JPH0376776B2 - - Google Patents

Info

Publication number
JPH0376776B2
JPH0376776B2 JP61111998A JP11199886A JPH0376776B2 JP H0376776 B2 JPH0376776 B2 JP H0376776B2 JP 61111998 A JP61111998 A JP 61111998A JP 11199886 A JP11199886 A JP 11199886A JP H0376776 B2 JPH0376776 B2 JP H0376776B2
Authority
JP
Japan
Prior art keywords
polyethylene glycol
molecular weight
ethylene glycol
generation voltage
spark generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61111998A
Other languages
Japanese (ja)
Other versions
JPS62268121A (en
Inventor
Kenichi Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lincstech Circuit Co Ltd
Original Assignee
Hitachi AIC Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi AIC Inc filed Critical Hitachi AIC Inc
Priority to JP11199886A priority Critical patent/JPS62268121A/en
Publication of JPS62268121A publication Critical patent/JPS62268121A/en
Publication of JPH0376776B2 publication Critical patent/JPH0376776B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は電解コンデンサ用電解液に関するもの
である。 (従来の技術) アルミ等の電解コンデンサに用いられる電解液
は、通常、エチレングリコール主溶媒とし、これ
に各種の溶質や添加剤を加えた組成となつてい
る。 ところで、溶質として1,6−デカンジカルボ
ン酸のような側鎖を持つジカルボン酸や、アゼラ
イン酸やセバシン酸のようなメチレン基(−
CH2)が7以上の直鎖ジカルボン酸を溶解した電
解液は、火花電圧が400V以上と高く、従来、中
高圧用電解液として用いられている。 (発明が解決しようとする問題点) しかし、この電解液を用いたコンデンサは初期
静電容量が低く、また、高温負荷試験においても
静電容量が低下する欠点があつた。 本発明の目的は、以上の欠点を改良し、コンデ
ンサの静電容量特性を向上しうる電解コンデンサ
用電解液を提供するものである。 (問題点を解決するための手段) 本発明は、上記の目的を達成するために、エチ
レングリコールを主溶媒とし、ジカルボン酸ある
いはその塩類を含む電解コンデンサ用電解液にお
いて、分子量200〜1000のポリエチレングリコー
ルを添加することを特徴とする電解コンデンサ用
電解液を提供するものである。 (作 用) 本発明によれば、分子量200〜1000のポリエチ
レングリコールを添加しているために、その表面
活性作用により電解液が電極箔に良く接触し、そ
れ故、コンデンサの初期容量特性の低下や高温負
荷試験による容量特性を改善しうる。 (実施例) 以下、本発明を実施例に基づいて説明する。 溶媒としてエチレングリコールを用い、溶質と
して1,6−デカンジカルボン酸、アゼライン酸
アンモニウム、セバシン酸アンモニウム等を用
い、これにポリエチレングリコールを添加して電
解液とする。 各組成の成分は次の通り重量比〔wt%〕とす
る。 実施例 1 (比抵抗550Ωcm/30℃、火花発生電圧470V) エチレングリコール 69 1,6−デカンジカルボン酸 10 28%アンモニア水 1 ポリエチレングリコール(分子量400) 20 実施例 2 (比抵抗600Ωcm/30℃、火花発生電圧480V) エチレングリコール 69 1,6−デカンジカルボン酸 10 28%アンモニア水 1 ポリエチレングリコール(分子量600) 20 実施例 3 (比抵抗450Ωcm/30℃、火花発生電圧450V) エチレングリコール 70 アゼライン酸アンモニウム 8 純 水 2 ポリエチレングリコール(分子量200) 20 実施例 4 (比抵抗640Ωcm/30℃、火花発生電圧465V) エチレングリコール 64 セバシン酸アンモニウム 4 純 水 2 ポリエチレングリコール(分子量200) 30 実施例 5 (比抵抗850Ωcm/30℃、火花発生電圧500V) エチレングリコール 69 1,6−デカンジカルボン酸 10 28%アンモニア水 1 ポリエチレングリコール(分子量1000) 20 また、上記の各実施例と比較するために次の組
成成分からなる従来例を用いる。 従来例 1 (比抵抗800Ωcm/30℃、火花発生電圧460V) エチレングリコール 80 ホウ酸アンモニウム 20 従来例 2 (比抵抗500Ωcm/30℃、火花発生電圧455V) エチレングリコール 89 1,6−デカンジカルボン酸 10 28%アンモニア水 1 従来例 3 (比抵抗430Ωcm/30℃、火花発生電圧430V) エチレングリコール 90 アゼライン酸アンモニウム 8 純 水 2 従来例 4 (比抵抗580Ωcm/30℃、火花発生電圧440V) エチレングリコール 93 セバシン酸アンモニウム 5 純 水 2 以上の実施例1〜4、従来例1〜4の各電解液
をコンデンサ素子に含浸した定格350V、1000μF
のアルミ電解コンデンサにつき、初期静電容量及
び高温負荷試験(温度90℃、110℃、時間
1000Hr)時の静電容量及びその変化率を測定し
たところ表の通りの結果が得られた。
(Industrial Application Field) The present invention relates to an electrolytic solution for electrolytic capacitors. (Prior Art) Electrolytic solutions used in electrolytic capacitors made of aluminum or the like usually have a composition of ethylene glycol as a main solvent, to which various solutes and additives are added. By the way, dicarboxylic acids with side chains such as 1,6-decanedicarboxylic acid and methylene groups (-
