JPH0262026A - Electrolyte for driving electrolytic capacitor - Google Patents

Electrolyte for driving electrolytic capacitor

Info

Publication number
JPH0262026A
JPH0262026A JP21391088A JP21391088A JPH0262026A JP H0262026 A JPH0262026 A JP H0262026A JP 21391088 A JP21391088 A JP 21391088A JP 21391088 A JP21391088 A JP 21391088A JP H0262026 A JPH0262026 A JP H0262026A
Authority
JP
Japan
Prior art keywords
salt
acid
electrolytic solution
driving
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21391088A
Other languages
Japanese (ja)
Inventor
Kazutoshi Yanai
柳井 和俊
Hideki Shimamoto
秀樹 島本
Keiji Mori
啓治 森
Noriki Ushio
潮 憲樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21391088A priority Critical patent/JPH0262026A/en
Publication of JPH0262026A publication Critical patent/JPH0262026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PURPOSE:To obtain an electrolyte whose specific conductivity and discharge voltage are high and whose corrosion resistance is strong by a method wherein 3-methyladipic acid or its salt and benzoic acid or its salt are dissolved in ethylene glycol or gamma-butyrolactone. CONSTITUTION:3-methyladiplc acid or its salt and benzoic or its salt are dissolved in ethylene glycol or gamma-butyrolactone. An ammonium salt, a secondary amine salt, a tertiary amine salt or a quaternary ammonium salt is preferable as the salt of methyladipic acid or benzoic acid. By using 3-methyladipic acid or its salt as a dicarboxylic acid in a side chain, it is possible to have an excellent chemical formation property and solubility and to obtain a high discharge voltage and high conductivity as compared with those of a dicarboxylic acid in a normal chain. Thereby, it is possible to obtain an electrolyte whose corrosion resistance is strong.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電解コンデンサに関するものであり。[Detailed description of the invention] Industrial applications The present invention relates to an electrolytic capacitor.

詳しく言えば、アルミ電解コンデンサ駆動用電解液に関
するものである。
Specifically, it relates to an electrolytic solution for driving an aluminum electrolytic capacitor.

従来の技術 従来、電解コンデンサ駆動用電解液としては。Conventional technology Traditionally, it has been used as an electrolyte for driving electrolytic capacitors.

エチレングリコールに電解質として硼酸アンモニウムを
溶解したものを使用している。この種の電解液は、放電
電圧が高いが、比電導度が低いだめ電解コンデンサの損
失が大きくなる欠点がある。
Ammonium borate dissolved in ethylene glycol is used as an electrolyte. This type of electrolytic solution has a high discharge voltage, but has a drawback of low specific conductivity, which increases the loss of the electrolytic capacitor.

まだ、高温での劣化も犬きく安定性に欠ける。However, it is still not stable enough to degrade at high temperatures.

以上のような欠点を改良するために、特公昭63−16
899号公報に見られるように、エチレングリコールに
3−メチルアジピン酸またはその塩を用いて、高い放電
電圧を依持しつつ高電導度化を図った例がある。
In order to improve the above-mentioned shortcomings, the special public
As seen in Japanese Patent No. 899, there is an example in which 3-methyladipic acid or a salt thereof is used in ethylene glycol to achieve high conductivity while maintaining a high discharge voltage.

発明が解決しようとする課題 しかし、従来の問題点として、近年、プリント基板の塩
素系溶剤での洗浄に対するコンデンサの腐食性が重要視
される中で、エチレングリコールに3−メチルアジピン
酸またはその塩を使用した場合、高い放電電圧と高比電
導度という特性は得られるものの耐腐食性が十分でなく
、高温中での劣化が大きいという欠点がある。
Problems to be Solved by the Invention However, as a conventional problem, in recent years, attention has been paid to the corrosivity of capacitors when cleaning printed circuit boards with chlorinated solvents. When using this material, the characteristics of high discharge voltage and high specific conductivity can be obtained, but the drawback is that the corrosion resistance is insufficient and the deterioration is large at high temperatures.

