JPS63228708A - Electrolytic capacitor - Google Patents
Electrolytic capacitorInfo
- Publication number
- JPS63228708A JPS63228708A JP6283087A JP6283087A JPS63228708A JP S63228708 A JPS63228708 A JP S63228708A JP 6283087 A JP6283087 A JP 6283087A JP 6283087 A JP6283087 A JP 6283087A JP S63228708 A JPS63228708 A JP S63228708A
- Authority
- JP
- Japan
- Prior art keywords
- quaternary ammonium
- electrolytic capacitor
- ammonium salt
- electrolytic
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims description 27
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 18
- 239000003792 electrolyte Substances 0.000 claims description 18
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 16
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 claims description 14
- 150000003242 quaternary ammonium salts Chemical class 0.000 claims description 13
- 239000008151 electrolyte solution Substances 0.000 claims description 11
- 239000003495 polar organic solvent Substances 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 4
- 125000001453 quaternary ammonium group Chemical group 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 20
- 239000011888 foil Substances 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QEMXHQIAXOOASZ-UHFFFAOYSA-N tetramethylammonium Chemical compound C[N+](C)(C)C QEMXHQIAXOOASZ-UHFFFAOYSA-N 0.000 description 3
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- WSGYTJNNHPZFKR-UHFFFAOYSA-N 3-hydroxypropanenitrile Chemical compound OCCC#N WSGYTJNNHPZFKR-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical group COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-O Methylammonium ion Chemical compound [NH3+]C BAVYZALUXZFZLV-UHFFFAOYSA-O 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- GSCLMSFRWBPUSK-UHFFFAOYSA-N beta-Butyrolactone Chemical compound CC1CC(=O)O1 GSCLMSFRWBPUSK-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N dimethyl sulfoxide Natural products CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- -1 ethylene glycol monoalkyl ether Chemical class 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000012047 saturated solution Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 150000005622 tetraalkylammonium hydroxides Chemical class 0.000 description 1
- DZLFLBLQUQXARW-UHFFFAOYSA-N tetrabutylammonium Chemical compound CCCC[N+](CCCC)(CCCC)CCCC DZLFLBLQUQXARW-UHFFFAOYSA-N 0.000 description 1
- CBXCPBUEXACCNR-UHFFFAOYSA-N tetraethylammonium Chemical compound CC[N+](CC)(CC)CC CBXCPBUEXACCNR-UHFFFAOYSA-N 0.000 description 1
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は電解コンデンサ、詳しくは新規な駆動用電解液
を使用した電解コンデンサに閏オる。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrolytic capacitor, and more particularly to an electrolytic capacitor using a novel driving electrolyte.
[従来の技術]
′rルミニウムなどのfF作作用属からなる陽極箔およ
び陰極箔をセパレータとともに巻回してコンデンサ素子
とした電解コンデンサは、一般にコンデンサ素子・に駆
動用電解液を含浸し、アルミニラl、などの金属ケース
や合成樹m製のケースにコンデンサ素子を収納し、密閉
した構造をノrする。[Prior Art] Electrolytic capacitors are made by winding an anode foil and a cathode foil made of an fF action metal such as aluminum together with a separator to form a capacitor element.Generally, the capacitor element is impregnated with a driving electrolyte, and an aluminum foil is formed by impregnating the capacitor element with a driving electrolyte. The capacitor element is housed in a metal case such as , or a case made of synthetic wood, and the structure is sealed.
