JPS6124813B2 - - Google Patents

Info

Publication number
JPS6124813B2
JPS6124813B2 JP10947680A JP10947680A JPS6124813B2 JP S6124813 B2 JPS6124813 B2 JP S6124813B2 JP 10947680 A JP10947680 A JP 10947680A JP 10947680 A JP10947680 A JP 10947680A JP S6124813 B2 JPS6124813 B2 JP S6124813B2
Authority
JP
Japan
Prior art keywords
electrolytic
solution
organic acid
driving
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10947680A
Other languages
Japanese (ja)
Other versions
JPS5734327A (en
Inventor
Hideo Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP10947680A priority Critical patent/JPS5734327A/en
Publication of JPS5734327A publication Critical patent/JPS5734327A/en
Publication of JPS6124813B2 publication Critical patent/JPS6124813B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、電解コンデンサ駆動用電解液に関す
るものである。 従来、電解コンデンサ駆動用電解液として、エ
チレングリコールに硼酸または硼酸アンモニウム
を溶解した電解液が知られている。この電解液
は、エチレングリコールの粘性が大きいため、低
温において比抵抗が大きくなり、したがつて低温
における温度特性の変化が大きいという欠点があ
る。また、低温における電導度を改善するため
に、エチレングリコールに有機酸の塩類を溶解
し、さらに水を添加した電解液も知られている
が、水が存在するため、アルミニウム陽極酸化皮
膜の劣化が大きく、また使用温度範囲が約85℃ま
でとなり、高温特性が望めない。 次に、エチレングリコールに代えて、N・
N′−ジメチルホルムアミドに硼酸アンモニウム
を溶解した電解液、この電解液をさらに水を添加
した電解液も知られているが、水が添加されてい
ない電解液ではN・N′−ジメチルホルムアミド
に硼酸アンモニウムが少量しか溶解せず、比抵抗
が大きくなり、また水が添加された電解液では使
用温度範囲が約85℃までとなり、高温特性が望め
ない。 さらに、低温から高温までの広温度範囲にわた
つて使用し得る電解液として、昭和43年特許出願
公告第21228号『アルミニウム電解蓄電器含浸用
電解液』で開示されているように、重量比で硼酸
5〜15wt%、アルコール類10〜35wt%でエステ
ル化させ、水を除去したものと、アミン類2〜
15wt%とをN・N′−ジメチルホルムアミド45〜
75wt%に溶解した電解液が知られている。この
電解液は、比抵抗が大きく、またアミン類が使用
されているので高温安定性に欠け、寿命特性が期
待できないものである。 そこで、比抵抗が小さく、低温特性および寿命
特性の良い電解液として、昭和53年特許公開第
68866号『乾式アルミニウム電解コンデンサ用電
解液』で開示されているように、アルコール類と
硼酸アンモニウムを反応させて得られるエステル
と、有機酸塩を溶解したN・N′−ジメチルホル
ムアミド溶液とを重量比でエステル10〜30wt
%、N・N′−ジメチルホルムアミド溶液90〜
70wt%となるように混合した電解液が知られて
いる。この電解液によると、N・N′−ジメチル
ホルムアミドは単一溶媒であり、N・N′−ジメ
チルホルムアミドの沸点は153℃であるため、沸
点付近の温度では高温安定性が不安定である。 したがつて、本発明は、さらに高温特性を改善
し、低温から約200℃の広温度範囲にわたつて安
定で、かつ長寿命の期待できる電解コンデンサ駆
動用電解液を提供することを目的としたものであ
る。 具体的には、有機酸塩を沸点206℃のγ−バレ
ロラクトン(3−メチルブチロラクトン、略称・
GVL)とN・N′−ジメチルホルムアミド(略
称・DMF)との混合溶液に溶解させた溶液と、
硼酸アンモニウムとアルコール類をエステル化し
て得た硼酸エステルとを混合した電解液を提供す
るものである。 次に、本発明に係る電解コンデンサ駆動用電解
液の実施例を説明する。 硼酸アンモニウム20〜40wt%とアルコール
類(エチレングリコール、プロピレングリコー
ルなど)80〜60wt%とを溶解し、加熱し、エ
ステル化して硼酸エステルを作る。 γ−バレロラクトン75〜25wt%とN・N′−
ジメチルホルムアミド25〜75wt%との混合溶
媒に有機酸塩(サリチル酸アンモニウム、フタ
ル酸一アンモニウム、フタル酸二アンモニウ
ム、安息香酸アンモニウムなど)0.2〜1.0mol/
となるように溶解した混合溶液を作る。 次に、で得た硼酸エステルを10〜30wt
%、で得た混合溶液を90〜70wt%となるよ
うに混合する。 本発明に係る電解液において、第1図に示すよ
うに有機酸塩混合溶液が70wt%以下(硼酸エス
テルが30wt%以上)になると、電導度が1000μ
S/cm以下になり、有機酸塩混合溶液が90wt%以
上(硼酸エステルが10wt%以下)になると、耐
圧が50V以下になり、実用的でなくなる。有機酸
塩混合溶液の混参溶媒において、第2図に示すよ
うにγ−バレロラクトン〔GVL〕が75wt%以上
(N・N′−ジメチルホルムアミド〔DMF〕が25wt
%以下)になると、電導度が1000μS/cm以下に
なり、γ−バレロラクトンが25wt%以下(N・
N′−ジメチルホルムアミドが75wt%以上)にな
ると、耐圧が50V以下となる。有機酸塩混合溶液
中における有機酸塩の濃度は、第3図に示すよう
に0.2mol/以下になると、電導度が1000μS/cm
以下になり、1.0mol/以上では、電導度が飽和
に近づき、電導度の向上はなくなる。したがつ
て、0.3〜0.9mol/の範囲が好ましい。なお、こ
の場合の混合溶媒はγ−バレロラクトンおよび
N・N′−ジメチルホルムアミド共に50wt%であ
る。硼酸エステルは、第4図に示すようにアルコ
ール類が80wt%以上(硼酸アンモニウム20wt%
以下)になると、漏れ電流が急激に増大し、アル
コール類が60wt%以下(硼酸アンモニウムが
40wt%以上)になると、粘度が上昇してしま
う。 本発明の実施例に係る電解液の組成を具体的に
例示し、従来の組成との比較を第1表に示す。 第1表中、EG・硼酸エステルはエチレングリ
コールの使用により得た硼酸エステルを示し、
PG・硼酸エステルはプロピレングリコールの使
用により得た硼酸エステルを示す。また、第1表
中に示したもののうち、従来例1、2、3および
(本発明)実施例1、3、5、8の電解液を用い
て、定格10V、1000μFのコンデンサ素子に含浸
してなるアルミニウム電解コンデンサの低温、常
温、高温での特性を第2表に示す。なお、この電
解コンデンサは周知の構造であり、アルミニウム
箔の陽極と陰極とを電解紙に挟んで巻回したコン