本発明は、このような従来の欠点を解決するもので、高
い放電電圧と高電導度をあわせもち、さらに耐腐食性に
優れた電解液を提供し、電解コンデンサの損失特性の改
善、並びに高温中での長寿命化、耐腐食性の向上を図る
ことを目的とする。
The present invention solves these conventional drawbacks by providing an electrolytic solution that has both high discharge voltage and high conductivity, and also has excellent corrosion resistance, and improves the loss characteristics of electrolytic capacitors and The purpose is to extend the life of the inside and improve corrosion resistance.

課題を解決するだめの手段 上記問題を解決するだめに、本発明はエチレングリコー
ルあるいはr−ブチロラフ千ンまだはその混合溶媒に、
3−メチルアジピン酸またはその塩と安息香酸またはそ
の塩を溶解する電解コンデンサ駆動用電解液である。
Means for Solving the Problems In order to solve the above problems, the present invention provides ethylene glycol or r-butyrolavone or a mixed solvent thereof.
This is an electrolytic solution for driving an electrolytic capacitor that dissolves 3-methyladipic acid or its salt and benzoic acid or its salt.

3−メチルアジピン酸及び安息香酸の塩としては、アン
モニウム塩、二級アミン塩、三級アミン塩、四級アンモ
ニウム塩が好ましく、二級アミン塩の中ではジメチルア
ミン、ジエチルアミン、三級アミン塩の中では、トリメ
チルアミン トリエチルアミン、ジメチルエチルアミン
、ジエチルメチルアミン、四級アンモニウム塩の中では
、テトラメチルアンモニウム、テトラエチルアンモニウ
ムが特に好ましい。
As the salts of 3-methyladipic acid and benzoic acid, ammonium salts, secondary amine salts, tertiary amine salts, and quaternary ammonium salts are preferable. Among the secondary amine salts, dimethylamine, diethylamine, and tertiary amine salts are preferable. Among them, trimethylamine, triethylamine, dimethylethylamine, diethylmethylamine, and quaternary ammonium salts, tetramethylammonium and tetraethylammonium are particularly preferred.

3−メチルアジピン酸又はその塩の添加量は、電解液量
に対して1〜30重童にであることが好ましい。これは
、1重量%以上では比電導度が低く、30@量%を越え
ると溶解しないからである。
The amount of 3-methyladipic acid or its salt added is preferably 1 to 30 times the amount of electrolyte. This is because if it exceeds 1% by weight, the specific conductivity is low, and if it exceeds 30% by weight, it will not dissolve.

安は香酸又はその塩の添加量は、電解液量に対して0.
1〜10重量%であることが好ましい。これは0.1重
量%以下では高温劣化及び耐腐食性に効果がなく、10
重量%以上では放電電圧の低下をまぬくからである。
The amount of fragrant acid or its salt added is 0.0% relative to the amount of electrolyte.
It is preferably 1 to 10% by weight. If it is less than 0.1% by weight, it has no effect on high-temperature deterioration and corrosion resistance;
This is because if the amount is more than % by weight, the discharge voltage will not decrease.

作用 このような本発明の電解液は、3−メチルアジピン褒ま
たはその塩と安息香酸またはその塩を用いているだめ、
側鎖のジカルボン酸である3−メチルアジピン酸または
その塩により直慎のジカルボン酸に比較して優れた化成
性と溶解性をもち高い放電電圧と高い電導度が得られる
。さらに安息香′浚またはその塩を加えることにより、
酸化皮膜の條復性が向上し塩素イオンに対して強くなる
と考えられる。
Function: The electrolytic solution of the present invention uses 3-methyladipine or a salt thereof and benzoic acid or a salt thereof.
3-methyladipic acid or its salt, which is a dicarboxylic acid in the side chain, has superior chemical formation properties and solubility, and can provide high discharge voltage and high conductivity compared to dicarboxylic acids. By further adding benzoin or its salt,
It is thought that the resilience of the oxide film improves and it becomes resistant to chlorine ions.

実施例 以下1本発明による実施例について述べる。Example An embodiment according to the present invention will be described below.

