanium polymer, is generally insoluble in solvents, it is preferred to modify it to the following structure: In the formula, n and m are integers, and R represents a substituent capable of imparting solvent solubility. When performing an organic modification to impart solvent solubility to these modified titanium polymers, the ratio of the organic portion may be larger than that of the inorganic portion. Therefore, Although the skeleton is not always the main chain in the molecular chain, functionally this structure is essential.

溶剤溶解性を付与し得る置換基は、有機基と無機基と
に分類することができ、例えばR-をアルキル基、メチレ
ン基等の炭化水素基として、次のような置換基が包含さ
れる。
Substituent capable of imparting the solvent solubility can be classified into an organic group and an inorganic group, for example R - alkyl group, a hydrocarbon group such as methylene group, substituent such as the following may be included .

1)有機基の例 −R′−OH アルコール変性 −R′−COOH カルボキシル変性 −CF3基を分子内に有する フッ素変性 −R′−CONH アミド変性 −R′−NH2 アミノ変性 −CXH2X-1 オレフィル変性 2)無機基の例 B ホウ素 (C2B10H10) カルボラン類 チタンポリマは、例えば“Kenjiro Meguro,Miyoko Oc
hi,IV th International Congress of Surface Active
Agent(Brussels),4th(1964),P199〜207"に記載され
た方法により調製することできる。
1) Examples of organic groups -R'-OH alcohol modified -R'-COOH carboxyl modified -Fluorine modified with 3 CF groups in the molecule -R'-CONH amide modification -R'-NH 2 amino modification —C X H 2X-1 Olefill Modification 2) Examples of Inorganic Groups B Boron (C 2 B 10 H 10 ) Carboranes Titanium polymer is, for example, “Kenjiro Meguro, Miyoko Oc.
hi, IV th International Congress of Surface Active
Agent (Brussels), 4th (1964), pages 199 to 207 ".

本発明のチタンポリマ構造を有する化合物は全ゆる種
類の電解コンデンサ用電解液に添加することができる
が、添加濃度は好適には0.1〜30重量%、さらに好適に
は1〜10重量%とする。
The compound having a titanium polymer structure of the present invention can be added to all kinds of electrolytic solutions for electrolytic capacitors, and the addition concentration is preferably 0.1 to 30% by weight, more preferably 1 to 10% by weight.

〔作用〕[Action]

本発明が開示したチタンポリマ構造を有する化合物の
添加が電解液中でアルミニウム酸化被膜誘電体に対しど
のような作用をするのか、その作用機構自体は明らかで
はない。
It is not clear how the addition of the compound having the titanium polymer structure disclosed in the present invention acts on the aluminum oxide film dielectric in the electrolytic solution.

しかしながら、前記した独特の化学構造を有する本発
明のチタンポリマ構造を有する化合物は、電解コンデン
サに高電圧を負荷した際の電気化学的状態の動揺を低く
抑える特有の作用を有すると推定される。この作用は、
観測できる形態としては、時間的に負荷電圧が増加した
際の火花電圧低下効果に最も大きく反映される。
However, it is presumed that the compound having a titanium polymer structure of the present invention having the above-mentioned unique chemical structure has a specific action of suppressing the fluctuation of the electrochemical state when a high voltage is applied to the electrolytic capacitor. This effect is
The observable form is most greatly reflected in the spark voltage lowering effect when the load voltage increases with time.

一般に ポリマは溶剤に溶け難い無機ポリマであるが、溶剤溶解
性を付与するために前記した有機基、無機基のような置
換基を導入することができる。このようなポリマは疎溶
媒部分と親溶媒部分とを有するため、界面活性剤的に作
用し、アルミニウム箔とペースト(電解液)との界面に
おいて特異な現象を生じ耐電圧が上昇すると推定され
る。
In general Although the polymer is an inorganic polymer that is hardly soluble in a solvent, a substituent such as the above-mentioned organic group or inorganic group can be introduced to impart solvent solubility. Since such a polymer has a lyophobic portion and a lipophilic portion, it acts as a surfactant, causing a peculiar phenomenon at the interface between the aluminum foil and the paste (electrolyte solution), which is presumed to increase the withstand voltage. .