デンサ素子に電解液を含浸し、このコンデンサ素
子を封口体を使用してアルミニウムケース内に収
納した構造である。
The present invention relates to an electrolytic solution for driving an electrolytic capacitor. Conventionally, as an electrolytic solution for driving an electrolytic capacitor, an electrolytic solution in which boric acid or ammonium borate is dissolved in ethylene glycol is known. This electrolytic solution has a drawback in that the specific resistance becomes large at low temperatures due to the high viscosity of ethylene glycol, and therefore the temperature characteristics change significantly at low temperatures. Furthermore, in order to improve conductivity at low temperatures, an electrolytic solution in which organic acid salts are dissolved in ethylene glycol and water is added is also known, but the presence of water causes deterioration of the aluminum anodic oxide film. It is large, and the operating temperature range is up to approximately 85°C, so high-temperature characteristics cannot be expected. Next, instead of ethylene glycol, N.
Electrolytes in which ammonium borate is dissolved in N'-dimethylformamide, and electrolytes in which water is further added to this electrolyte, are also known, but in electrolytes to which water is not added, boric acid is dissolved in N'-dimethylformamide. Only a small amount of ammonium dissolves, resulting in a high resistivity, and an electrolyte containing water can only be used at a temperature range of about 85°C, making it difficult to expect high-temperature properties. Furthermore, as an electrolytic solution that can be used over a wide temperature range from low to high temperatures, boric acid is Esterified with 5 to 15 wt% of alcohols and 10 to 35 wt% of alcohols and water removed, and amines of 2 to 35 wt%.
15wt% and N・N'-dimethylformamide 45~
An electrolyte solution containing 75wt% is known. This electrolytic solution has a high specific resistance, and since amines are used, it lacks high-temperature stability and cannot be expected to have long life characteristics. Therefore, as an electrolytic solution with low resistivity, good low temperature characteristics and long life characteristics,
As disclosed in No. 68866, "Electrolyte for Dry Aluminum Electrolytic Capacitors," an ester obtained by reacting an alcohol with ammonium borate and an N/N'-dimethylformamide solution in which an organic acid salt is dissolved are mixed by weight. Ester in ratio 10~30wt
%, N・N'-dimethylformamide solution 90~
An electrolytic solution mixed at 70 wt% is known. According to this electrolyte, N.N'-dimethylformamide is a single solvent, and since the boiling point of N.N'-dimethylformamide is 153° C., the high temperature stability is unstable at temperatures near the boiling point. Therefore, the present invention aims to provide an electrolytic solution for driving an electrolytic capacitor that has further improved high-temperature characteristics, is stable over a wide temperature range from low temperatures to about 200°C, and can be expected to have a long life. It is something. Specifically, the organic acid salt was converted into γ-valerolactone (3-methylbutyrolactone, abbreviated as
GVL) and N・N'-dimethylformamide (abbreviation: DMF) dissolved in a mixed solution,