第1表に本発明の実施例及び従来の電解液組成例、並び
に常温における電導度及び放電電圧を示す。
Table 1 shows examples of the present invention and conventional electrolyte compositions, as well as conductivity and discharge voltage at room temperature.

(以下 余 白) また、第2表に第1表の従来例並びに実施例の電解液を
用いたアルミ電解コンデンサの105℃中での電圧印加
試験の結果を示す。
(Hereinafter, blank) Table 2 shows the results of a voltage application test at 105° C. for aluminum electrolytic capacitors using the electrolytes of the conventional example and the example shown in Table 1.

なお、試料コンデンサは周知の構造で、化成したニッチ
ドア!レミニウム箔と陰極箔をセパレータ紙にはさんで
巻回したコンデンサ素子に電解液を含浸し、この素子を
アルミニウムケースに収納し封口したものであり、定格
200V68μFのアルミ電解コンデンサである。まだ
試験は、腐食を加速するため、1,1.1−)リクロロ
エタンをコンデンサの内部素子中に1μl注入して行な
った。
The sample capacitor has a well-known structure, a chemically formed niche door! This is an aluminum electrolytic capacitor with a rating of 200 V and 68 μF, which is made by impregnating an electrolytic solution into a capacitor element made by winding reminium foil and cathode foil between separator paper, and then storing this element in an aluminum case and sealing it. Tests were also performed with 1 μl of 1,1.1-)lichloroethane injected into the internal elements of the capacitor to accelerate corrosion.

第1表より、本発明による電解液は、実施例1゜2.3
から明らかなように、放電電圧の低下も小さく比電導度
が高く優れた特性が得られる。また。
From Table 1, the electrolytic solution according to the present invention is as follows: Example 1゜2.3
As is clear from the above, excellent characteristics such as a small drop in discharge voltage and a high specific conductivity can be obtained. Also.

第2表よシ明らかなように、本発明による電解液を用い
たコンデンサにおいては、まったく腐食が見られず従来
の電解液に比較して耐腐食性の向上が見られる。
As is clear from Table 2, in the capacitor using the electrolyte according to the present invention, no corrosion is observed and the corrosion resistance is improved compared to the conventional electrolyte.

次に、第1表の中で従来例並びに実施例1,4゜5の電
解液を用いたアルミ電解コンデンサの106℃中での電
圧印加なしにおける試゛験の結果を第1図へ、b、cに
示した。
Next, in Table 1, the test results of aluminum electrolytic capacitors using the conventional example and the electrolytes of Examples 1 and 4.5 at 106°C without voltage application are shown in Figure 1.b , shown in c.

なお、試作コンデンサは第2表の試験に用いたコンデン
サと同じものを用い、n=20ケで試験を行なった。
The test capacitors used were the same as those used in the tests shown in Table 2, and the tests were conducted with n=20 capacitors.

ここで第1図aは、静電容量変化、第1図すは損失角の
正接変化、第1図Cは漏れ電流変化を示す特性図であり
、すべて106℃中において電圧印加なしで試験を行な
った。
Here, Fig. 1a shows the capacitance change, Fig. 1 shows the loss angle tangent change, and Fig. 1C shows the leakage current change, all of which were tested at 106°C without voltage application. I did it.

第1図の従来例と実施例4を比較すると特に。Especially when comparing the conventional example shown in FIG. 1 and the fourth embodiment.

漏れ電流の変化で従来例が2000時間後において9o
μ人と高いのに対して実施例では30μムと低い。また
、従来例と実施例5では、損失角の正接変化で初期及び
20oo時間後で従来例に比較して大幅に低い。実施例
1においても従来例と比べるとコンデンサの特性変化は
少なく改善されていることがわかる。
Due to changes in leakage current, the conventional example decreased to 9o after 2000 hours.
While it is high in μm, it is as low as 30 μm in the example. In addition, in the conventional example and Example 5, the tangent change in the loss angle is significantly lower than that in the conventional example at the initial stage and after 200 hours. It can be seen that in Example 1 as well, the change in capacitor characteristics is small and improved compared to the conventional example.