このよ・)な電解コンデンサの駆動用電解液としては、
従来エチレングリコールなどの極性tr機溶媒を−し溶
媒とし、これに飽和イrJafaのアンモニウム塩のよ
うに、金属からなる電極を9食しない塩を溶解した電解
機が一般に便用されている(特公昭58−13019号
公報)。また、電解液の溶媒としてγ−ブチロラクトン
とエチレングリコールの混合溶媒を使用することも知ら
れCいる(特開昭54−7564号公報)a
[発明が解決しようとする問題点]
しかしながら、特公昭5B−13019号に開示された
電解液においては、電気抵抗値の指標てある損失角の正
接(tanδ)を下げるためにlモニア(NHs )の
蒸散のため高温度におけるコンデンサの特性劣化、特に
損失角の正接(tanδ)の変化が大きいという問題点
があった。また、電導度が高< (1気抵抗が低く)、
かつ高温で安定な電解液として飽和鎖状ジカルボン酸の
第四アンモニウム塩を極性有機溶媒に溶解した電解液の
使用が特開昭59−78522号公報に開示されている
。しかしながら、同公報中の実施例によれば、この電解
液の電導度はせいぜい9.4mS / c mで、現在
要求されている水準(12〜25 m S / c m
)から見れば不充分であるという問題点かあった。さ
らに、混合溶媒として上述の特開昭54−7564号に
みられるよりなγ−ブチロラクトンとエチレングリコー
ルを使用した場合には、低温においてエチレングリコー
ルの粘度が増加するためにコンデンサの低温特性の改善
効果が小さいという問題点があった。As a driving electrolyte for this type of electrolytic capacitor,
Conventionally, electrolyzers have been commonly used in which a polar organic solvent such as ethylene glycol is used as the solvent, and a salt that does not interfere with metal electrodes, such as ammonium salt of saturated iron, is dissolved in the solvent (in particular, Publication No. 58-13019). It is also known that a mixed solvent of γ-butyrolactone and ethylene glycol is used as a solvent for the electrolytic solution (Japanese Unexamined Patent Publication No. 7564/1983). [Problems to be Solved by the Invention] However, In the electrolytic solution disclosed in No. 5B-13019, in order to lower the tangent of the loss angle (tan δ), which is an index of electrical resistance, the deterioration of capacitor characteristics at high temperatures due to evaporation of lmonium (NHs), especially the loss There was a problem in that the tangent (tan δ) of the angle varied greatly. In addition, the conductivity is high (low 1 air resistance),
Furthermore, as an electrolytic solution that is stable at high temperatures, the use of an electrolytic solution prepared by dissolving a quaternary ammonium salt of a saturated chain dicarboxylic acid in a polar organic solvent is disclosed in JP-A-59-78522. However, according to the examples in the same publication, the conductivity of this electrolyte is at most 9.4 mS/cm, which is higher than the currently required level (12 to 25 mS/cm).
), there was a problem that it was insufficient. Furthermore, when using γ-butyrolactone and ethylene glycol as shown in the above-mentioned JP-A-54-7564 as a mixed solvent, the viscosity of ethylene glycol increases at low temperatures, which improves the low-temperature characteristics of the capacitor. The problem was that it was small.
本発明はこのような問題点を解決して、電気抵抗が低く
(電導度か高く)、低温特性が優れ、かつ高温安定性の
帰れた駆動用電解液を使用した電解コンデンサを提供す
ることを目的とする。The present invention solves these problems and provides an electrolytic capacitor using a driving electrolyte that has low electrical resistance (high conductivity), excellent low-temperature characteristics, and high-temperature stability. purpose.
[問題点を解決するための手段]
本発明は、前記問題点を解決するために極性有機溶媒に
O−フタル酸の第四アンモニウム塩を溶解してなる駆動
用電解液を使用したことを特徴とする電解コンデンサを
提供するものである。[Means for Solving the Problems] In order to solve the above problems, the present invention is characterized by using a driving electrolyte prepared by dissolving a quaternary ammonium salt of O-phthalic acid in a polar organic solvent. The present invention provides an electrolytic capacitor that has the following characteristics.