An electrolytic solution in which a linear dicarboxylic acid having CH 2 ) of 7 or more is dissolved has a high spark voltage of 400 V or more, and has been conventionally used as an electrolytic solution for medium and high voltages. (Problems to be Solved by the Invention) However, capacitors using this electrolytic solution had a drawback that their initial capacitance was low and that their capacitance decreased even in high-temperature load tests. An object of the present invention is to provide an electrolytic solution for an electrolytic capacitor that can improve the above-mentioned drawbacks and improve the capacitance characteristics of the capacitor. (Means for Solving the Problems) In order to achieve the above object, the present invention uses ethylene glycol as the main solvent and uses polyethylene with a molecular weight of 200 to 1000 in an electrolyte solution for electrolytic capacitors containing dicarboxylic acid or its salts. The present invention provides an electrolytic solution for an electrolytic capacitor, which is characterized by adding glycol. (Function) According to the present invention, since polyethylene glycol with a molecular weight of 200 to 1000 is added, the electrolyte comes into good contact with the electrode foil due to its surface active action, and therefore the initial capacitance characteristics of the capacitor are reduced. Capacity characteristics can be improved through high-temperature load tests. (Examples) Hereinafter, the present invention will be described based on Examples. Ethylene glycol is used as a solvent, 1,6-decanedicarboxylic acid, ammonium azelaate, ammonium sebacate, etc. are used as a solute, and polyethylene glycol is added to this to form an electrolytic solution. The components of each composition are expressed in weight ratios (wt%) as follows. Example 1 (Resistivity 550Ωcm/30℃, spark generation voltage 470V) Ethylene glycol 69 1,6-decanedicarboxylic acid 10 28% aqueous ammonia 1 Polyethylene glycol (molecular weight 400) 20 Example 2 (Resistivity 600Ωcm/30℃, Spark generation voltage 480V) Ethylene glycol 69 1,6-decanedicarboxylic acid 10 28% ammonia water 1 Polyethylene glycol (molecular weight 600) 20 Example 3 (Resistivity 450Ωcm/30℃, Spark generation voltage 450V) Ethylene glycol 70 Ammonium azelate 8 Pure water 2 Polyethylene glycol (molecular weight 200) 20 Example 4 (Resistivity 640Ωcm/30℃, spark generation voltage 465V) Ethylene glycol 64 Ammonium sebacate 4 Pure water 2 Polyethylene glycol (Molecular weight 200) 30 Example 5 (Resistivity 850Ωcm/30℃, spark generation voltage 500V) Ethylene glycol 69 1,6-decanedicarboxylic acid 10 28% ammonia water 1 Polyethylene glycol (molecular weight 1000) 20 In addition, in order to compare with each of the above examples, the following composition components were used. A conventional example is used. Conventional example 1 (Resistivity 800Ωcm/30℃, spark generation voltage 460V) Ethylene glycol 80 Ammonium borate 20 Conventional example 2 (Resistivity 500Ωcm/30℃, Spark generation voltage 455V) Ethylene glycol 89 1,6-decanedicarboxylic acid 10 28% ammonia water 1 Conventional example 3 (Resistivity 430Ωcm/30℃, Spark generation voltage 430V) Ethylene glycol 90 Ammonium azelate 8 Pure water 2 Conventional example 4 (Resistivity 580Ωcm/30℃, Spark generation voltage 440V) Ethylene glycol 93 Ammonium sebacate 5 Pure water 2 A capacitor element impregnated with each of the electrolytes of Examples 1 to 4 and Conventional Examples 1 to 4 has a rating of 350 V and 1000 μF.
Initial capacitance and high temperature load test (temperature 90℃, 110℃, time
When we measured the capacitance and its rate of change over a period of 1000 hours, we obtained the results shown in the table.