The present invention provides an electrolytic solution that is a mixture of ammonium borate and a boric acid ester obtained by esterifying alcohols. Next, examples of the electrolytic solution for driving an electrolytic capacitor according to the present invention will be described. A boric acid ester is produced by dissolving 20 to 40 wt% of ammonium borate and 80 to 60 wt% of alcohol (ethylene glycol, propylene glycol, etc.), heating, and esterifying it. γ-valerolactone 75-25wt% and N・N′-
Organic acid salts (ammonium salicylate, monoammonium phthalate, diammonium phthalate, ammonium benzoate, etc.) 0.2 to 1.0 mol/in a mixed solvent with 25 to 75 wt% dimethylformamide
Make a mixed solution that dissolves the following. Next, 10 to 30wt of the boric acid ester obtained in
%, and mix the mixed solution obtained in 90 to 70 wt%. In the electrolytic solution according to the present invention, as shown in Fig. 1, when the organic acid salt mixed solution is 70 wt% or less (boric acid ester is 30 wt% or more), the conductivity is 1000μ
S/cm or less, and when the organic acid salt mixed solution becomes 90 wt% or more (boric acid ester is 10 wt% or less), the withstand voltage becomes 50 V or less, making it impractical. In the mixed solvent of the organic acid salt mixed solution, as shown in Figure 2, γ-valerolactone [GVL] is 75 wt% or more (N・N'-dimethylformamide [DMF] is 25 wt%).
% or less), the conductivity is less than 1000μS/cm, and γ-valerolactone is less than 25wt% (N.
When the N'-dimethylformamide content is 75wt% or more, the withstand voltage becomes 50V or less. As shown in Figure 3, when the concentration of organic acid salt in the organic acid salt mixture solution becomes 0.2 mol/or less, the conductivity decreases to 1000 μS/cm.
At 1.0 mol/ or more, the conductivity approaches saturation and there is no improvement in conductivity. Therefore, the range of 0.3 to 0.9 mol/ is preferable. In this case, the mixed solvent contains both γ-valerolactone and N·N'-dimethylformamide at 50 wt%. As shown in Figure 4, borate esters contain alcohols of 80wt% or more (ammonium borate 20wt%).
below), the leakage current increases rapidly, and when the alcohol content is below 60wt% (ammonium borate
(40wt% or more), the viscosity increases. Table 1 specifically illustrates the composition of the electrolytic solution according to the embodiment of the present invention, and shows a comparison with a conventional composition. In Table 1, EG/boric acid ester indicates boric acid ester obtained by using ethylene glycol,
PG/boric acid ester refers to boric acid ester obtained by using propylene glycol. Furthermore, among those shown in Table 1, the electrolytes of Conventional Examples 1, 2, 3 and Examples 1, 3, 5, and 8 (of the present invention) were used to impregnate a capacitor element with a rating of 10 V and 1000 μF. Table 2 shows the characteristics of aluminum electrolytic capacitors at low temperature, room temperature, and high temperature. This electrolytic capacitor has a well-known structure, in which a capacitor element consisting of an anode and a cathode of aluminum foil sandwiched between electrolytic paper and wound around the capacitor element is impregnated with electrolyte, and the capacitor element is inserted into an aluminum case using a sealant. It has a structure in which it is housed in a