本発明において用いられるO−7タル酸の第四アンモニ
ウム塩としては、一般式R,Nゝで示される第四アンモ
ニウムのアルキル基(R)の炭素数が1〜10個のもの
、特に1〜4個のものを好適に使用することができ、例
えばO−フタル酸テトラメチルアンモニウム、O−フタ
ル酸テトラエチルアンモニウム、O−フタル酸テトラプ
ロピルアンモニウム、O−フタル酸テトラブチルアンモ
ニウムなどを挙げることができる。The quaternary ammonium salt of O-7 talic acid used in the present invention is one in which the alkyl group (R) of the quaternary ammonium represented by the general formula R,N has 1 to 10 carbon atoms, especially 1 to 10 carbon atoms. Four types can be suitably used, and examples thereof include tetramethylammonium O-phthalate, tetraethylammonium O-phthalate, tetrapropylammonium O-phthalate, and tetrabutylammonium O-phthalate. .
本発明におい°C,a−フタル酸の第四アンモニウム塩
を使用するのは、O−フタル酸が他のアミいからである
。The reason why the quaternary ammonium salt of °C,a-phthalic acid is used in the present invention is because O-phthalic acid is other ammonium salts.
本発明で用いられる0−フタル酸の第四アンモニウム塩
の電解液組成中における含存量(濃度)は適宜選ぶこと
ができるが、飽和溶液の状態のときに比抵抗が最も小さ
いことを考慮すると1〜50重量%が適当であり、なか
でも良好な高温安定性を得るためには5〜40fi量%
が好適である。The content (concentration) of the quaternary ammonium salt of 0-phthalic acid used in the present invention in the electrolyte composition can be selected as appropriate, but considering that the specific resistance is the lowest in the state of a saturated solution, 1 -50% by weight is suitable, especially 5-40% by weight to obtain good high temperature stability.
is suitable.
本発明で用いる極性有機溶媒としては前記の問題点を解
決するために少なくともγ−ブチロラクトンとN、N−
ジメチルホルムアミドを含有する。ここで、アルキル基
としてはメチル、エチル、プロピル・・・などがあるが
、そのうちでも低温特性の改善上、メチル右よびエチル
が好ましい。さらに混合する溶媒としては電解コンデン
サに通常使用されている極性有機溶媒であ九ばいずれも
使用でき、アミド類、ラクトン類、グリコール類、硫貨
化合物類または炭素塩類が好適に使用できる。混合可能
な好ま【7い溶媒の1体的な例としては、N−メチルホ
ルムアミド、β−ブチロラクトン、γ−バレロラクトン
、N−メチルピロリドン、エチレングリコール、エチレ
ングリコール・モノアルキルエーテル、エチレングリコ
ール・ジアルキルエーテル、ジメチルスルホキシド、炭
酸プロピレン、エチレンシアノヒドリンなどを挙げるこ
とができ、これら溶媒は単独で、あるいは複数の組合せ
で適宜混合して使用される。In order to solve the above problems, the polar organic solvent used in the present invention includes at least γ-butyrolactone and N,N-
Contains dimethylformamide. Here, examples of the alkyl group include methyl, ethyl, propyl, etc., among which methyl and ethyl are preferred from the viewpoint of improving low-temperature properties. Further, as the solvent to be mixed, any polar organic solvent commonly used in electrolytic capacitors can be used, and amides, lactones, glycols, sulfur compounds, or carbon salts are preferably used. Examples of preferred miscible solvents include N-methylformamide, β-butyrolactone, γ-valerolactone, N-methylpyrrolidone, ethylene glycol, ethylene glycol monoalkyl ether, and ethylene glycol dialkyl. Ether, dimethyl sulfoxide, propylene carbonate, ethylene cyanohydrin, etc. can be used, and these solvents may be used alone or in combinations of a plurality of them as appropriate.