発明の効果 以上のように本発明によれば、従来の電解液と比較して
高い比電導度、放電電圧を有し、耐腐食性の強い電解液
を提供できる。そのため高温中において信頼性の高いコ
ンデンサが提供でき、工業的価値の大なるものである。
Effects of the Invention As described above, according to the present invention, it is possible to provide an electrolytic solution that has higher specific conductivity and discharge voltage than conventional electrolytic solutions and has strong corrosion resistance. Therefore, it is possible to provide a highly reliable capacitor at high temperatures, which is of great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電解液と本発明の電解液を用いた定格2
00V68μFのアルミ電解コンデンサの105℃中に
おける定格電圧印加なしにおける特性経時変化を示した
ものであり、第1図aは静電容量変化、第1図すは損失
角の正接変化、第1図Cは漏れ電流変化を示す特性図で
ある。
Figure 1 shows the rating 2 using the conventional electrolyte and the electrolyte of the present invention.
Figure 1A shows the change in capacitance, Figure 1 shows the tangent change in loss angle, and Figure 1C shows the change in characteristics of a 00V68μF aluminum electrolytic capacitor at 105°C with no rated voltage applied. is a characteristic diagram showing changes in leakage current.

Claims (10)

【特許請求の範囲】[Claims] (1)エチレングリコールあるいはγ−ブチロラクトン
または、その混合溶媒に、3−メチルアジピン酸または
その塩と安息香酸またはその塩を溶解したことを特徴と
する電解コンデンサ駆動用電解液。
(1) An electrolytic solution for driving an electrolytic capacitor, characterized in that 3-methyladipic acid or a salt thereof and benzoic acid or a salt thereof are dissolved in ethylene glycol, γ-butyrolactone, or a mixed solvent thereof.
(2)3−メチルアジピン酸及び安息香酸の塩がアンモ
ニウム塩であることを特徴とする請求項1記載の電解コ
ンデンサ駆動用電解液。
(2) The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the salts of 3-methyladipic acid and benzoic acid are ammonium salts.
(3)3−メチルアジピン酸及び安息香酸の塩が二級ア
ミン塩であることを特徴とする請求項1記載の電解コン
デンサ駆動用電解液。
(3) The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the salts of 3-methyladipic acid and benzoic acid are secondary amine salts.
(4)3−メチルアジピン酸及び安息香酸の塩が三級ア
ミン塩であることを特徴とする請求項1記載の電解コン
デンサ駆動用電解液。
(4) The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the salts of 3-methyladipic acid and benzoic acid are tertiary amine salts.
(5)3−メチルアジピン酸及び安息香酸の塩が四級ア
ンモニウム塩であることを特徴とする請求項1記載の電
解コンデンサ駆動用電解液。
(5) The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the salts of 3-methyladipic acid and benzoic acid are quaternary ammonium salts.
(6)二級アミンがジメチルアミンまたはジエチルアミ
ンであることを特徴とする請求項3記載の電解コンデン
サ駆動用電解液。
(6) The electrolytic solution for driving an electrolytic capacitor according to claim 3, wherein the secondary amine is dimethylamine or diethylamine.
(7)三級アミンがトリメチルアミン、トリエチルアミ
ン、ジメチルエチルアミン、ジエチルメチルアミンであ
ることを特徴とする請求項4記載の電解コンデンサ駆動
用電解液。
(7) The electrolytic solution for driving an electrolytic capacitor according to claim 4, wherein the tertiary amine is trimethylamine, triethylamine, dimethylethylamine, or diethylmethylamine.
(8)四級アンモニウムがテトラメチルアンモニウムま
たはテトラエチルアンモニウムであることを特徴とする
請求項5記載の電解コンデンサ駆動用電解液。
(8) The electrolytic solution for driving an electrolytic capacitor according to claim 5, wherein the quaternary ammonium is tetramethylammonium or tetraethylammonium.
(9)3−メチルアジピン酸またはその塩の溶解量が1
〜30重量%であることを特徴とする請求項1記載の電
解コンデンサ駆動用電解液。
(9) The amount of dissolved 3-methyladipic acid or its salt is 1
The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the electrolytic solution is 30% by weight.
(10)安息香酸またはその塩の溶解量が0.1〜10
重量%であることを特徴とする請求項1記載の電解コン
デンサ駆動用電解液。
(10) Dissolution amount of benzoic acid or its salt is 0.1 to 10
The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the electrolytic solution is % by weight.
JP21391088A 1988-08-29 1988-08-29 Electrolyte for driving electrolytic capacitor Pending JPH0262026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21391088A JPH0262026A (en) 1988-08-29 1988-08-29 Electrolyte for driving electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21391088A JPH0262026A (en) 1988-08-29 1988-08-29 Electrolyte for driving electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH0262026A true JPH0262026A (en) 1990-03-01