【表】【table】

【表】【table】

【表】 次に、第5図に、従来例2、3および(本発
明)実施例1、3、5、8の電解液を用いて、同
様に定格10V、1000μFのコンデンサ素子に含浸
してなるアルミニウム電解コンデンサの高温での
加速寿命特性を示す。第5図においてaは静電容
量変化率(ΔC)、bは損失角の正接(tanδ)、
cは漏れ電流(LC)の特性をそれぞれ示す。 この結果、第1表から本発明に係るの電解液の
方が従来例に比較して電導度(1/Ωcm)が大き
いことが分かる。また、第2表から広温度範囲に
わたつて、容量変化率(%)および損失角の正接
(tanδ)ともに安定であることが分かる。 さらに、第5図に示した高温での加速寿命特性
から特に静電容量変化率(%)損失角の正接
(tanδ)ともに本発明に係るの電解液の方が長時
間にわたつて安定で優れていることが分かる。 上述のことから本発明は、比抵抗が小さく、か
つ低温から高温の広温度範囲にわたる使用におい
て長寿命の電解液を提供できるものである。
[Table] Next, Fig. 5 shows that the electrolytes of Conventional Examples 2 and 3 and Examples 1, 3, 5, and 8 (of the present invention) were used to impregnate a capacitor element with a rating of 10 V and 1000 μF. This shows the accelerated life characteristics of aluminum electrolytic capacitors at high temperatures. In Figure 5, a is the capacitance change rate (ΔC), b is the tangent of the loss angle (tanδ),
c indicates the characteristics of leakage current (LC). As a result, it can be seen from Table 1 that the electrolytic solution according to the present invention has a higher conductivity (1/Ωcm) than the conventional example. Furthermore, Table 2 shows that both the rate of change in capacity (%) and the tangent of loss angle (tan δ) are stable over a wide temperature range. Furthermore, from the accelerated life characteristics at high temperatures shown in Figure 5, the electrolytic solution according to the present invention is more stable and superior over a long period of time, especially in terms of capacitance change rate (%) and tangent of loss angle (tan δ). I can see that From the above, the present invention can provide an electrolytic solution that has a low specific resistance and has a long life when used over a wide temperature range from low to high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電解液中の有機酸塩混合
溶液および硼酸エステルの量と電解液の電導度お
よび対圧との関係を示す特性図、第2図は同様に
γ−バレロラクトン(GVL)およびN・N′−ジ
メチルホルムアミド(DMF)の量と電導度およ
び対圧との関係を示す特性図、第3図は同様に有
機酸塩濃度と電導度との関係を示す特性図、第4
図は同様に硼酸アンモニウムおよびアルコール類
とからなる硼酸エステルと粘度および漏れ電流と
の関係を示す特性図、第5図は従来例および本発
明に係る電解液を用いて、定格10V、1000μFの
コンデンサ素子に含浸してなるアルミニウム電解
コンデンサの高温での加速寿命特性を示し、同図
aは静電容量変化率(ΔC)、bは損失角の正接
(tanδ)、cは漏れ電流(LC)の特性をそれぞれ
示す。
FIG. 1 is a characteristic diagram showing the relationship between the amount of organic acid salt mixed solution and boric acid ester in the electrolytic solution according to the present invention and the electrical conductivity and counter pressure of the electrolytic solution. Figure 3 is a characteristic diagram showing the relationship between the amount of GVL) and N/N'-dimethylformamide (DMF), conductivity, and counter pressure, and Figure 3 is a characteristic diagram showing the relationship between organic acid salt concentration and conductivity. Fourth
The figure is a characteristic diagram showing the relationship between viscosity and leakage current of a boric acid ester consisting of ammonium borate and alcohols, and Figure 5 shows a capacitor with a rating of 10 V and 1000 μF using the conventional electrolyte and the electrolyte according to the present invention. The figure shows the accelerated life characteristics at high temperatures of an aluminum electrolytic capacitor impregnated into an element, where a shows the capacitance change rate (ΔC), b shows the tangent of the loss angle (tanδ), and c shows the leakage current (LC). The characteristics of each are shown.