本発明において、O−フタル酸の第四アンモニウム塩を
含有する駆動用電解液を得るにはこの第四アンモニウム
塩を極性有機溶媒に添ノmしてもよいが、溶媒中で0−
フタル酸の第四アンモニウム塩を生成可能な物質を反応
させることによって、この第四アンモニウム塩を生成さ
せでもよい。In the present invention, in order to obtain a driving electrolyte containing a quaternary ammonium salt of O-phthalic acid, this quaternary ammonium salt may be added to a polar organic solvent.
The quaternary ammonium salt of phthalic acid may be produced by reacting substances capable of producing the quaternary ammonium salt.
本発明では電解液中に水を含有させることは必ずしも必
要ではないが、比抵抗を下げるためには水の含有は効果
的である。ただし・、ある限度以上に水のな打射を多く
すると、内部ガスの発生に伴う′賀解二7ンデンサのケ
ース膨j′ムや電極箔の侵食を増大させる要因になるの
で高温度で長時間使用す用目的に対応して、水の含有量
は電解液m酸中o、i〜20重量%の範囲が好ま1ノ<
、0.5〜15重1%の範囲がさらに好ましい。In the present invention, it is not necessary to include water in the electrolytic solution, but it is effective to lower the specific resistance. However, if the amount of water spray exceeds a certain limit, it will increase the expansion of the case of the capacitor due to the generation of internal gas and the erosion of the electrode foil, so it should not be used for long periods at high temperatures. Depending on the purpose of use, the water content is preferably in the range of 1 to 20% by weight in the electrolytic solution m acid.
, a range of 0.5 to 15% by weight is more preferable.
本発明の電解コンデンサには、種々の通様のコンデンサ
が包含される。典型的な態様としては、紙などの適宜の
セパレータで分層したアルミニウム箔陽極とアルミニウ
ム箔陰極とを使用し、これらを円筒状に6いたものをコ
ン、デンサ素子とし、この素子に駆動用電解液を含浸さ
せる。電解液の含litとしてはセパレータに対して、
好ましくは50〜300重量%とされる。電解液が含浸
された素子は、耐食性を有する金属や合成樹脂などのケ
ースに収納し、密封した構造にされる。The electrolytic capacitor of the present invention includes various types of capacitors. In a typical embodiment, an aluminum foil anode and an aluminum foil cathode separated by an appropriate separator such as paper are used, and these are arranged in a cylindrical shape to form a capacitor or capacitor element, and this element is injected with a driving electrolyte. Impregnate with liquid. The content of the electrolyte is as follows for the separator:
Preferably it is 50 to 300% by weight. The element impregnated with the electrolyte is housed in a case made of corrosion-resistant metal, synthetic resin, or the like, and has a sealed structure.
[実施例]
以下、本発明を実施例および比較例にもとづいて具体的
に説明する。[Examples] The present invention will be specifically described below based on Examples and Comparative Examples.
水酸化テトラアルキルアンモニウム(アルキル基の炭素
数1〜3)の10%水溶液とO−フタル酸とを等モル数
になるように混合して0−フタル酸を溶解させた後5エ
バポレータにより水を除去してO−7タル酸の第四アン
モニウム塩を生成させ、こわらを溶質として所定量を極
性4f機溶媒に溶解させて実施例1〜10の電解液とし
た。電解液のPHは5〜7になるように調整した。A 10% aqueous solution of tetraalkylammonium hydroxide (alkyl group has 1 to 3 carbon atoms) and O-phthalic acid are mixed to have an equimolar number, and after dissolving O-phthalic acid, water is removed using a 5-evaporator. This was removed to produce a quaternary ammonium salt of O-7 talic acid, and a predetermined amount was dissolved in a polar 4F organic solvent using the stiff solids as a solute to obtain the electrolytes of Examples 1 to 10. The pH of the electrolyte was adjusted to 5-7.