【表】 この表から明らかな通り、本発明によれば初期
静電容量はほぼ定格を満たし、また、高温負荷試
験後の静電容量も初期値に対する変化率が−0.1
〜0.4〔%〕で、ほぼ一定となつている。これに対
し、従来例は従来例1以外は初期静電容量が定格
よりも68〜80〔μF〕低く、また高温負荷試験後の
値が−13.3〜−23.5〔%〕低下しており、特に従
来例1では防爆弁が作動した。 なお、エチレングリコールと、1.6−デカンジ
カルボン酸10wt%、28%アンモニア水1wt%、ポ
リエチレングリコールからなる電解液において、
ポリエチレングリコールの添加量を変化した場合
の火花発生電圧及び比抵抗を求めたところ各々第
1図及び第2図に示す通りの結果が得られた。第
1図からはポリエチレングリコールを添加するこ
とにより火花発生電圧が上昇することがわかる。
また、第2図からは、添加量が50%を越えると急
激に比抵抗が上昇するので、50%以下が好ましい
ことがわかる。 また、第3図に、エチレングリコール69wt%、
1,6−デカンジカルボン酸10wt%、28%アン
モニア水1wt%、ポリエチレングリコール20wt%
の細成成分からなる電解液について、ポリエチレ
ングリコールの分子量を変化した場合の火花発生
電圧を求めた結果を示した。この図から明らかな
通り、ポリエチレングリコールの分子量が大きく
なるほど火花発生電圧が高くなる。しかし、ポリ
エチレングリコールの分子量が1000以上となる
と、常温で固体となるために1000未満である方が
好ましく、200未満では効果が低いので200以上が
好ましい。 (発明の効果) 以上の通り、本発明によれば分子量200〜1000
のポリエチレングリコールを添加剤として加えて
いるために、その表面活性作用により、初期静電
容量や高温負荷試験後の静電容量変化率を改善で
き、また、火花発生電圧の高い電解コンデンサ用
電解液が得られる。
[Table] As is clear from this table, according to the present invention, the initial capacitance almost satisfies the rating, and the capacitance after the high temperature load test also shows a rate of change of -0.1 from the initial value.
It remains almost constant at ~0.4 [%]. On the other hand, the initial capacitance of conventional examples other than Conventional Example 1 was 68 to 80 [μF] lower than the rated value, and the value after the high temperature load test was -13.3 to -23.5 [%] lower. In Conventional Example 1, the explosion-proof valve operated. In addition, in an electrolytic solution consisting of ethylene glycol, 10 wt% 1.6-decanedicarboxylic acid, 1 wt% 28% aqueous ammonia, and polyethylene glycol,
When the spark generation voltage and specific resistance were determined when the amount of polyethylene glycol added was varied, the results were obtained as shown in FIGS. 1 and 2, respectively. It can be seen from FIG. 1 that the spark generation voltage increases by adding polyethylene glycol.
Moreover, from FIG. 2, it can be seen that if the amount added exceeds 50%, the resistivity increases rapidly, so it is preferable that the amount is 50% or less. In addition, Figure 3 shows ethylene glycol 69wt%,
1,6-decanedicarboxylic acid 10wt%, 28% ammonia water 1wt%, polyethylene glycol 20wt%
The results of calculating the spark generation voltage when the molecular weight of polyethylene glycol was changed for an electrolytic solution consisting of a finely divided component are shown. As is clear from this figure, the greater the molecular weight of polyethylene glycol, the higher the spark generation voltage. However, when the molecular weight of polyethylene glycol is 1000 or more, it becomes solid at room temperature, so it is preferably less than 1000, and less than 200 is less effective, so it is preferably 200 or more. (Effect of the invention) As described above, according to the present invention, the molecular weight is 200 to 1000.
Because polyethylene glycol is added as an additive, its surface active action improves the initial capacitance and the rate of capacitance change after high-temperature load tests. is obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はポリエチレングリコールの添加量に対
する火花発生電圧のグラフ、第2図はポリエチレ
ングリコールの添加量に対する比抵抗のグラフ、
第3図はポリエチレングリコールの分子量に対す
る火花発生電圧のグラフを示す。
Figure 1 is a graph of spark generation voltage versus the amount of polyethylene glycol added, Figure 2 is a graph of specific resistance versus the amount of polyethylene glycol added,
FIG. 3 shows a graph of spark generation voltage versus molecular weight of polyethylene glycol.