Claims (1)

【特許請求の範囲】 1 有機酸塩をγ−バレロラクトンとN・N′−
ジメチルホルムアミドの混合溶液に溶解させた溶
液と、硼酸アンモニウムとアルコール類をエステ
ル化して得られる硼酸エステルとを、重量比で該
有機酸塩混合溶液70〜90wt%、該硼酸エステル
10〜30wt%となるように混合したことを特徴と
する電解コンデンサ駆動用電解液。 2 特許請求の範囲1において、該有機酸塩混合
溶液の内訳として、該γ−バレロラクトンを75〜
25wt%、該N・N′−ジメチルホルムアミドを25
〜75wt%としたことを特徴とする電解コンデン
サ駆動用電解液。 3 特許請求の範囲1または2において、該有機
酸塩混合溶液として、該γ−バレロラクトンと該
N・N′−ジメチルホルムアミドとからなる混合
溶媒に有機酸塩を0.3〜0.9mol/溶解したことを
特徴とする電解コンデンサ駆動用電解液。 4 特許請求の範囲1において、該硼酸エステル
は重量比で該アルコール類80〜60wt%と該硼酸
アンモニウム20〜40wt%をエステル化したこと
を特徴とする電解コンデンサ駆動用電解液。 5 特許請求の範囲1または2または3におい
て、有機酸塩としてサリチル酸アンモニウム、フ
タル酸一アンモニウム、フタル酸二アンモニウ
ム、安息香酸アンモニウムを使用したことを特徴
とする電解コンデンサ駆動用電解液。 6 特許請求の範囲1または4において、該アル
コール類としてエチレングリコール、プロピレン
グリコールを使用したことを特徴とする電解コン
デンサ駆動用電解液。
[Claims] 1 Organic acid salts are γ-valerolactone and N.N'-
A solution dissolved in a mixed solution of dimethylformamide and a boric acid ester obtained by esterifying ammonium borate and alcohol are combined in a weight ratio of 70 to 90 wt% of the organic acid salt mixed solution and the boric acid ester.
An electrolytic solution for driving an electrolytic capacitor characterized by being mixed at a concentration of 10 to 30 wt%. 2 In Claim 1, the content of the organic acid salt mixed solution is that the γ-valerolactone is
25wt%, 25% of the N・N'-dimethylformamide
An electrolytic solution for driving electrolytic capacitors characterized by ~75wt%. 3. In claim 1 or 2, the organic acid salt mixture solution includes 0.3 to 0.9 mol/dissolved of the organic acid salt in a mixed solvent consisting of the γ-valerolactone and the N·N'-dimethylformamide. An electrolytic solution for driving electrolytic capacitors. 4. The electrolytic solution for driving an electrolytic capacitor according to claim 1, wherein the boric acid ester is an esterification of 80 to 60 wt% of the alcohol and 20 to 40 wt% of the ammonium borate. 5. The electrolytic solution for driving an electrolytic capacitor according to claim 1, 2 or 3, characterized in that ammonium salicylate, monoammonium phthalate, diammonium phthalate, or ammonium benzoate is used as the organic acid salt. 6. The electrolytic solution for driving an electrolytic capacitor according to claim 1 or 4, characterized in that ethylene glycol or propylene glycol is used as the alcohol.
JP10947680A 1980-08-08 1980-08-08 Electrolyte for driving electrolytic condenser Granted JPS5734327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10947680A JPS5734327A (en) 1980-08-08 1980-08-08 Electrolyte for driving electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10947680A JPS5734327A (en) 1980-08-08 1980-08-08 Electrolyte for driving electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS5734327A JPS5734327A (en) 1982-02-24
JPS6124813B2 true JPS6124813B2 (en) 1986-06-12

Family

ID=14511199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10947680A Granted JPS5734327A (en) 1980-08-08 1980-08-08 Electrolyte for driving electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS5734327A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182418A (en) * 1984-09-29 1986-04-26 日本ケミコン株式会社 Electrolytic liquid for electrolytic capacitor
JPS6182417A (en) * 1984-09-29 1986-04-26 日本ケミコン株式会社 Electrolytic liquid for electrolytic capacitor
JPS6182416A (en) * 1984-09-29 1986-04-26 日本ケミコン株式会社 Electrolytic liquid for electrolytic capacitor
JPS6182415A (en) * 1984-09-29 1986-04-26 日本ケミコン株式会社 Electrolytic liquid for electrolytic capacitor
JP3551035B2 (en) * 1998-08-31 2004-08-04 松下電器産業株式会社 Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same

Also Published As

Publication number Publication date
JPS5734327A (en) 1982-02-24

Similar Documents

Publication Publication Date Title
WO1987005149A1 (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor prepared by using it
JPH0257694B2 (en)
JPS61239617A (en) Solid electrolytic capacitor
JPS6124813B2 (en)
US4376713A (en) AC Electrolytic capacitor electrolyte
JP2018164009A (en) Electrolytic solution for driving electrolytic capacitor and electrolytic capacitor using the same
CA1185336A (en) Electrolytic capacitor
US3588625A (en) Electrolytic condenser and paste composition therefor
GB2143228A (en) Electrolytes
JPH11340097A (en) Electrolytic solution for driving electrolytic capacitor
JPS63261820A (en) Electrolyte for driving electrolytic capacitor
JPH0770443B2 (en) Electrolytic solution for driving electrolytic capacitors
JPS63228708A (en) Electrolytic capacitor
KR940008894B1 (en) Electrolytic liquid for aluminium electrolytic condenser
KR0144608B1 (en) Electrolyte of electrolytic condenser
JPH0351285B2 (en)
JPH0418719A (en) Electrolyte for electrolytic capacitor driving, and electrolytic capacitor soaked with the electrolyte
JP3310684B2 (en) Electrolytic solution for electrolytic capacitors
JPH0810663B2 (en) Electrolytic solution for electrolytic capacitors
JPH031819B2 (en)
JP3191818B2 (en) Polymer solid electrolyte for driving electrolytic capacitors
JP2673438B2 (en) Electrolyte
JPS63169016A (en) Electrolytic capacitor driving electrolyte
JP3869526B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JPS63261822A (en) Electrolyte for driving electrolytic capacitor