こnらの電解液を使用してアルミニウムを電極とする電
解コンデンサ(定aiov、1000μF)を製作し、
高温負荷試験(定格電圧印加、125℃、1000時間
)を行なって、損失角の正接(tanδ)の変化を測定
し、その結果を第1表に示した。また、0−フタセ酸の
第四アンモニウム塩以外の溶質を使用した場合を比較例
1〜4とし、実施例と同様にし゛C電解コンデンサを製
作し、実施例と同じ条件で高温負荷試験を行ない、その
結果を第1表に示した。なお、第1表中のDMFはN、
N−ジメチルホルムアミドを示す。Using these electrolytes, we manufactured an electrolytic capacitor (constant AIOV, 1000 μF) with aluminum electrodes,
A high temperature load test (rated voltage applied, 125° C., 1000 hours) was conducted to measure changes in the loss angle tangent (tan δ), and the results are shown in Table 1. In addition, Comparative Examples 1 to 4 are cases in which a solute other than the quaternary ammonium salt of 0-phtaceic acid is used, and a C electrolytic capacitor was manufactured in the same manner as in the example, and a high temperature load test was conducted under the same conditions as in the example. The results are shown in Table 1. In addition, DMF in Table 1 is N,
Indicates N-dimethylformamide.
次に、第2表に電解コンデンサの低温特性を示す。7に
解コンデンサは上述したものと同一であに対する容は変
化率、Z/220℃は20℃に対するインピーダンス比
をそれぞれ示す。Next, Table 2 shows the low temperature characteristics of electrolytic capacitors. 7 shows the capacitance of the capacitor, which is the same as that described above, is the rate of change, and Z/220°C shows the impedance ratio with respect to 20°C.
n;10の平均値
第1表から分るように、比較例は高温負荷試験において
、損失角の正接の変化が大きいのに対して、実施例では
この変化を小さいものとすることができる。Average value of n; 10 As can be seen from Table 1, in the comparative example, the change in the tangent of the loss angle was large in the high temperature load test, whereas in the example, this change could be made small.
また、第2表から分るように、比較例は低温特性におい
て八C/C20℃およびZ/Z 20℃の変化率が大き
いのに対して、実施例ではこの変化率の他派を図ること
ができるものである。Furthermore, as can be seen from Table 2, the comparative example has a large change rate at 8C/C 20°C and Z/Z 20°C in low-temperature characteristics, whereas the example has a different rate of change. It is something that can be done.
最後に、第1図に電解液中の0−フタル酸テトラ、メチ
ルアンモニウムの量を一定(20w t%)とした場合
のN、N−ジメチルホルムアミドおよびγ−ブチロラク
トンの量と電解液の電導度との関係を示す。また、第2
図にN、N−ジメチルホルムアミドおよびγ−ブチロラ
クトンの贋を等量とした場合の0−フタル酸テトラメチ
ルアンモニウムの添加量と電解液の電導度との関係を示
す。Finally, Figure 1 shows the amounts of N, N-dimethylformamide and γ-butyrolactone and the conductivity of the electrolyte when the amounts of 0-tetra phthalate and methylammonium in the electrolyte are constant (20wt%). Indicates the relationship between Also, the second
The figure shows the relationship between the amount of tetramethylammonium 0-phthalate added and the conductivity of the electrolytic solution when the amounts of N,N-dimethylformamide and γ-butyrolactone are equal.
[発明の効果]
以北にて説明したように本発明によれば、低温特性が優
れ、かつ高温条件下での損失角の正接(tanδ)の変
化が小さい高温安定性の優わた電解コンデンサを提供す
ることができる。[Effects of the Invention] As explained above, according to the present invention, an electrolytic capacitor with excellent low temperature characteristics and excellent high temperature stability with small change in tangent of loss angle (tan δ) under high temperature conditions can be obtained. can be provided.