Claims (1)

【特許請求の範囲】 1 エチレングリコールを主溶媒とし、ジカルボ
ン酸あるいはその塩類を含む電解コンデンサ用電
解液において、分子量200〜1000のポリエチレン
グリコールを添加することを特徴とする電解コン
デンサ用電解液。 2 ポリエチレングリコールの添加量が50wt%
以下である特許請求の範囲第1項記載の電解コン
デンサ用電解液。
[Scope of Claims] 1. An electrolytic solution for an electrolytic capacitor containing ethylene glycol as a main solvent and containing a dicarboxylic acid or a salt thereof, which is characterized in that polyethylene glycol having a molecular weight of 200 to 1000 is added. 2 Added amount of polyethylene glycol is 50wt%
An electrolytic solution for an electrolytic capacitor according to claim 1, which is as follows.
JP11199886A 1986-05-16 1986-05-16 Electrolyte for electrolytic capacitor Granted JPS62268121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11199886A JPS62268121A (en) 1986-05-16 1986-05-16 Electrolyte for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11199886A JPS62268121A (en) 1986-05-16 1986-05-16 Electrolyte for electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62268121A JPS62268121A (en) 1987-11-20
JPH0376776B2 true JPH0376776B2 (en) 1991-12-06

Family

ID=14575386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11199886A Granted JPS62268121A (en) 1986-05-16 1986-05-16 Electrolyte for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS62268121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529258B2 (en) * 2000-09-01 2010-08-25 日油株式会社 Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628219B2 (en) * 1987-03-09 1994-04-13 信英通信工業株式会社 Electrolytic solution for driving electrolytic capacitors
JPS6432617A (en) * 1988-06-07 1989-02-02 Shinei Tsushin Kogyo Kk Electrolytic solution for driving electrolytic capacitor
US5507966A (en) * 1995-03-22 1996-04-16 Boundary Technologies, Inc. Electrolyte for an electrolytic capacitor
MY133582A (en) 2001-12-18 2007-11-30 Matsushita Electric Ind Co Ltd Aluminum electrolytic capacitor and method for producing the same
US7760487B2 (en) 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7760488B2 (en) * 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US7768773B2 (en) 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
US7852615B2 (en) 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US8203827B2 (en) 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
CN102763181B (en) * 2010-02-15 2017-02-15 松下知识产权经营株式会社 Electrolytic capacitor
WO2017056447A1 (en) * 2015-09-28 2017-04-06 パナソニックIpマネジメント株式会社 Electrolytic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914300A (en) * 1972-03-20 1974-02-07
JPS49123447A (en) * 1973-03-31 1974-11-26

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4914300A (en) * 1972-03-20 1974-02-07
JPS49123447A (en) * 1973-03-31 1974-11-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529258B2 (en) * 2000-09-01 2010-08-25 日油株式会社 Electrolytic solution for electrolytic capacitor driving and electrolytic capacitor

Also Published As

Publication number Publication date
JPS62268121A (en) 1987-11-20

Similar Documents

Publication Publication Date Title
JPH0376776B2 (en)
US3518499A (en) Electrolyte for electrolytic capacitors
JP2529300B2 (en) Electrolytic solution for driving electrolytic capacitors
KR0152001B1 (en) Electrolyte for a low-pressure electrolytic condenser
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP3749913B2 (en) Electrolytic solution for electrolytic capacitor drive
JP3285991B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH0458512A (en) Electrolyte for electrolytic capacitor
JPS59123217A (en) Electrolyte for electrolytic condenser
JP2665243B2 (en) Electrolyte for electrolytic capacitors
JP2625464B2 (en) Electrolyte for driving electrolytic capacitors
JPH0376007B2 (en)
JP2567445B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS602767B2 (en) Electrolyte for electrolytic capacitors
JPH0775214B2 (en) Aluminum electrolytic capacitor electrolyte
JPH0416007B2 (en)
JP3869525B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JPH0638382B2 (en) Electrolytic solution for electrolytic capacitors
JP3869526B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JPH0636973A (en) Electrolyte for driving electrolytic capacitor
JP3169625B2 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
JPH01228121A (en) Electrolyte for driving electrolyte capacitor
JPH02113514A (en) Electrolytic solution for electrolytic capacitor
JPH0722085B2 (en) Electrolytic solution for driving aluminum electrolytic capacitors
JPS62224919A (en) Electrolyte for electrolytic capacitor