〔発明の効果〕〔The invention's effect〕

本発明によれば、分子鎖中にチタンポリマ構造を有す
る化合物を電解コンデンサ用電解液に添加することによ
り、電解質の特性を悪化させることなく耐電圧の上昇を
図ってショート等の不良を低減し、さらに本来耐電圧性
が特に大きい組成の電解液のより高電圧での使用を可能
とすることができる。
According to the present invention, by adding a compound having a titanium polymer structure in the molecular chain to the electrolytic solution for the electrolytic capacitor, the withstand voltage is increased without deteriorating the characteristics of the electrolyte, and defects such as short circuits are reduced. Further, it is possible to use an electrolytic solution having a composition having particularly high withstand voltage at a higher voltage.

〔実施例〕〔Example〕

以下に実施例により本発明をさらに詳細に説明する
が、本発明は以下の実施例にのみ限定されるものではな
い。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.

30×2000mmの面積を有するエッチド箔をホウ酸溶液
中、380Vで化成したこれを陽極箔とし、紙と陰極箔とで
巻回して素子とした。この素子の定格は250V、470μ
F、サイズは30φ×40であった。この素子に第1表に
示す組成の電解液を含浸し再化成した。なお、チタンポ
リマはKenjiro Megroらの前記文献に従って合成し、有
機基はポリエチレンオキサイドとした。測定した比抵抗
および火花電圧の値を第1表に併せて示す。
An etched foil having an area of 30 × 2000 mm was formed in a boric acid solution at 380 V, and this was used as an anode foil, which was wound with paper and a cathode foil to obtain an element. The rating of this element is 250V, 470μ
F, the size was 30φ × 40. This element was impregnated with an electrolytic solution having the composition shown in Table 1 and re-formed. The titanium polymer was synthesized according to the above-mentioned document of Kenjiro Megro et al., And the organic group was polyethylene oxide. Table 1 also shows the measured values of the specific resistance and the spark voltage.

第1表から分るように、本発明のチタンポリマを添加
した電解コンデンサ用電解液は、添加しないものと比較
すると、より高い比抵抗値を示しより高い火花電圧を有
する。なお、実施例1および比較例1の電解液を用いた
電解コンデンサのシンチレーションカーブを第1図に示
す。
As can be seen from Table 1, the electrolytic solution for an electrolytic capacitor to which the titanium polymer of the present invention has been added has a higher specific resistance value and a higher spark voltage as compared with the electrolyte solution without the addition. FIG. 1 shows the scintillation curves of the electrolytic capacitors using the electrolytic solutions of Example 1 and Comparative Example 1.

実施例1および2、比較例1および2の電解液を用い
た電解コンデンサについて、第2表に示すように高温で
の長時間運転試験を行った。
For the electrolytic capacitors using the electrolytes of Examples 1 and 2 and Comparative Examples 1 and 2, a long-time operation test at a high temperature was performed as shown in Table 2.