第1図は本発明に係る電解液中のN、N−ジメチルホル
ムアミドおよびγ−ブチロラクトンの量と電解液の電導
度との関係を示す特性図、第2[Aは本発明に係る電解
液中の0−7タル酸テトラメチルアンモニウムの量と電
解液の電導度との関係を示す特性図である。FIG. 1 is a characteristic diagram showing the relationship between the amount of N,N-dimethylformamide and γ-butyrolactone in the electrolytic solution according to the present invention and the electrical conductivity of the electrolytic solution. It is a characteristic diagram showing the relationship between the amount of 0-7 tetramethylammonium talate and the electrical conductivity of the electrolytic solution.
Claims (3)
ミドとからなる極性有機溶媒にo−フタル酸の第四アン
モニウム塩を溶解してなる駆動用電解液を使用したこと
を特徴とする電解コンデンサ。(1) An electrolytic capacitor characterized by using a driving electrolytic solution prepared by dissolving a quaternary ammonium salt of o-phthalic acid in a polar organic solvent consisting of γ-butyrolactone and N,N-dimethylformamide.
ム塩の含有量が1〜50重量%であることを特徴とした
特許請求の範囲第1項記載の電解コンデンサ。(2) The electrolytic capacitor according to claim 1, wherein the content of the quaternary ammonium salt of o-phthalic acid in the driving electrolyte is 1 to 50% by weight.
のアルキル基(R)の炭素数が1〜10個であることを
特徴とした特許請求の範囲第(1)項または第2項記載
の電解コンデンサ。(3) Claim 1 or 2, characterized in that the alkyl group (R) of the quaternary ammonium represented by the general formula R_4N^+ has 1 to 10 carbon atoms. electrolytic capacitor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6283087A JPS63228708A (en) | 1987-03-18 | 1987-03-18 | Electrolytic capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6283087A JPS63228708A (en) | 1987-03-18 | 1987-03-18 | Electrolytic capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63228708A true JPS63228708A (en) | 1988-09-22 |
Family
ID=13211628
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6283087A Pending JPS63228708A (en) | 1987-03-18 | 1987-03-18 | Electrolytic capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63228708A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0391225A (en) * | 1989-09-04 | 1991-04-16 | Japan Carlit Co Ltd:The | Electrolyte for driving electrolytic capacitor |
-
1987
- 1987-03-18 JP JP6283087A patent/JPS63228708A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0391225A (en) * | 1989-09-04 | 1991-04-16 | Japan Carlit Co Ltd:The | Electrolyte for driving electrolytic capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0263182A1 (en) | Electrolytic solution for electrolytic capacitor and electrolytic capacitor prepared by using it | |
JPS62145713A (en) | Electrolyte for electrolytic capacitor | |
JP3153227B2 (en) | Electrolytic capacitor | |
JPS63228708A (en) | Electrolytic capacitor | |
JPS63224212A (en) | Electrolytic capacitor | |
JPS63232409A (en) | Electrolytic capacitor | |
JPS63239913A (en) | Electrolytic capacitor | |
JPS63228709A (en) | Electrolytic capacitor | |
JPS63221608A (en) | Electrolytic capacitor | |
JPS62264615A (en) | Electrolytic capacitor | |
JPS63221609A (en) | Electrolytic capacitor | |
JPS62219508A (en) | Electrolyte for electrolytic capacitor | |
JPS6124813B2 (en) | ||
JPS63219118A (en) | Electrolytic capacitor | |
JPS6369215A (en) | New electrolytic capacitor | |
JPS63232410A (en) | Electrolytic capacitor | |
JPS6369211A (en) | Electrolytic capacitor | |
JPS6369213A (en) | Electrolytic capacitor | |
JPS63237406A (en) | Electrolytic capacitor | |
JPS63219119A (en) | Electrolytic capacitor | |
JPS63248113A (en) | Electrolytic capacitor | |
JPH0351285B2 (en) | ||
JPS6369212A (en) | Electrolytic capacitor | |
KR100348923B1 (en) | electrolyte for driving electrolytic condenser and electrolytic condenser using the same | |
JPS62276815A (en) | New electrolytic capacitor |