Family

ID=16647056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21391088A Pending JPH0262026A (en) 1988-08-29 1988-08-29 Electrolyte for driving electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0262026A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391333A2 (en) * 1989-04-04 1990-10-10 Matsushita Electric Industrial Co., Ltd. Electrolyte for driving electrolytic capacitors and capacitor using the same
JPH0437112A (en) * 1990-06-01 1992-02-07 Elna Co Ltd Electrolyte for electrolytic capacitor
US20220127219A1 (en) * 2020-10-23 2022-04-28 Industrial Technology Research Institute Electrolyte and compound for the electrolyte and capacitor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0391333A2 (en) * 1989-04-04 1990-10-10 Matsushita Electric Industrial Co., Ltd. Electrolyte for driving electrolytic capacitors and capacitor using the same
US5177673A (en) * 1989-04-04 1993-01-05 Matsushita Electric Industrial Co., Ltd. Electrolyte for driving electrolytic capacitors and capacitor using the same
JPH0437112A (en) * 1990-06-01 1992-02-07 Elna Co Ltd Electrolyte for electrolytic capacitor
US20220127219A1 (en) * 2020-10-23 2022-04-28 Industrial Technology Research Institute Electrolyte and compound for the electrolyte and capacitor
US11807601B2 (en) * 2020-10-23 2023-11-07 Industrial Technology Research Institute Electrolyte and compound for the electrolyte and capacitor

Similar Documents

Publication Publication Date Title
JPH0262026A (en) Electrolyte for driving electrolytic capacitor
JPH0342694B2 (en)
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JP3612671B2 (en) Electrolytic solution for electrolytic capacitor drive
JPH02194611A (en) Electrolyte for driving electrolytic capacitor
JPH01154509A (en) Electrolyte for electrolytic capacitor
JPH01245508A (en) Electrolyte for electrolytic capacitor
JPH0770442B2 (en) Electrolytic solution for driving electrolytic capacitors
JP2000306779A (en) Electrolyte for activating aluminum electrolytic capacitor
JPH01293609A (en) Electrolytic solution for driving electrolytic capacitor
JPS62213239A (en) Driving electrolyte for electrolytic capacitor
JPS63248113A (en) Electrolytic capacitor
JPS63228708A (en) Electrolytic capacitor
JPS63240011A (en) Driving electrolyte of electrolytic capacitor
JPS62213245A (en) Driving electrilyte for electrolytic capacitor
JPS6065514A (en) Electrolyte for driving electrolytic condenser
JPS6351620A (en) Electrolytic capacitor driving electrolyte
JPS59218719A (en) Electrolyte for driving electrolytic condenser
JPH0636975A (en) Electrolyte for driving electrolytic capacitor
JPS6369211A (en) Electrolytic capacitor
JPS63169018A (en) Electrolytic capacitor driving electrolyte
JPH02194610A (en) Electrolyte for driving electrolytic capacitor
JPS62213237A (en) Driving electrolyte for electrolytic capacitor
JPH06232008A (en) Electrolyte for driving aluminum electrolytic capacitor
JPH0226010A (en) Electrolyte for electrolytic capacitor