110℃で1000時間使用しても本発明による電解コンデ
ンサでは静電容量(Cap)、誘電正接(tanδ)、漏れ電
流(LC)のいずれもが安定した値を示したのに対し、従
来技術による電解コンデンサではショート不良が発生
し、試験続行不能となった。
Although the electrolytic capacitor according to the present invention showed stable values in all of the capacitance (Cap), the dielectric loss tangent (tanδ), and the leakage current (LC) even when used at 110 ° C. for 1000 hours, the conventional capacitor A short failure occurred in the electrolytic capacitor, and the test could not be continued.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明によるチタンポリマを添加した電解液
と添加しない従来の電解液とを用いて作成した電解コン
デンサのシンチレーションカーブである。 素子の定格は250V、470μFである。
FIG. 1 is a scintillation curve of an electrolytic capacitor prepared using an electrolytic solution to which a titanium polymer according to the present invention is added and a conventional electrolytic solution to which no titanium polymer is added. The rating of the element is 250 V, 470 μF.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルミニウム電解コンデンサ駆動用の電解
液において、分子中に次の式: (式中、nは整数である)のチタンポリマ構造を有する
化合物を添加してなることを特徴とする電解コンデンサ
用電解液。
In an electrolytic solution for driving an aluminum electrolytic capacitor, the following formula is contained in a molecule: (Wherein n is an integer) a compound having a titanium polymer structure of the formula (I), wherein:
【請求項2】チタンポリマ構造を有する化合物が溶剤溶
解性を付与し得る置換基を導入して変性したチタンポリ
マ構造を有する化合物である請求項1記載の電解コンデ
ンサ用電解液。
2. The electrolytic solution for an electrolytic capacitor according to claim 1, wherein the compound having a titanium polymer structure is a compound having a titanium polymer structure modified by introducing a substituent capable of imparting solvent solubility.
JP25184688A 1988-10-07 1988-10-07 Electrolyte for electrolytic capacitors Expired - Fee Related JP2665243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25184688A JP2665243B2 (en) 1988-10-07 1988-10-07 Electrolyte for electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25184688A JP2665243B2 (en) 1988-10-07 1988-10-07 Electrolyte for electrolytic capacitors

Publications (2)

Publication Number Publication Date
JPH02100308A JPH02100308A (en) 1990-04-12
JP2665243B2 true JP2665243B2 (en) 1997-10-22

Family

ID=17228788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25184688A Expired - Fee Related JP2665243B2 (en) 1988-10-07 1988-10-07 Electrolyte for electrolytic capacitors

Country Status (1)

Country Link
JP (1) JP2665243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259306A (en) 2003-02-24 2004-09-16 Hitachi Ltd Magnetic recording medium and manufacturing method of magnetic recording medium

Also Published As

Publication number Publication date
JPH02100308A (en) 1990-04-12

Similar Documents

Publication Publication Date Title
JPH0546693B2 (en)
JPH0376776B2 (en)
JP2665243B2 (en) Electrolyte for electrolytic capacitors
JP2009123789A (en) Electrolyte for electric double-layer capacitor and electric double-layer capacitor
JPH0325912A (en) Electrolyte for electrolytic capacitor
JP3118526B2 (en) Electrolyte for driving aluminum electrolytic capacitors
JP2532457B2 (en) Electrolytic solution for driving electrolytic capacitors
JP3191818B2 (en) Polymer solid electrolyte for driving electrolytic capacitors
JP4158412B2 (en) Electrolytic solution for electrochemical capacitor and electrochemical capacitor using the same
JPH0638382B2 (en) Electrolytic solution for electrolytic capacitors
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP2625464B2 (en) Electrolyte for driving electrolytic capacitors
JP4022717B2 (en) Electrolyte for electric double layer capacitor
JP3076872B2 (en) Supporting electrolyte composition for manufacturing solid electrolytic capacitors
JP2673438B2 (en) Electrolyte
JP2765875B2 (en) Electrolyte for electrolytic capacitors
JPH11135374A (en) Electrolytic solution for electrochemical capacitor
JPH07118432B2 (en) Electrolytic solution for driving electrolytic capacitors
JPH0418719A (en) Electrolyte for electrolytic capacitor driving, and electrolytic capacitor soaked with the electrolyte
JPH0690994B2 (en) Electrolytic solution for electrolytic capacitors
JPH0325911A (en) Electrolyte for electrolytic capacitor
JP3347154B2 (en) Electrolyte for driving electrolytic capacitors
JPH05144673A (en) Electrolytic solution for electrolytic capacitor
JPH09106931A (en) Electrolyte for electrolytic capacitor
JPH0636973A (en) Electrolyte for driving electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees